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Abstract—We consider additive white Gaussian noise channels and discrete memoryless chan-
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and provide the corresponding achievability and converse bounds on the channel capacity in
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1. INTRODUCTION

In the information theoretic analysis of channels, channel capacity is the maximum rate at which
a source can transmit messages to the receiver subject to an arbitrarily small probability of error.
However, channel capacity can be achieved arbitrarily closely by using very large blocklength codes.
In practice, we are restricted by blocklength, and as a result, we would like to study the backoff
from capacity as well as the variation in maximal code size as a function of blocklength. For a fixed
probability of error, the study of achievable rates in the finite blocklength regime, with a focus on
the second-order coefficient, is known as second-order analysis in literature.

Like channel capacity, a finite blocklength characterization consists of two parts, namely the
achievability and the converse bound on the maximal code size (number of messages) M . Given
the probability of error, the achievability part usually deals with the existence of a code using, for
instance, random coding arguments or manipulating general achievability bounds and showing that
the bound can be achieved. The converse, on the other hand, is an upper bound on the maximal
code size which is to be satisfied by every feasible code. This paper focuses on developing both for
energy harvesting channels.

Energy harvesting (EH) channels and networks have gained considerable interest recently due to
advances in wireless sensor networks and green communications (see [2–4]). Transmitting symbols
requires energy at the encoder end. Thus, the study of the channel is done in tandem with the
energy harvesting system. The energy harvesting section is modeled as a buffer or a rechargeable
battery which stores incoming energy from some ambient source (e.g., solar energy from the sun).
The energy buffer may be of finite or infinite length, and the energy arrival process may be discrete
or continuous. A problem of interest is to compare the performance of a channel with and without
an energy harvesting system (e.g., whether we can quantify the impact on the channel capacity,
finite blocklength capacity, etc.).
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2 SHENOY, SHARMA

Finite blocklength analysis for discrete memoryless channels (DMC) was first carried out in [5].
Nonasymptotic second-order results for additive white Gaussian noise (AWGN) channels in addition
to other channel types were provided in [6, 7]. Further, in [7, 8], third-order terms were provided
and a meta-converse was developed, a converse result that recovered and improved upon known
converses. Later, tighter results for various DMCs were studied in [9]. Nonasymptotic analysis of
channels with state was carried out in [10]. Under the energy harvesting setup, assuming infinite
buffer, the channel capacity for EH-AWGN channels was obtained in [11, 12]. The study of finite
blocklength achievability for energy harvesting noiseless binary channels was carried out in [13].
The achievability result with second-order O(

√
n) was shown in [1] for EH-AWGN channels. Both

achievability and converse results for EH-AWGN channels were further refined recently in [14],
which considered block i.i.d. energy arrivals.

In addition to finite blocklength analysis, we also give bounds on the moderate deviations co-
efficient for EH-AWGN channels and EH-DMC. In this analysis, we transmit at a rate less than
capacity where the backoff goes to zero at a certain rate called the moderate deviation regime. In
this regime, the probability of error will go to zero with increasing blocklength n. The goal is to
characterize the moderate deviation error exponent. Moderate deviation analysis has been studied
for memoryless channels in [15, 16]. In [16], the authors characterize the moderate deviation coef-
ficient in terms of the channel dispersion. For DMCs with variable length feedback, the moderate
deviation analysis was carried out in [17].

Main contributions. In this paper, we provide a scheme that can directly be used to compute
achievable rates for a wide class of energy harvesting channels. We focus on analyzing EH-AWGN
and EH-DMC with infinite buffer. In particular,

1. We provide finite blocklength achievable rates for EH-AWGN and EH-DMC channels assuming
a fixed maximum probability of error. It is shown that a save and transmit scheme where
the saving phase is O(

√
n) long is sufficient to allow for reliable communication in an energy

harvesting setup. When compared with the non-energy harvesting case (but with an equivalent
average power constraint), we observe that the second-order term is still Θ(

√
n). Note that the

coefficients of the second-order term would not necessarily be same.
2. Next, we provide a finite blocklength converse bound, i.e., an upper bound on achievable rates,

for EH-AWGN channels. This is derived by modifying the meta converse from [7] and specifically
applying it to EH-AWGN channels. In quasi-static fading channels, [18] also modified the meta
converse suitably to obtain the desired bounds. Moreover we give an alternate, shorter proof
of the converse bound for EH-AWGN channels, which was first shown in [14]. Additionally,
we analyze DMCs with energy harvesting and provide the finite blocklength converse bounds
for them. The analysis of both achievability and converse in this framework for EH-DMCs
is novel. We are able to show that in both the achievability and converse, the second-order
term for EH-AWGN and EH-DMC is O(

√
n). This also gives us the strong converse for these

channels as a corollary, since the first-order term is unaffected by the probability of error term.
Furthermore, we extend our results to the case where a sequence of messages is sent in the
system where residual energy from previous transmissions can be beneficial.

3. Next, we provide moderate deviation lower and upper bounds for both types of channels. This
is done by showing that the bounds on channel dispersion obtained while proving the finite
blocklength bounds also bound the moderate deviations coefficient. These bounds are novel,
i.e., unavailable elsewhere for energy harvesting channels. Finally, we plot our lower and upper
rate bounds for certain parameters and provide suitable inferences.

4. Finally, we plot our finite blocklength bounds for the EH-AWGN channel under low, medium,
and high SNR regimes and compare them with equivalent non-energy harvesting AWGN channel.
For the EH-DMC, we choose, as examples, an energy harvesting binary symmetric channel
(EH-BSC) and an energy harvesting binary erasure channel (BEC) and plot the corresponding
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FINITE BLOCKLENGTH ANALYSIS 3

results. Moreover, the cases where the plots reveal nontrivial facts about the channel rates are
discussed.

Later, in Section 10, we will compare and discuss our results and methods in detail with those
available in [14,18].

2. PRELIMINARIES

2.1. Basic Notation

We shall use boldface letters (e.g., x) to denote vectors (belonging to R
n for a specified n ∈ N).

