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Unconventional ferroelectricity exhibited by hafnia-based thin films—robust at nanoscale sizes—presents
tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching
remains controversial. We investigated a La0.67Sr0.33MnO3/Hf0.5Zr0.5O2 capacitor interfaced with
various top electrodes while performing in situ electrical biasing using atomic-resolution microscopy
with direct oxygen imaging as well as with synchrotron nanobeam diffraction. When the top electrode is
oxygen reactive, we observe reversible oxygen vacancy migration with electrodes as the source and
sink of oxygen and the dielectric layer acting as a fast conduit at millisecond time scales. With
nonreactive top electrodes and at longer time scales (seconds), the dielectric layer also acts as an
oxygen source and sink. Our results show that ferroelectricity in hafnia-based thin films is unmistakably
intertwined with oxygen voltammetry.

T
he discovery of silicon-compatible nano-
ferroelectricity in hafnia-based thin films
(1) has triggered a vast amount of fun-
damental research and has rejuvenated
interest in ferroelectricmaterials inmicro-

electronics, for both low-power, nonvolatile
memory and logic devices. This ferroelectricity
is robust even at film thicknesses as low as
1 nm (2–4), a situation that was believed to
be impossible on the basis of the classical
understanding of ferroelectricity. The spon-
taneous polarization observed in these films is
ascribed generally to ametastable polar ortho-
rhombic (o-) phase (Pca21) (5). A higher-energy
rhombohedral (r-) phase (R3m/R3) has been
reported for epitaxial growth of Hf0.5Zr0.5O2

(HZO) on La0.67Sr0.33MnO3 (LSMO)–buffered
perovskite and on trigonal substrates (6).
Remnant polarization (Pr) values as high as
35 mC/cm2 were measured (7) on HZO. The
pronounced effects of particle size reduction,
surface effects, dopants, oxygen vacancies (V̈o),
epitaxial strain, and residual stresses at the
nanoscale have been investigated as possible
reasons to stabilize these otherwise meta-
stable phases in thin films (5, 8, 9). On the

other end of the size range, films as thick as
1 mm (10) and bulk samples (11) are ferro-
electric, with the stabilization resulting from
dopant and defect chemistry (10, 12).
Armed with an understanding of the virgin

state polarization, research is being conducted
on the mechanism of polarization switching.
The dynamics of this process, through the lens
of a nucleation-limited switching model and
pointing out the negligible role of domain
growth (or domain wall motion), have been
studied for doped hafnia films grown in the
o-phase (13–19). Flat phonon bands and local-
ized dipoles in half unit cells in the o-phase
have been postulated as an intrinsic reason
for switching without forming domain walls
in these systems (20).
Hafnia-based and zirconia-based materials

are also an important class of resistive mem-
ory devices and oxygen conductors that exhibit
memristive hysteresis driven by V̈o conduction
and redox reactions (21, 22). More generally, in
devices of thin-film ferroelectric oxides such as
tunnel junctions, both V̈o migration and po-
larization switching lead to hysteresis (23–28).
Understanding whether these effects are syn-
ergetic or independent is crucial to achieve
device control (29–33). In tunnel junctions of
HZO thin films on LSMO-buffered SrTiO3

(STO), Wei et al. (23) observed a divergence of
the tunnel electroresistance (TER) from 100%
to 106% upon device cycling, which the authors
explained as a possible transition from polar-
ization switching to V̈o migration–assisted
switching. This observation suggested that the
twomechanisms are independent. Sulzbach et al.
(24) have also reported a similar divergence
in the TER as a function of the applied volt-
age in HZO layers before breakdown. On the
other hand, the electric polarization in hafnia
has been theoretically proposed to origi-
nate from oxygen vacancies through electro-

strictive effects, which strongly suggests the
extrinsic nature of the polarization switching
(29). Direct structural observations during
polarization switching can potentially resolve
these controversies (34).
We report operando atomic-scale electron

