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ABSTRACT 
In this paper, the effect of spatial smoothing (Forward 
smoothing and Forward-Backward smoothing) on the 
performance of subspace methods in the presence of Ar- 
ray Model errors for Direction-Of-Arrival (DOA) esti- 
mation is studied. Theoretical expressions for the Mean 
Squared Error (MSE) in DOA are obtained, based on 
a common framework of analysis. Simulations are car- 
ried out to substantiate the theory developed. For the 
cases considered, smoothing improves the performance 
of ESPRIT and Minimum-Norm method while it is not 
so for MUSIC. 

1. INTRODUCTION 

Estimation of the Direction Of Arrival (DOA) of highly 
correlated/coherent sources impinging upon a Uniform 
Linear Array(ULA) of sensors by the subspace meth- 
ods (MUSIC,Min-Norm method,ESPRIT), is done by 
using a spatially smoothed covariance matrix (Forward 
Smoothed(FS) and Forward-Backward smoothed(FBS)). 
In practice, the sensor characteristics (gain and phase 
responses, positions etc.) are not ideal leading to Ar- 
ray Model Errors. These errors contribute to a pertur- 
bation in the covariance matrix resulting in a pertur- 
bation of the subspaces and therefore an error in the 
estimated DOA. The performance study in the case of 
a Forward covariance matrix (RI) (no spatial smooth- 
ing) due to Array Model Errors has been carried out 
in [I, 2, 3, 4, 51. In this paper, we study the effect 
of spatial smoothing on the asymplotic performance of 
the subspace methods in the presence of Array Model 
Errors. The performance measure chosen is the Mecm 
Squared Error (MSE) in the DOA. Theoretical expres- 
sions for the MSE in DOA are obtained for each of the 
subspace methods, which can be used to analyze any 
type of array model error given the statistics of the 
model error substantiated by numerical experiments. 

2. BACKGROUND 

Consider the scenario of M possibly coherent narrow- 
band plane waves (with a wavelength A,) incident on 
a ULA of L1 sensors (with an interelement spacing 
of d) from various directions &. The subspace meth- 
ods determine the DOA from the covariance matrix of 
the array output vector which can be represented as1 
RI = ASAH + a:I with A = &[all a2 ..., a ~ ) ]  , 
where = (l/fil) [I, dui, ..., d(L1-l)wi]T , is the 
normalised array steering vector, wj = 27r (d /Ao)  sin&, 
S is the source covariance matrix, U: is the variance of 
the additive noise a t  the output of the sensor array 
and I the identity matrix. In the FS approach, the 
array is divided into K subarrays of L sensors each 
(K = L1- L+ 1) and RI, = *E,"=, WpRj WF = 
AL.SI,AE +c:I where Wp = [ ~ ~ p - ~ ~ ~ ~ I ~ ~ I ~ ~ ~ - p ~ x ~ l ,  
AL denotes the subarray array steering matrix and S f .  
the smoothed source covariance matrix [6, 71. Given 
a perturbed covariance matrix the performance of the 
subspace methods has been characterized using a com- 
mon framework of analysis which relates the MSE in 
DOA directly to the statistics of the perturbed co- 
variance matrix [6, 71. The expressions for MSE de- 
pend upon the terms' I'pipipipir I'adia;pi where pi = 
Rfa(wi),R, = A L S I , A ~  and ai is a noise subspace 
vector corresponding to the subspace method (= pi for 
MUSIC, = ui for Min-Norm method, = ~i for ESPRIT) 

For example, the MSE expressions for MUSIC are 
[e, 71. 

given as [6, 71 with pj = P,dilP, = I - AA+, 

'In this paper, the overbar "-" will be used to denote the 
expectation operator. The superscripts used are T for transpose, 
+ to for the pseudoinverse, for complex conjugate and H for 
complex conjugate transpose. j denotes fi and 6kl  = 1, for 
k = 1 and sero otherwise. B denote an estimate of x, Ax indicates 
an error in the parameter I, Cou(X,  Y) = (X - y ) ( Y  - y)n. 

)ruvWu. = C W ( U ~ A R W ,  VHARX) , U, v, w, x are vectors 
of appropriate dimensionr. 
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di = (aa(w)/aw)(u=u; i 

(Awi )K, = ~ e ( r p i r i p i ~ i  + rpipipipi 1 / ( ~ ( P H  pi 1’) i 

The above expressions are general and are applicable 
to any type of perturbation in the covariance matrix. 

(1) 

3. PERFORMANCE ANALYSIS 

The perturbed asymptotic covariance matrix consid- 
ered in this paper is given by [2] 

R = (A + AA)S(A + A A ) ~  + U:I (2) 

The effect of finite data i s  not considered in this paper. 
The steps involved in the analysis can be outlined as 
follows 

1. Perturb the array model and obtain the expres- 
sion for AR and subsequently for a?ARPi, for 
the type of R (FS,FBS) chosen for analysis. 

2. Obtain the general expressions for rUiuipipi, 
ruipip;pi  in terms of the statistics of AA; to 
study the performance of a method, use the a p  
propriate ai in the MSE expressions. 

The general MSE expressions for each of the smoothed 
covariance matrices are given below. 