When the length of a vector needs to be specified, we shall mention it as xk = (x1, x2, . . . , xk).
Similarly, xj

i = (xi, xi+1, . . . , xj). Lowercase letters denote deterministic scalars or vectors, whereas
uppercase letters denote random variables or random vectors respectively. We shall use [M ] to
denote the set {1, 2, . . . ,M}. We shall denote by P(X ) the set of probability distributions on X
(in cases where the alphabet is clear, we simply use P). The expectation operator will be denoted
by E, and if the distribution (say P ) needs to be specified, then it shall be denoted as EP . We will
occasionally use the Bachmann–Landau notation O(·), Θ(·), etc. to denote appropriate orders. All
logarithms are by default to the base 2, and the base may be explicitly mentioned in some cases.

2.2. Channels, Probability of Error, and Capacity

Given an input alphabet X and output alphabet Y, a channel, denoted by W (y |x) or equiv-
alently PY |X , is a conditional probability measure on Y given x ∈ X . If the probability density
function exists for the channel, we shall denote it by fY |X .

Given a probability distribution P on X and a channel W , we define the output measure PW as

PW (y) =
∑

x∈X
P (x)W (y |x).

There are two notions of probability of error which we will use. Given a code C with M messages,
let U ∈ [M ] be the random variable, uniformly distributed on [M ], denoting the message to be
transmitted and Û ∈ [M ] the message that is decoded at the receiver. The maximal probability of
error (max p.o.e.) of the code C is

Pe,max(C) := max
1≤m≤M

Pr
[
Û �= m |U = m

]
. (1)

Similarly, the average probability of error (avg p.o.e.) is defined as

Pe,avg(C) :=
1

M

M∑

m=1

Pr
[
Û �= m |U = m

]
. (2)

The channel capacity is the same in both cases. However, in the finite blocklength regime, the
differences are in higher-order terms, resulting in an O(log n) difference [7]. In this paper, we
will stick to the maximal probability of error criterion, since it is advantageous while analyzing
the energy harvesting DMC results. As a matter of technique, max p.o.e. bounds usually involve
working with sequences as opposed to avg p.o.e., where we work with distributions.

An (n,M, ε) code is a code with M codewords of codeword length n and probability of error at
most ε. We define

M∗(n, ε) := max{M : there exists an (n,M, ε) code}.
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4 SHENOY, SHARMA

Given an (n,M, ε) code, we shall call
logM

n
the rate of the code. For 0 < ε < 1, the ε-capacity Cε

is defined as

Cε = lim
n→∞

logM∗(n, ε)

n

and the capacity of the channel is defined as

C = lim
ε→0

Cε.

Note that both limits exist. It is clear that Cε ≥ C. However, for certain classes of channels
like DMCs and standard AWGN channels with average power constraints, we have Cε = C for
every 0 < ε < 1. Then we say that the channel satisfies the strong converse, which means that if
we transmit at rates greater than capacity, the probability of error of the code tends to 1 as the
blocklength n tends to infinity.

Given 0 < ε < 1 and any channel, let Mm(ε) be the maximal number of codewords of the code un-
der max p.o.e. and Ma(ε) the one for avg p.o.e. for that channel. Clearly, we have Mm(ε) ≤ Ma(ε).
Using code expurgation (see, e.g., [19]), we also have

Mm(ε′) ≥ ε′ − ε

ε′
Ma(ε) (3)

for ε′ > ε. This means that any upper bound on rates for average p.o.e. also is an upper bound
for the maximal case. However, for achievable rates, the lower bound for avg p.o.e. will be slightly
penalized when extended to max p.o.e.

2.3. AWGN Channel

Given a ∈ R
n and a covariance matrix K ∈ R

n×n, denote

N (a;K) :=
exp

{
−(x− a)TK−1(x− a)

}

(2π)n/2(det(K))1/2

as the multivariate normal distribution with mean a and covariance matrix K whose determinant
is nonzero. An additive white Gaussian noise (AWGN) channel with noise variance σ2 is given by

Y = x + Z

where x ∈ R is the input to the channel and Z ∼ N (0;σ2). The n-dimensional version is obtained
by applying the one-dimensional version (n = 1) case independently on each input xi, 1 ≤ i ≤ n.
The AWGN channel with average power constraint S is an AWGN channel where the input x
satisfies

‖x‖22 :=
n∑

i=1

x2i ≤ nS. (4)

The capacity of an AWGN channel (denoted by CG) with average power constraint P is given by

CG :=
1

2
log2

(
1 +

P

σ2

)
bits per channel use.

In [5,6], it was shown that for an AWGN channel with average power constraint P , the maximum
code size M∗(n, ε, P ), for n sufficiently large, satisfies

logM∗(n, ε, P ) = nCG +
√
nVGΦ−1(ε) + O(log(n))

where the probability of error is at most ε, VG =
P (P + 2)

2(P + 1)2
log22(e), and Φ(x) =

x∫

−∞

e−u2/2

√
2π

du.
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2.4. Discrete Memoryless Channels (DMC)

A DMC is characterized by a finite input alphabet X , finite output alphabet Y, and the transition
probabilities given by W = PY |X , which satisfies for every n ≥ 1

PY |X(y |x) =
n∏

i=1

PY |X(yi |xi).

While the output is, in principle, allowed to depend on past outputs (which is known as a DMC
with feedback), we only consider DMCs without feedback. The capacity CD of a DMC W that is
nonexotic1 (see [7, Appendix H] and also [9]) is given by Shannon’s formula as

CD = sup
P∈P(X )

I(P ;W ) � sup
P∈P(X )

∑

x∈X

∑

y∈Y
P (x)W (y |x) log

(
W (y |x)

PW (y)

)
,

where I(P ;W ) is the mutual information (see [19]) between the input and output of the channel.

Now we define a few terms that will be required later.

Definition 1. Given a channel W and an output distribution Q, the information density [20]
of the channel is given by

i(x, y;Q) = log

(
W (y |x)

Q(y)

)
. (5)

Often Q = PW for some P ∈ P(X ), in which case we shall denote the information density by
iP (x, y).