microscopy investigations of LSMO/HZO/LSMO
capacitor stacks grown on conducting (Nb-
doped) STO substrate under an electric field
(35). LSMO is a standard choice of bottom
electrode in complex oxide devices (23–26, 31),
so our conclusions are relevant for under-
standing a wider class of devices. We per-
formed in situ biasing measurements while
employing two scanning transmission elec-
tron microscopy (STEM) imaging modes—
high-angle annular dark field (HAADF)–STEM
and integrated differential phase contrast
(iDPC)–STEM. With iDPC-STEM, we recently
imaged H atoms next to Ti metal atoms (36),
demonstrating that this is a robust atomic-
resolution imaging technique for simultane-
ously measuring heavy and light elements. By
directly imaging oxygen, we provide evidence
of the reversible and hysteretic migration of
V̈o from the bottom to the top electrode
through the HZO layer. Associated with such
migration, we show that V̈o induce phase
transitions in the LSMO (bottom electrode)
and HZO layers. Additionally, through oper-
ando x-ray diffraction, ex situ microscopy, and
transport measurements on devices with both
noble (Au) and oxygen reactive top electrodes
(LSMO and TiN), we show that oxygen voltam-
metry is also found at short time scales (mil-
lisecond and less).We believe these observations
clearly show that polarization switching and
oxygen voltammetry are not independent.
We begin by showing the evolution of the

epitaxial LSMO layer (bottom electrode), with
the voltage applied to the top electrode and
keeping the bottom electrode at 0 V (fig. S1)
(22). Our iDPC-STEM image of the virgin state
(Fig. 1A and fig. S2A) shows the antiphase
octahedral d tilts present in the LSMO perov-
skite structure (22). Mn-O-Mn bond angles,
as we measured in various regions, are be-
tween 165° and 176° (37). Upon increasing the
bias to 2 V, a noticeable displacement of Mn
columns away from the center of the oxygen
octahedra (Fig. 1B) appears throughout the
film (barring the first three monolayers at the
interface with Nb:STO). These displacements
are randomly oriented with a mean value of
18.6 pm and standard deviation of 10.2 pm
(fig. S3), which indicates a transformation
from an MnO6 octahedral toward an MnO5

square pyramidal coordination (35). Thus at
2 V, the LSMO film contains a combination of
MnO5 and MnO6 polyhedra. Although this
structural feature was not previously observed
for LSMO, Brownmillerite [(BM), oxygen-
deficient perovskite] phases are reported to
exhibit MnO5 square pyramids in the parent
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compound, SrMnO3 (38). We refer to this
MnO5-MnO6 combination as a BM-precursor
phase (39). As for the first three monolayers,
an important feature is the exaggerated anti-
phase d tilts, with Mn-O-Mn bond angles of
143° to 146° that are not typical of perovskite
structures (fig. S2, B to D).
Upon increasing the biasing voltage to 4 V,

LSMO converts into a well-studied BM phase
(40, 41) except for the first few monolayers
near the interface with the substrate, which
transform to the BM-precursor phase (fig.
S4A). Transformation from perovskite to the
BM phase occurs through V̈o ordering in every
alternate Mn-O plane along the c′-axis (Fig.
1C), transforming the Mn coordination from
octahedral or square pyramidal to tetrahe-
dral. Back-to-back MnO4 tetrahedra in [1-10]
alternate with MnO6 octahedra along c′, in-
dicating the BM phase (Fig. 1C). This trans-
formation is hysteretic and nonvolatile,
with LSMO remaining in the BM phase
even when the external bias is removed (fig.
S4) (35).