Theorem 1 [8] For the FS case, ( ra iP ip ip i ) f r  = 
afBlfrai  , ( ra ip iu ip i ) f r  = a?Bzf.af, with 

1 L  ~ ~ 

p = l  q=1 r = l  t= l  

(4) 
1 S$(P4S--1ii, with Pip  = ( P i p ) j l  = 2 f a  

$ = diag(exp(jwi)), i = 1,2,  

Proof : The perturbed RI. is given by 

- , A4 and ai represent- 
ing P i l l 4 l Y .  

l K  
Rfr = - w,((A + AA)S(A + A A ) ~  + c:I)w,” 

p = l  

where AA corresponds to the f i l l  array. Neglectin sec- 

AL$-(P-l)SAAHW:). Then 

ond order terms, ARjr w ~ ~ = l ( W p A A S + ( p - ’  pi A:+ 

- K  M 
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using the following relationships(we denote a; for a(wi)) ,  
=FAL = 0, AfAf’ = I, Pi = &AF+SYiii. with 
A 4  representing the error in the r th  column of A and 
ii denoting the ith column of I. Using the above rela- 
tionships in the definition of I?(.), we have the required 
result. H 
Corollary 1 [e] For the Forward case, ruiuipipi = 
pi 1 H  A& AaFai, , rUipiudi = pi 1 €I- Aai AaTaf . 

These expressions stated in Theorems 1, 2 are used 
to obtain the general expressions for the MSE in DOA 
for the FS and FBS cases. 

4. TYPICAL ARRAY MODEL ERRORS 

Various Array Model Errors are presented in [2]. In this 
paper, we shall consider only two typical array model 
errors for studying the performance of the subspace 
methods to serve as an illustration of the theoretical 
framework presented above. These are (i) Random er- 
rors and (ii) Gain and phase errors. 
Random errors: Assume that the columns of AA 
are independent, zero-mean, circularly Gaussian ran- 
dom vectors with a known covariance matrix .,”I. Al- 
ternately, for i ,  j = 1,2,  e .  ., L, 
Aa,(ui)Aaf(wj) = U~I&j&t, A ~ ( w ; )  AaT(wj) = 0. 

(5) 
Gain and Phase Errors: The gain and phase re- 
sponses of the sensors are assumed to deviate from the 
nominal response and can be expressed as [2, 31 

where AGi is assumed to be a diagonal matrix. If 
the effect of mutual coupling is considered, AG; has 
off-diagonal elements too. Consider the perturbations 
in the gain and phase response to be small enough, 
independent of the DOA, and modelled as zero-mean, 
uncorrelated random variables with variances U:, U: re- 
spectively [2, 31, then the statistics of the Angle Inde- 
pendent Errors are given as 



where 0 denotes the Hadamard (or Schur) product of 
matrices and ui = ui + up' , ui = - up'. In the 
case of Angle dependent errors (as in the case of sensor 

3. FBS improves the performance of the methods 
compared to FS (for K > 1) for correlated sources, 
and is most significant for p = 1 (also seen in Figs. 

position errors), the variances are assumed to be DOA 3, 4). 
dependent. 

Using the statistics of the errors given above and 
the expressions given in Theorems 1 and 2, the perfor- 
mance of the methods is studied in this paper. Due to 

4. In a one source example, all methods are insen- 
sitive to gain errors with smoothing. A similar 
result was shown for no smoothing case in [3]. 

lack of space, the simplified expressions are given only 

K K  

p = l  q=1 

K K  

(9) 
p=l  q=1 

Similar expressions can be easily obtained for ESPRIT 
and Minimum-Norm methods [8]. 

5. RESULTS AND CONCLUSIONS 

MSE in DOA obtained through simulations (averaged 
over 200 independent trials and represented by sym- 
bols) and numerical evaluation of the theoretical ex- 
pressions for the MSE in DOA (represented by line- 
types), are shown to be close, validating the theory. 
The figures present the MSE in DOA (-lOlog(MSE)) 
in dB as a function of the number of subarrays K for 
a two source scenario. Fig. 1 presents the MSE when 
there are only Gain errors in the array. and Fig. 2 for 
the case when there are only Phase errors in the array. 
It can be seen that the simulations match the theory 
closely. Figs. 3 and 4 compare the performance of FS 
and FBS for MUSIC for various values of correlation 
in the case of Gain errors. Similar trends are observed 
for all methods. 

1. Theoretical expressions for the MSE in DOA as a 
function of the statistics of the array model errors 
for all subspace methods when spatial smoothing 
is used (FS and FBS) are obtained and verified 
using simulations. These are general expressions 
and are valid for various types of error models. 

2. Two typical cases of error models, random errors 
and angle independent gain and phase errors have 
been studied in detail. For these error models, it 
is shown [8] that for the Forward case, (K = l), 
the MSE for all methods is independent of the 
correlation between sources ( p )  for p < 1 (also 
seen in Figs. 3 ,4). 

5. For the cases considered, smoothing improves the 
performance of Min-Norm and ESPRIT. There 
exists an optimum value of K for which the MSE 
is the lowest. Smoothing does not seem to im- 
prove the performance of MUSIC. 
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