Observe that I(P ;W ) =
∑
x,y

P (x)W (y |x)iP (x, y). Similarly, the variance of information density
is given by

V (P ;W ) :=

[
∑

x∈X

∑

y∈Y
P (x)W (y |x)(iP (x, y))2

]
− (I(P ;W ))2.

The finite blocklength result for nonexotic DMCs with channel W , probability of error 0 < ε < 1,
and V (P ;W ) > 0 for a capacity achieving distribution P is given by (see [5–9])

logM∗(n, ε) = nCD +
√
nVDΦ−1(ε) + O(log(n)),

where

VD =

⎧
⎪⎨

⎪⎩

Vmin := min
P∈Π

V (P ;W ), ε ≤ 1/2,

Vmax := max
P∈Π

V (P ;W ), ε > 1/2,

and Π = {P ∈ P(X ) : I(P ;W ) = CD} is the set of capacity achieving distributions.

2.5. DMC with Cost Constraints

Let Λ: X → R be a nonnegative function, which we will refer to as the energy function. The
energy function simply returns the energy of the symbol x, which is a generalization of the standard

1 A DMC is exotic if the maximum variance of its information density, i.e., Vmax, is 0 and for some in-
put symbol x0, P (x0) = 0 for any capacity achieving distribution P but D(W ( · |x0)‖Q∗

Y ) = C and
V (W ( · |x0)‖Q∗

Y ) > 0. Here D(P1 ‖P2) is the KL divergence between P1 and P2 and V (P1 ‖P2) =
∑
x
P1(x) log2

(P1(x)

P2(x)

)
−D2(P1 ‖P2).
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U
Xi Yi

Û

Ei Bi

X2
i

Zi

ENCODER DECODER

Energy buffer

Fig. 1. Block diagram of an AWGN energy harvesting system.

energy function Λ(x) = x2 for an AWGN channel. We further assume that the energy function is
separable, i.e., given a vector x ∈ X n,

Λ(x) :=
n∑

i=1

Λ(xi). (6)

Define the constrained sets Fa and Fa for a ≥ 0 as follows:

Fa = {x ∈ X n : Λ(x) ≤ na}, (7)

Fa = {P ∈ P : EP [Λ(X)] ≤ na}. (8)

In a DMC with cost constraints (see [21, 22]), where the codewords are drawn from Fa, the
capacity changes to

CD(a) = sup
P∈Fa

I(P ;W ). (9)

Moreover, the maximum achievable code size, for any a > 0, denoted by M∗(n, ε, a), under some
regularity conditions (see [7] for the result and [22] for some refinements), is given by

logM∗(n, ε, a) = nCD(a) +
√
nVD(a)Φ−1(ε) + O(log n)

where VD(a) is the channel dispersion (see [6]).

An energy harvesting DMC (EH-DMC) may be viewed as a generalization of a DMC with cost
constraints, and its finite blocklength analysis is reserved to Section 4.

2.6. Energy Harvesting AWGN Channel

An energy harvesting system consists of an energy buffer, which stores energy from various
sources over a period of time. Energy is usually harvested from some ambient source, e.g., solar
power. An EH-AWGN channel consists of an energy harvesting system at the transmitter end
followed by an AWGN channel, as is shown in Fig. 1. To send symbol x on the channel, we would
require x2 units of energy from the buffer, and if sufficient energy is available, the transmission
succeeds; otherwise, an outage occurs. An outage event may be handled as an error event, or a
suitably truncated symbol may be transmitted. In this paper, as far as achievability is concerned,
the outage will be treated as an error event. We assume that the energy buffer has infinite capacity
and energy leakages do not occur. Additionally, the incoming energy process {Ei} is assumed to
be i.i.d., nonnegative, with finite mean E[E1] and finite variance σ2

E .

The system works as follows. We first harvest energy Ei in slot i, use it along with some energy
in the buffer if needed to transmit the symbol, and then store the remaining energy. Let Bi be the
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energy in the buffer at the ith transmission slot. Assume B0 = 0. Then the energy in the buffer,
for 1 ≤ i ≤ n, evolves as

Bi = (Bi−1 + Ei −X2
i )+

where (x)+ = max{x, 0}. In our case, we will be designing X such that the term inside (·)+ is
nonnegative.

For the ordinary AWGN channel with power constraint S, the sequences were supposed to
satisfy (4). The constraint for the energy harvesting AWGN channel with input x and energy
vector e is ∥∥xk

∥∥2
2
≤

∥∥ek
∥∥
1
, 1 ≤ k ≤ n,

which is another way of saying that there should, at every time instant, be enough energy to
transmit the desired symbol. To ensure this, x is allowed to depend on e.

The capacity of an EH-AWGN channel (see [11,12]) is

CEG =
1

2
log

(
1 +

E[E1]

σ2

)
. (10)

Additionally, the strong converse was also shown to hold for this channel (see [11]). This would
logically imply a converse of the form logM ≤ nCEG+o(n). However, since we seek for a refinement
of this expression, we would need finer tools to extract a finite blocklength converse. In this regard,
we will be using several results from [7]. For clarity, we use the notation of that paper.

We now state the following bounds on finite blocklength capacity for EH-AWGN channels.

Theorem 1. Consider an EH-AWGN channel with AWGN variance σ2, with energy harvesting
process {Ei}, i.i.d. at the encoder, with mean E[E1] and variance σ2

E < ∞. Given maximal
probability of error ε > 0, we have the following.

1 (Achievable bound). For sufficiently large blocklength n, the maximum size of the code, M∗(n, ε),
satisfies

logM∗(n, ε) ≥ nCEG +
√
n
[√

VEGΦ−1(λε) −Kε,λCEG
]
− log n + O(1), (11)

where CEG is defined in (10), VEG =
E[E1]

E[E1] + σ2
log22(e), Kε,λ =

√
4(2E[E1]

2 + σ2
E)

(1 − λ)εE[E1]2
, and the above

holds for any 0 < λ < 1;
2 (Converse bound). Also,

logM∗(n, ε) ≤ nCEG +
√
nVEG2Φ

−1(ε) +
1

2
log n + O(1), (12)

where VEG2 =
E[E1]

2 + E[E2
1 ] + 4σ2 E[E1]

4(E[E1] + σ2)2
log22(e).