The multiple-step transformations (Fig. 1D)
from MnO6 octahedra (virgin state) toward
square pyramids plus octahedra (2 V), to
alternating octahedra and tetrahedra (4 V)
also correlate to the variation of the pseudo-
cubic lattice parameter along the electric-field
direction (called c′). We determined the c′
values at various bias voltages for the first
20 monolayers in LSMO starting from the
Nb:STO interface (Fig. 1E). In the virgin state,
we measured c′ to be 384 (±5) pm with V̈o
disorder–induced expansion in some planes
(35). At 2 V, c′ oscillates with values between
335 and 425 pm, without any superstructure.
At 4 V, except for the first few monolayers, c′
alternates between 375 and 445 pm, doubling
the lattice periodicity. Energy-dispersive spec-
troscopy (EDS) (35) reveals a clear gradient of
oxygen concentration in the bottom electrode
compared with the virgin state, even at a low
bias of 1.5 V, with more V̈o occurring closer to
the Nb:STO interface (Fig. 1, F and G).
Notably, the BM phase can be reoxygenated

when negative voltages are applied to the top

electrode. We show that this takes place for
biases as low as −1 V (fig. S5A). The hysteretic
BM phase clearly begins to reoxygenate in
iDPC-STEM images of the same field of view at
0 and −1.3 V (Fig. 2, A and B), with the ap-
pearance of extra oxygen columns at −1.3 V in
the Mn-O planes that were oxygen deficient at
0 V (fig. S5A). Upon ramping the bias to −3 V,
the entire layer converts to the BM-precursor
phase (Fig. 2C), which is retained also when
the bias is removed (Fig. 2D), as we confirmed
by the corresponding disorderly c′ variation
(fig. S5B).
To address the time scales of the processes

associatedwithde- and reoxygenation of LSMO
layers, we followed the dynamics through
HAADF-STEM image acquisition, after poling
at −4 V (transforming LSMO completely back
to the starting perovskite phase). Upon increas-
ing the bias to 3 V (Fig. 2E), the initial perovskite
phase changes to the BM-precursor phase in
60 s and then to the BM phase within 120 s.
These changes are indicated by the varia-
tionsweobserve in the c′parameter. By applying
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Fig. 1. Deoxygenation of bottom electrode LSMO layer with increasing
positive bias. (A) iDPC-STEM image of a representative region of the bottom
LSMO layer in the virgin state, viewed along the [110] zone axis, exactly matching
the perovskite structure. Schematic in the inset shows MnO6 octahedra and
their antiphase tilts, clearly imaged in (A). In the inset, La/Sr is green, Mn is red,
and O is brown. (B) iDPC-STEM image at V = 2 V. Panels on the right show
various unit cells, illustrating Mn columns (circled in white) and their displace-
ments (marked by green arrows) away from the center of an octahedron. Oxygen
columns are marked in red circles. (C) iDPC-STEM at 4 V. BM LSMO (zone axis:

a; schematic in inset) denoted by alternating MnO4 tetrahedra and MnO6 octahedra
along c′. (D) Schematic showing the evolution of an MnO6 octahedra in the virgin
state (enclosed in black box), toward MnO5 square pyramids at 2 V (enclosed in red
box), to alternating MnO4 tetrahedra and MnO6 octahedra at 4 V (enclosed in
blue box). (E) Plot of variation of c′ (La-La distance) parameter from the STO
interface in perovskite (black), BM-precursor (red), and BM phases (blue). (F and
G) Overview image of LSMO/HZO/LSMO capacitor (F) with regions marked
where oxygen content was quantified from EDS (G) at 0 V and 1.5 V. Scale bars,
1 nm in (A) to (C) and 5 nm in (F).

RESEARCH | REPORT
on A

ugust 2, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


−3 V, a complete transformation from a
BM phase back to perovskite phase occurs
within 90 s in the region [Fig. 2F; fast Fourier
transform (FFT) in fig. S5C]. We then follow the
same region for 10 s using a faster HAADF-
STEM image series (1.2 s per frame). From the
c′ parameter variations, we conclude that the
BM-precursor phase transformed to the perov-
skite phase (Fig. 2F, center panel). Thus, al-
though the complete transformation from
perovskite to BM and back takes about a
couple of minutes at 3 and −3 V, V̈o migra-
tion and partial phase-transitions already start
occurring in time scales of seconds at these
voltages. At 2 V, however, the partial transition
to the BM-precursor phase itself takes 3 to
4 hours. The change in kinetics with voltage
is consistent with the ultra-nonlinear voltage-
time dilemma typically observed in oxide-
resistive memories (42). Thus, we expect that
at higher voltages thesemechanismswill occur
at very short time scales.