We defer the proof of the achievable bound to Section 3 and the converse bound to Section 6.
While the second-order terms (coefficients of

√
n) do not match, we can conclude that logM∗(n, ε) =

nCEG + Θ(
√
n).

2.7. Energy Harvesting DMC

An energy harvesting DMC is a DMC with an energy harvesting setup at the encoder. Let Λ(·)
be the energy function (see (6)) associated with this DMC. The model is the same as that of an
EH-AWGN channel except for the following differences and assumptions:

1. The AWGN channel is replaced with a DMC;
2. Energy consumed by symbol xi is Λ(xi). Also, there is a symbol x0 with Λ(x0) = 0;
3. We additionally assume that the DMCs are not exotic.
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The analysis for energy harvesting DMCs is, by and large, analogous to the analysis of EH-AWGN
channels. However, using method of types (refer to [19,21] for more information on types), we are
able to improve the converse bound to resemble that of the original non-energy harvesting DMC.

The capacity of an EH-DMC, where the energy harvesting process has mean E[E1], is given by

CED := sup
P∈FE[E1]

I(P ;W ) (13)

where Fa was defined in (8).

The following are the finite blocklength bounds on rate for EH-DMC proved in this paper.

Theorem 2. Given 0 < ε < 1, for maximal probability of error, consider an EH-DMC with
HUS architecture, and the energy process {Ei} i.i.d. with E[E2

1 ] < ∞.

1 (Achievable bound). Given the input distribution PX ∈ FE[E1], the maximal size of the code
M∗(n, ε) with blocklength n sufficiently large satisfies

logM∗(n, ε) ≥ nI(PX ;W ) −
√
nKε,λI(PX ;W ) +

√
nV (PX ;W )Φ−1(λε) − log n + O(1), (14)

for any 0 < λ < 1. Here Kε,λ =
2
√

Var(Δ1)

E[E1]
√

(1 − λ)ε
and Δ1 = E1 − Λ(X1);

2 (Converse bound). Given η > 0, the maximal size of the code M∗(n, ε) satisfies

logM∗(n, ε) ≤ nCED +
√
nC ′(E[E1])Dε +

√
nV ∗

ε (η)

(
Φ−1(ε) +

Kεε

4

)
+ O(log n), (15)

where C ′(·) is the derivative of the capacity cost function given in (9) and where Dε, Kε, and
V ∗
ε (η) are functions of ε independent of n.

2.8. Encoder and Decoder for Energy Harvesting Channels

For traditional channels (AWGN, DMC, etc.), the encoder and decoder have access to the
codebook (random or otherwise) for the purposes of encoding and decoding respectively. In the
energy harvesting setup, the encoder has access to the incoming energy values. Hence, any codeword
c ∈ C, where C is the codebook, is a length-n vector c(m,en), where n is the block length, for
message m and energy vector en. Due to causality requirements, the ith symbol of the codeword
can only depend on ei. The decoder does not have access to these energy values and therefore does
not have access to this energy dependent codebook. The decoder is, on the other hand, allowed to
have access to an energy independent pre-codebook. Henceforth, in the context of energy harvesting
channels, a codeword corresponding to message m shall mean the mapping m → c(m, · ). We note
that the definitions of code size M , probability of error, etc. as defined in Section 2.2 remain
unchanged. This is in the same spirit of the analysis of channels with state information available
at encoder only.

We shall see in the achievability proofs that a codebook that is independent of energy values is
created which is also available at the decoder. Then, at the encoder, the energy values are used
to modify the codewords so as to meet the necessary constraints. This is one way of creating an
encoder-decoder pair. This concept is similar to the one used in channels with state where the
encoder has state information but not decoder [23].

3. FINITE BLOCKLENGTH ACHIEVABILITY BOUND FOR EH-AWGN

This section deals with the proof of Theorem 1, part 1. Assume that 0 < ε < 1 is provided.
We will first construct an avg p.o.e. εn = ε − 1/

√
n code, where n > ε−2. The code expurgation

PROBLEMS OF INFORMATION TRANSMISSION Vol. 57 No. 1 2021
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argument yields the following bound:

logMm(n, ε) ≥ logMa(n, εn) − 1

2
log n− log ε, (16)

where Mm is the size of the codebook for max p.o.e. obtained via expurgation and Ma is for avg
p.o.e. Assume that the buffer is empty at the beginning. This gives the worst case scenario, since
if the buffer were nonempty at the start, it could only aid communications, and therefore our
achievability bound would still hold. The coding scheme that we propose has two phases; namely
a saving phase and a transmission phase. This is known in literature as the save and transmit
scheme (see [12]).

3.1. Saving Phase

In this phase, the transmitter transmits 0, the symbol that uses zero energy, for a set number of
slots. During this period, it allows the energy buffer to build up. The receiver is aware of the number
of slots and chooses to ignore the output during those slots, since they are not information bearing.
The caveat is that slots are wasted, as far as information transfer is concerned, in gathering energy.
To ensure that this scheme does not affect the coefficient of the first-order term, it is required that
the number of slots set for gathering energy scale at most as o(n).

Fix 0 < λ < 1 and let Kε,λ =

√
4(2E[E1]

2 + σ2
E)

(1 − λ)εE[E1]2
. Let Nn represent the number of slots reserved

for the saving phase. During this phase, the buffer fills up with energy, and after Nn time slots
we expect it to have crossed some threshold energy value, which we will denote by E0n. Let Nn =
Kεn,λ

√
n (we take the ceiling if Nn is not an integer wherever applicable) and E0n = NnE[E1]/2.