We also monitored the structural evolution
in the HZO (6 nm) layer under the application
of bias. From themultislice iDPC-STEM image
simulations for HZO [see also (43)] in the
r-phase (R3m) with [111] out-of-plane (Fig. 3A,
inset), we recognize the (001) planes (at ~55°
with respect to the [111] direction) by cationic
(Hf/Zr) columns surrounded by two oxygen
columns on either side of them. In the virgin
state, our experimental images perfectly match
the r-phase simulations. We followed the evo-
lution of a supercell (Fig. 3A) in this grain
upon application of bias along the out-of-plane
[111] direction. We show the displacement
of V̈o for this supercell occurs (35) (fig. S6A)
with respect to the 0-V configuration in
Fig. 3B. While V̈o migrate toward the bottom
electrode with increasing bias (Fig. 3B), they
also gather some in-plane displacement (Fig.
3B, inset).
At 4 V, the same grain transforms into a

combination of multiple grains (Fig. 3C). Upon

inspecting various regions in the film, we
found that the majority of the grains have
changed their structure from r-phase to
the more thermodynamically stable o- and
monoclinic (m-) phases (Fig. 3D and fig. S6C).
The o-phase is commonly observed in ferro-
electric HZO layers grown by various meth-
ods (5), whereas the r-phase is only observed
under specific growth procedures and condi-
tions (6). Our observations on HZO point to
the r-phase being stabilized under slightly
oxygen-deficient conditions. Replenishment
of oxygen in the HZO layer under bias (orig-
inating from the bottom LSMO layer) trans-
forms it into more stoichiometric m- or o-phases.
The V̈o in the HZO layer, and thus the r-phase,
is restored (by reverse migration) upon ap-
plying a bias of −3 V, as can be seen from the
perfect match of the experimental iDPC-
STEM of two representative domains (180°
rotated from each other) (Fig. 3E) with the
multislice image simulations (Fig. 3A, inset).
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Fig. 2. Oxygenation of bottom electrode LSMO layer with increasing
negative bias. (A and B) iDPC-STEM images of a region in the same field of view
at 0 (A) and −1.3 V (B). At −1.3 V, oxygen columns start to appear (marked
by red arrows) in positions where there were none in the BM phase at 0 V.
(C and D) BM phase transforms to BM-precursor phase at −3 V (C) and is
retained so at 0 V (D). (E) Dynamics are recorded through HAADF-STEM imaging
within 120 s of ramping from 0 to 3 V from a starting perovskite phase. A

BM-precursor phase is imaged at 60 s, and a BM phase is imaged at 120 s.
(F) Upon changing the bias to −3 V, a BM phase is recorded at 30 s that changes
to a perovskite phase by 90 s (for disappearance of the superstructure spots
in FFT, see fig. S4). The intermediate BM-precursor phase recorded at 60 s
converts to a perovskite-like phase in ~6 s, as can be seen by the variation in the
c′ parameter, which gives an idea about the time scales of V̈o migration. Scale
bars, 1 nm in (A) to (D) and 5 nm in (E) and (F).
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The m- and o-phases can be reversibly ob-
tained again in subsequent cycles of positive
bias (fig. S6D).
To elucidate the effects of device cycling

with submillisecond pulses (35), we present
results on tunnel junction Co/HZO (2 nm)/
LSMO//STO devices switched between low-
resistance state (LRS) and high-resistance
state (HRS) at large voltages of ±6 V. The de-
vices showed an increasing TER (35) from
100% (stage A) to 106% (stage B) upon cycling
~100 times (23, 44). An iDPC-STEM image
from a selected region in the LSMO (bottom
electrode) layer in the LRS (stage B) (Fig. 4A)
shows a clear perovskite structure. In the HRS
(stage B), however (Fig. 4B), Co inhomoge-
neously oxidizes exhibiting coexisting Co-rich
and CoOx-rich regions as revealed from the
EDS analysis (fig. S7). This leaves oxygen-
deficient LSMO in the BM-precursor phase.
Thus, progression from stage A to stage B
results in the gradual increase of CoOx re-
gions, an accumulated effect of oxygen vol-
tammetry, which is reflected electrically in
diverging resistance values.
To disentangle the short-term field effects

on our devices from accumulated effects (35),

we report ex situ structure-property correla-
tion results on ferroelectric capacitor stacks
of LSMO (or TiN)/HZO (7 nm)/LSMO//STO
cycled at 1 kHz fewer than 10 times at 5.5 V.
The intrinsic Pr of our virgin devices in r-phase
obtained from atomic displacements (35) (fig.
S5B) is <9 mC/cm2, which is very small com-
pared with the 35 mC/cm2 that were measured
from polarization-voltage (P-V) loops at room
temperature (7). This discrepancy is already an
indication that most of the switching charge is
intertwined with extrinsic factors. From the
P-V hysteresis loops at various temperatures
(Fig. 4C), we observed that, contrary to what
is expected in classical ferroelectrics, the Pr
increases with increasing temperature in the
range from 150 to 300 K (22). This observa-
tion is in line with the polarization switching
being correlated to the thermally activated
oxygen-migration mechanism. These devices
were prepared in a “down-polarized” configu-
ration (5.5 V, 1 kHz) and imaged. The iDPC-
STEM images clearly reveal the oxygen-deficient
BM-precursor phase in the bottom LSMO
layer close to the HZO interface (Fig. 4D) as
also confirmed by corresponding disorderly
oscillations in the c′ parameter (Fig. 4D, inset).

Close to the STO interface, we found exagger-
ated oxygen octahedral tilts with Mn-O-Mn
bond angles <146° (marked in fig. S8A), which
is the same interfacial feature observed during
in situ STEMDC (direct current) testing at 2 V
(fig. S2B). These observations also suggest that
such extreme tilts initiate the transformation
from perovskite to BM-precursor phase. These
incipient oxygen migration–induced topotac-
tic structural transitions result from the dis-
charge of V̈o in the electrodes. This thermally
activated process leads to a built-in field at
lower temperatures, which decreases as the
temperature rises (fig. S8, B and C). The HZO
layer, however, remains in an r-phase (Fig.
4E), revealing that it just acts as a conduit of
oxygen between the source and sink (both
reactive) electrodes in the short term.
We conducted comparative operando syn-

chrotron nanobeam diffraction on Au/HZO/
LSMO and LSMO/HZO/LSMO capacitors to
answer the question of whether oxygen volta-
mmetry can still occur if HZO is interfaced
with a nonreactive electrode in the short term
(35) (figs. S9 and S10). Both devices showed
ferroelectric switching peaks (Fig. 4C and
fig. S10), and we cycled them at 100 Hz in a
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Fig. 3. Oxygenation and deoxygenation of HZO and associated phase tran-
sitions. (A) Evolution of an r-phase HZO grain while oxygenating under positive
bias followed through iDPC-STEM images, where both cations and oxygen
columns are displayed. The image of the virgin state at 0 V shows two red arrows
pointing to two oxygen columns in the (100) planes neighboring a cationic
column. Multislice iDPC-STEM image simulations of the r-phase (R3m symmetry)
in the inset shows the good match with the observations. (B) Out-of-plane
displacement of V̈o (in picometers) with external bias, in the marked supercell
(red box) with respect to the positions in (A). Negative values indicate
displacement toward bottom electrode. V̈o shows both in-plane and out-of-plane