Let E0 denote the event that the system failed to gather E0n energy. We have

Pr(E0) = Pr

[
Nn∑

i=1

Ei ≤ E0n

]

= Pr

[
Nn∑

i=1

(Ei −E[E1]) ≤ −E0n

]

≤ Pr

[ ∣∣∣∣∣

Nn∑

i=1

(Ei −E[E1])

∣∣∣∣∣ ≥ E0n

]

≤ 4σ2
E

Kεn,λE[E1]2
√
n
≤ 4σ2

E

Kε,λE[E1]2
√
n
, (17)

where in the last step we used Chebyshev’s inequality and also that Kε,λ is monotone decreasing
in ε. The above bound ensures a decay of O(n−1/2) in the probability of error and hence can be
made arbitrarily small by increasing n suitably.

3.2. Encoding and Decoding Scheme

We use a random coding argument where we generate a codebook with Ma codewords and
codeword length n, with each entry i.i.d. Gaussian with zero mean and variance E[E1]. This
codebook is also available at the decoder. Denote by Vi(m) the ith symbol of the mth codeword.

At the decoder, we use a form of threshold decoding. Recall the definition of iP (x, y), where
we take W to be the Gaussian channel under consideration and PW to be the output distribution
(which is Gaussian with mean 0 and variance E[E1] + σ2) for the corresponding Gaussian input.
The decoding rule is to pick the unique message m̂ such that

iP
(
V n(m̂),Y

)
≥ log γn, (18)
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where γn is a nonnegative number that will be chosen later. This is the same detector that was
used for standard AWGN channels.

Note that as far as the transmitter end is concerned, this codebook is not an energy dependent
codebook as discussed in Section 2.8. This is keeping in line with decoder not having access to
the energy arrival process. However, in the next section, we will design the actual transmitted
symbol Xn which will be a function of the energy arrivals. Thus, we refer to the above codebook
as a pre-codebook.

3.3. Transmit Phase

Let n be the number of slots wherein we transmit symbols on the AWGN channel. We count
channel uses from the Nn+1 instant onwards. Once we gather at least E0n energy, we must ensure,
with high probability, that subsequent transmissions will not cause an outage. Let vn be the input
before checking the energy buffer. At transmission instant i, 1 ≤ i ≤ n, there are two cases, i.e.,

1. There is sufficient energy, in which case the input to the channel xi = vi;
2. There is insufficient energy, in which case we transmit xi = 0.

Assuming message m is to be transmitted, given V n(m) as in Section 3.2, the corresponding symbol
Xn(m) is obtained by the above rules.

Denote the set of sequences (vn,en) that satisfy the above requirements by An, where

An =
n⋂

�=1

{(vn,en) : s� ≥ −E0n} , (19)

and s� =
�∑

k=1
ek−v2k. Note that the transmitted codeword satisfies the energy harvesting conditions,

since E0n energy has already been harvested before the transmission started. Denote by E1 the
event that the energy constraints are violated. Let {Vi}, 1 ≤ i ≤ n, be i.i.d. random variables (not
necessarily Gaussian) with zero mean, variance E[E1], and E[V 4

1 ] < ∞. Formally,

Pr(E1) = Pr(Ac
n)

= Pr

[
n⋃

�=1

{S� ≤ −E0n}
]

≤ Pr

[
n⋃

�=1

{|S�| ≥ E0n}
]

= Pr
[

max
1≤�≤n

|S�| ≥ E0n

]
(20)

and S� =
�∑

k=1
Ek−V 2

k . Now S� is a sum of i.i.d. random variables with zero mean and finite variance.

We now invoke Kolmogorov’s inequality [24, ch. 3], which is stated as follows.

Lemma 1 (Kolmogorov’s inequality). Let Zi be independent zero mean random variables and

Sn =
n∑

i=1
Zi. If E[Zi] = 0 and E[Z2

i ] < ∞, then for any 0 < a < ∞

Pr
(

max
1≤i≤n

|Si| ≥ a
)
≤ E[S2

n]

a2
.

Hence, we have

Pr(E1) ≤
E[S2

n]

E2
0n

=
4(2E[E1]

2 + σ2
E)

K2
εn,λ

E[E1]2
≤ 4(2E[E1]

2 + σ2
E)

K2
ε,λE[E1]2

. (21)
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Unlike (17), the right-hand side above is independent of n. However, by a clever choice of Kε,λ,
it can be made small enough. Our choice of Kε,λ will ensure that Pr(E1) ≤ (1 − λ)ε. Thus, a total
of Nn + n slots are used for both saving and transmission in this scheme.

We would like to remark that the aforementioned results do not assume that Vi is Gaussian
and the channel part has no role here except for the input constraint. This means that the above
bound holds for non-Gaussian energy harvesting channels with independent inputs satisfying the
aforementioned moment constraints.

3.4. Lower Bound Derivation

Let EH = E0 ∪ E1. Now under average probability of error (see (2)), we see that

Pe,avg =
1

Ma

Ma∑

i=1

Pr
[
Û �= i |U = i

]

=
1

Ma

Ma∑

i=1

Pr
[
Û �= i, Ec

H |U = i
]
+ Pr

[
Û �= i, EH |U = i

]

≤ 1

Ma

Ma∑

i=1

Pr
[
Û �= i, Ec

H |U = i
]
+ Pr[EH ]. (22)

Note that the above probabilities have an inherent expectation with respect to all codebooks.
Now we make an important observation. The pre-codebook, Gaussian channel, and decoder all
function independent of the energy harvesting system. The only way that energy harvesting vari-
ables come into picture is via Y n, since Yi = Xi + Zi. Hence, under event Ec

H , it follows that
Xn = V n. This is the same as saying that when energy harvesting constraint is met, the symbol
from the pre-codebook passes unimpeded, only corrupted by noise.

Consider Pr
[
Û �= i, Ec

H |U = i
]
. As was mentioned earlier, under event Ec

H , the channel part
behaves like a standard AWGN channel, and so the error events are the ones corresponding to that.
Hence, using the union bound, we have

Pr
[
Û �= i, Ec

H |U = i
]
≤ Pr

[
{iP (V n(i);Y n) ≤ log γn}, Ec

H |U = i
]

+
∑

1≤j≤Ma
j �=i

Pr
[
{iP (V n(j);Y n) ≥ log γn}, Ec

H |U = i
]

≤ Pr
[
iP (V n(i);V n(i) + Zn) ≤ log γn |U = i

]

+
∑

1≤j≤Ma
j �=i

Pr
[
iP (V n(j);V n(i) + Zn) ≥ log γn |U = i

]
. (23)

The rest of the proof is similar to the bounds derived for an AWGN channel (see [7]), and hence
we get the following bound for any γn > 0:

Pr
[
Û �= i, Ec

H |U = i
]
≤ Pr

[
log

(
W n(V n + Zn |V n)

PY n(V n + Zn)

)
≤ log γn

]
+

Ma

γn
. (24)

Thus, the first term on right-hand side of (22) is upper bounded by (24). We have already
derived an upper bound on Pr(EH) via (17), (21), and the union bound.

We have

Pr

[
log

(
W n(V n + Zn |V n)

PY n(V n + Zn)

)
≤ log γn

]
= Pr

{
n∑

i=1

Gi ≤ log γn

}
, (25)
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where Gi = log
(W (Vi + Zi |Vi)

P Y (Vi + Zi)

)
. Note that the Gi are i.i.d. based on the remarks provided earlier.

Moreover, we have

CEG := E[Gi] =
1

2
log

(
1 +

E[E1]

σ2

)
, (26)

VEG := Var(Gi) =
E[E1]

E[E1] + σ2
log22(e). (27)

Also, the third moment, E[|Gi|3], is finite. To proceed further, we state the Berry–Esseen theorem
(see [24, Theorem 6.4.1]).

Lemma 2 (Berry–Esseen theorem). Let Xi, 1 ≤ i ≤ n, be an i.i.d. sequence of random variables

with mean μ, variance σ2 < ∞, and E[|X1|3] < ∞. Let Sn =
n∑

i=1
Xi. Then we have, for any x ∈ R,

∣∣∣∣∣Pr

(
Sn − nμ

σ
√
n

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C
E|X1 − μ|3

σ3
√
n

,

where C < 1/2 (see [25]). Note that the bound is uniform in x.

Let K =
E[|Gi −E[Gi]|3]

2V
3/2
EG

. Applying the Berry–Esseen theorem, we have, for any u ∈ R,

∣∣∣∣∣∣
Pr

⎧
⎨

⎩

( n∑
i=1

Gi

)
− nCEG

√
nVEG

≤ u

⎫
⎬

⎭− Φ(u)

∣∣∣∣∣∣
≤ K√

n
.

Substituting u =
log γn − nCEG√

nVEG

, we get

Pr

{ n∑

i=1

Gi ≤ log γn

}
≤ Φ

(
log γn − nCEG√

nVEG

)
+

K√
n
. (28)

Let αn = λεn − 4σ2
E

Kεn,λ E[E1]2
√
n
− 2K√

n
. In terms of ε, we have

αn ≥ λε− 4σ2
E

Kε,λE[E1]2
√
n
− 2K + λ√

n
:= α′

n. (29)

Set log γn = nCEG +
√
nVEGΦ−1(αn). We pick n large enough to ensure αn > 0. From (22),

(24), (25), and (28), we have

logMa(n, εn) ≥ log γn − 1

2
log n + O(1)

≥ nCEG +
√
nVEGΦ−1(αn) − 1

2
log n + O(1). (30)

Using (16) and (29), we get

logMm(n, ε) ≥ nCEG +
√
nVEGΦ−1(α′

n) − log n + O(1), (31)

noting that Φ−1 is a monotone increasing function.

We further simplify Φ−1(α′
n) using Taylor’s theorem. There exists u ∈ (α′

n, λε) such that

f(α′
n) = f(λε) + (α′

n − λε)f ′(u),
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where f(x) = Φ−1(x). Note that f(x) has a derivative that is positive, strictly decreasing up to
x = 1/2, beyond which it increases. Thus, in (α′

n, λε), f
′(u) ≤ f̂ = max{f ′(α′

n0
), f ′(λε)}, where n0

is the smallest n for which α′
n > 0. Hence we get, with our choice of α′

n, that

logM∗(n, ε) ≥ logMm(n, ε′) ≥ nCEG +
√
nVEGΦ−1(λε) − log(n) + O(1). (32)

Let n̂ = n + Nn. We have used n̂ slots, out of which n were for data transmission. We will
express the result as a function of n̂, the total number of slots used. Hence we have

logM∗(n̂, ε) ≥ (n̂−Nn)CEG +
√
nVEGΦ−1(λε) − log(n̂ −Nn) + O(1),

≥ n̂CEG −Kε,λ

√
n̂CEG +

√
nVEGΦ−1(λε) − log n̂ + O(1). (33)

Note that
√
n ≤

√
n̂ and

√
n ≥

√
n̂− Kε,λ

2
; the latter follows from

√
n̂ =

√
n + Kε,λ

√
n =

√
n

√

1 +
Kε,λ√

n
≤

√
n

(
1 +

Kε,λ

2
√
n

)
=

√
n +

Kε,λ

2
, (34)

where we have used (1+x)1/2 ≤ 1+
x

2
for x > 0. From (33) and (34), we observe that regardless of

the sign of Φ−1(λε), the lower bounds obtained differ by a constant which does not depend on n.
Putting it all together, we get for n̂ large enough

logM∗(n̂, ε) ≥ n̂CEG +
√
n̂
[√

VEGΦ−1(λε) −Kε,λCEG

]
− log n̂ + O(1).

For completeness, the exact bound is

logM∗(n̂, ε) ≥ n̂CEG +
√
n̂
[√

VEGΦ−1(λε) −Kε,λCEG

]
− log n̂− log εK

− Kε,λ

2
−

√
VEGΦ−1(λε)f̂

[
4σ2

E

Kε,λE[E1]2
+ 2K + λ

]
. (35)

This concludes the proof of the achievable bound for Theorem 1.

4. FINITE BLOCKLENGTH ACHIEVABILITY BOUND FOR EH-DMC

We use the same random coding strategy as in the EH-AWGN channel case. Choose any input
distribution PX ∈ FE[E1]. Generate an M × n matrix with each element distributed i.i.d. with
distribution PX . Now follow the proof exactly as in the achievability of the EH-AWGN channel
case, replacing the term X2

i with Λ(Xi) wherever it is encountered.