(toward bottom electrode) components (inset). (C) A new grain nucleates in the
same region at 4 V, giving rise to a polycrystalline nature (FFT shown in inset).
(D) Another region in the HZO film back at 0 V showing o-phase and m-phase
(with multislice simulations of both in the insets). Note the change of orientation
from [111] to [100]. (E) iDPC-STEM image of domains (mutually rotated by
180° about [111]) in the r-phase [to be compared with the simulation in the inset
of figure 3A from (36)], which is retained when poled at −3 V (imaged at 0 V).
Scale bars, 1 nm in (A), (C), and (E) and 2 nm in (D). Interfaces between the
HZO and the top and bottom LSMO layers are marked in orange. In (D), only the
HZO/bottom electrode interface is shown.
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modest voltage range between −3.5 and 3.5 V
for tens of thousands of cycles (fig. S10C). In
LSMO/HZO/LSMO devices, the virgin state
and cycled state do not show any substantial
differences in the HZO lattice parameter, which
indicates the persistence of the r-phase during
cycling (fig. S10D). However, in the case of Au/
HZO/LSMO, we show that an m-phase (with a
Bragg peak at 2q = 24.9°) appears after cycling
and coexists with the r-phase (fig. S10, E and
F). This reveals that the HZO layer itself is
forced to act as source and sink of oxygen
vacancies in the short term (35) when Au
is used as a top electrode, which results in
reversible structural phase transitions between
the r- and m-phases. Further DC biasing re-
sults in an increase of m-phase fraction in-
creasing positive bias, in agreement with the
long-term in situ transmission electron micro-
scopy (TEM) observations (fig. S11).
Using the model system of epitaxial HZO/

LSMO/STO, we demonstrate that oxygen vol-
tammetry and ferroelectric switching are in-
tertwined (Fig. 4F) (35).With reactive top
electrodes such as TiN (45), Co, and LSMO,

the HZO layer acts as a mere conduit for re-
versible oxygen migration between the elec-
trodes,with incipient topotactic transformations
taking place in them. With a noble top elec-
trode (Au), HZO instead itself acts as a sink
and source of V̈o. In the longer term, redox-
based phase-transition effects that follow oxy-
genmigration in both HZO and LSMO become
more marked. Although we remain agnostic
about the nature of coupling between vol-
tammetry and polarization switching, recent
predictions of electrochemical origin of fer-
roelectricity in hafnia-based compounds (29),
as well as demonstrations of giant electro-
striction in the sister compound Gd:CeO2

(46), can provide important clues.
In the context of tunnel junction devices,

perovskite manganites (47) are routinely
used as back electrodes (24–27, 48). Their
crucial role as oxygen-conducting memris-
tive layers (41) actively participating in charge
transport is being recognized (35), with recent
seminal demonstrations in ferroelectric tun-
nel junctions (28). Thus, our results have deep
implications not just for hafnia-based ferro-

electrics, but also for the wider field of oxide
electronics.
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dependent P-V loops obtained from dynamic hysteresis measurements at
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corresponding 2Pr versus T (temperature) curve (see also fig. S8). (D) iDPC-
STEM image of LSMO close to the HZO interface (marked in orange) in
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5.5 V). BM-precursor phase is formed, confirmed by disorder in the c′
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the iDPC-STEM image presented for the region in the blue box, and the right
inset shows a multislice simulation of the R3m phase. Scale bar, 1 nm in (D)
and (E). (F) Schematic of the polarity-dependent oxygen voltammetry process
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various layers are represented with lighter colors.
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microelectronic applications.
migration is intertwined with the ferroelectric switching, which has implications for the use of these materials in a range of
electron microscopy during the operation of a hafnium zirconium oxide capacitor. The authors found that vacancy 

 attempted to resolve this controversy by conductinget al.oxygen vacancies has remained an open question. Nukala 
is a ferroelectric material, but whether the polarization switching comes from the polar crystal phases or the migration of 

Hafnia-based materials are of interest because of their potential use in microelectronic components. Hafnia-oxide
A role for vacancies
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