In particular, we could substitute P ∗
X ∈ Γ (where Γ is the set of capacity achieving input

distributions that are contained in FE[E1]) to obtain the best bound. If there are many capacity
achieving distributions, then V (P ∗

X ;W ) may change with the choice of distribution P ∗
X . Hence,

consider

VED =

⎧
⎪⎨

⎪⎩

Vmin := min
P∈Γ

V (P ;W ) if ε ≤ 1

2λ
,

Vmax := max
P∈Γ

V (P ;W ) if ε >
1

2λ
.

Putting it all together, we obtain the following achievability bound:

logM∗(n̂, ε) ≥ n̂CED −
√
n̂Kε,λCED +

√
n̂VEDΦ−1(λε) − log n̂ + O(1), (36)

for all n̂ sufficiently large. The exact bound is

logM∗(n̂, ε) ≥ n̂CED −
√
n̂Kε,λCED +

√
n̂VEDΦ−1(λε) − log n̂− log εK

− Kε,λ

2
−

√
VEDΦ−1(λε)f̂

[
4σ2

E

Kε,λE[E1]2
+ 2K + λ

]
. (37)
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5. CONVERSE THEOREMS

In this section, we will provide a general upper bound on finite blocklength rates for energy
harvesting channels. We resort to methods used in [7] to derive these new bounds. Then we apply
these to the EH-AWGN and the EH-DMC.

We recall the following error probability function βα(P,Q) (see [7]).

Definition 2. Given two distributions P and Q on X , define, for α ∈ [0, 1],

βα(P,Q) := minQ[T = 1] := min

∫

X

PT |X(1 |x) dQ(x), (38)

where the minimum is over all distributions (PT |X) of test functions T : X → {0, 1} such that
P [T = 1] ≥ α.

This function is essentially the type 2 error probability (probability of deciding P when Q is
true) when the type 1 error probability is less than 1 − α.

The meta converse, proved in [7], is one of the tightest known general converse bounds for any
channel. There are two versions, one for average probability of error and the other for maximal
probability of error. Note that these are single shot bounds and can be naturally extended for
blocklength n.

Lemma 3 (meta converse (avg p.o.e.)). Every (M,ε) average probability of error code satisfies

M ≤ sup
PX

1

β1−ε(PXY , PXQY )

for any output distribution QY .

Lemma 4 (meta converse (max p.o.e.)). Every (M,ε) maximal probability of error code satis-
fies

M ≤ 1

β1−ε(PY |X=c(m), QY )
≤ sup

x∈F

1

β1−ε(PY |X=x, QY )

for any output distribution QY and codewords coming from F ⊂ X , where X is the input alphabet
and c(m) is the codeword of the message m satisfying

m = arg min
m∈[M ]

Pr
[
Û = m |U = m

]
(39)

under channel QY .

However, it is not immediately clear as to the technique of incorporating the effects of energy
harvesting in the above expression. This is due to the fact that the set F above, which is the
constrained set, changes with energy. Also unlike traditional channels, the codebook will change
depending on available energy. Hence, any codeword is of the form c(m,e) for message m and
energy vector e.

Energy Harvesting Converse (General Version). Under the energy harvesting setup de-
scribed earlier, we obtain the following converse bounds.

Theorem 3. Given an energy harvesting setup with channel W and incoming energy process
E ∼ PE i.i.d., every (M,ε) code (average p.o.e.) satisfies

M ≤ sup
PXn |En

1

β1−ε(PEnXnY n , PEnXnQY n)
, (40)
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where PEnXnY n(en, xn, yn) = PEn(en)PXn |En(xn |en)W (yn |xn), for any output distribution QY n.
The supremum is over all distributions that satisfy the energy harvesting constraints. Under the
maximal probability of error case, we have

M ≤ 1

β1−ε (W ( · | c(m, ∗))PEn(∗), QY nPEn)
(41)

for any output distribution QY n and c(m, ∗) is the codeword whose message m satisfies (39). Here ·
represents the output alphabet and ∗ represents the energy alphabet.

Proof. The proof of (40) is available in [14]. For the proof of (41), refer to Appendix A. �
The bound in (40) was used to develop a finite blocklength converse for EH-AWGN channels ex-

tended to the block i.i.d. energy arrivals regime [14]. We shall derive the same result for EH-AWGN
channels under maximal probability of error criterion but using (41).

There is a weaker, but analytically convenient, converse bound under maximal p.o.e. stated as
follows.

Theorem 4. Consider an energy harvesting setup with channel W , incoming energy process
E ∼ PE i.i.d., and cost function Λ as defined in Section 2.7. Under the requirement that every
codeword x(m,en) satisfying the energy harvesting constraint, i.e.,

n∑

i=1

Λ(xi(m,en)) ≤
n∑

i=1

ei, (42)

for energy vector en and maximal probability of error ε, we have

M ≤ sup
xn∈F

En

1

β1−ε−τn (W ( · |xn), QY n)
, (43)

where τn = Pr
( n∑
i=1

Ei ≥ nEn

)
,

FEn
=

{
xn :

n∑

i=1

Λ(xi) ≤ nEn

}
, (44)

and En is a nonnegative sequence chosen such that τn < 1 − ε.

Proof. See Appendix B. �
There is a nice structure for EH-AWGN channels that helps in getting sharper bounds when

using (40) or (41). These details are clarified in the proof of the converse bound for EH-AWGN
channels. However, that structure is absent when dealing with EH-DMCs. Theorem 4 will be used
to get a useful upper bound in this case.

6. FINITE BLOCKLENGTH CONVERSE BOUND FOR EH-AWGN

We argue that it suffices to look at codewords xn that satisfy

n∑

k=1

x2k =
n∑

k=1

ek, (45)

where en is the energy vector. In short, we are ignoring the outage events that can happen for
1 ≤ k < n and we are using up all the energy in transmission at time n. The former is justified
by noting that doing so merely relaxes the constraints and that can only increase capacity. Hence,
any upper bound on the relaxed version is an upper bound on the original version. As for the
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latter, it is a well known Yaglom-map trick where given the best code of codeword length n but
satisfying (45) with a strict inequality (<), we can construct a new code with the same probability
of error but with codeword length n+ 1. The extra symbol is picked so as to exhaust all remaining
energy. This new code clearly satisfies (45), is an upper bound for the original length-n code, and
is further upper bounded by the largest code of codeword length n + 1 satisfying (45).

Let 0 < ε < 1, the maximal probability of error, be fixed. Pick W as a Gaussian channel with

variance σ2 and QY n =
n∏

i=1
QY , where QY is Gaussian with mean 0 and variance E[E1] + σ2. Now

for two distributions P1 and P2 and any γ > 0, βα(P1, P2) is lower bounded as (see [7, equation 106])

βα(P1, P2) ≥
1

γ

(
α− P1

[
dP1

dP2
≥ γ

])
. (46)

From (41) and (46), we have, for any γn > 0,

M ≤ γn

1 − ε− Pr

[
log

W (Y n |xn(m,E))

QY n

≥ log γn

] , (47)

where the probability is under W ( · |x(m, ∗))PEn(∗). Since W is a Gaussian channel here, we can
replace Yi with xi(m,e)+Zi where Zi are i.i.d. N (0, σ2). The probability term in the denominator
then simplifies to

Pr

[
log

W (Y n |xn(m,E))

QY n
≥ log γn

]

= Pr

[
n∑

i=1

(xi(m,E) + Zi)
2

2(E[E1] + σ2)
log2(e) −

n∑

i=1

Z2
i

2σ2
log2(e) ≥ log(γn) − nCEG

]

= Pr

[
n∑

i=1

(
Zi

σ
− xi(m,E)σ

E[E1]

)2

≤ 2(E[E1] + σ2)

E[E1]
(nCEG − log γn) ln 2

+
n∑

i=1

x2i (m,E)

(
σ2

E[E1]2
+

1

E[E1]

)]

= Pr

[
n∑

i=1

(
Zi

σ
− xi(m,E)σ

E[E1]

)2

≤ 2(E[E1] + σ2)

E[E1]
(nCEG − log γn) ln 2

+
n∑

i=1

Ei

(
σ2

E[E1]2
+

1

E[E1]

)]
, (48)

where (48) follows from (45). Now, we condition the above probability term on E = e, noting that E
is independent of Z. We observe then that the probability is the cumulative distribution function
(CDF) of a noncentral χ2 distribution with n degrees of freedom and noncentrality parameter

B =
n∑

i=1

x2i (m,e)σ2

E[E1]2
=

n∑

i=1

eiσ
2

E[E1]2
. (49)

The CDF of a noncentral χ2 random variable Ẑ equals

Pr(Ẑ ≤ u) = 1 −QM
n/2(

√
B,

√
u), (50)

where QM
d (a, b) is the Marcum Q function of order d (see [26]). Now we observe that the CDF does

not depend on the individual xi or ei but rather on the sum of ei. Replacing xi(m,E) with
√
Ei
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in (48) will not change the CDF. Hence, from (49) and (50), (48) equals

Pr

[
n∑

i=1

(
Zi

σ
−

√
Eiσ

E[E1]

)2

≤ 2(E[E1] + σ2)

E[E1]
(nCEG − log γn) ln 2 +

n∑

i=1

Ei

(
σ2

E[E1]2
+

1

E[E1]

)]
. (51)

This is precisely the structure mentioned earlier that allows us to work with a simplified expression.
As a result, the terms in the summation are i.i.d. (as opposed to just being independent). By
suitably rearranging the terms, (51) equals

Pr

[ n∑
i=1

ηi
√
nVEG2

≤ nCEG − log γn√
nVEG2

]
, (52)

where ηi are i.i.d. with zero mean and variance VEG2 =
E[E1]

2 + E[E2
1 ] + 4σ2 E[E1]

4(E[E1] + σ2)2
log22(e). The

third moment of ηi is finite. Applying the Berry–Esseen theorem (Lemma 2) and picking log γn =
nCEG −

√
nVEG2Φ

−1(αn), where αn is picked such that 0 < αn < 1 − ε, gives us

Pr

[ n∑
i=1

ηi
√
nVEG2

≤ nCEG − log γn√
nVEG2

]
≤ αn +

κ√
n
, (53)

where κ = E[|ηi|3]/V 3/2
EG2.

Pick αn = 1−ε− 2κ√
n
. For n sufficiently large, 0 < αn < 1−ε. From (47), (51), and (53), we get

logM ≤ nCEG −
√
nVEG2Φ

−1(αn) − log(κ/
√
n).

Using Taylor series expansion on Φ−1 as well as bounding steps similar to the proof of achievability
of Theorem 1, we obtain

logM ≤ nCEG +
√
nVEG2Φ

−1(ε) +
1

2
log n + O(1),

which gives us the desired converse bound.

For completeness, the exact bound is

logM ≤ nCEG +
√
nVEG2Φ

−1(ε) +
1

2
log n− logκ + 2κ

√
VEG2f̂2, (54)

where f̂2 = max
{
f(ε), f

(
ε +

2κ
√
n0

)}
, f(x) =

d

dx
Φ−1(x), and n0 is the smallest n for which

ε +
2κ√
n
< 1.

7. FINITE BLOCKLENGTH CONVERSE BOUND FOR EH-DMC

Unfortunately, we cannot simply mirror the proof of the EH-AWGN channel converse in Sec-
tion 6, since the AWGN channel structure that was exploited there is absent here. However, there
is a different structure that can be exploited here, namely the method of types (see [21]). We will
be using the framework of Theorem 4. Let 0 < ε < 1 be given and the DMC of the EH-DMC be
denoted by W (y |x). The incoming energy random variables Ei are i.i.d. as before.

Recall the definitions given in (7) and (8). We have, from (43),

M ≤ sup
xn∈F

En

1

β1−ε−τn (W ( · |xn), QY n)
. (55)
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We pick En = E[E1] + δn, where δn > 0. Then τn is given by

τn = Pr

(
n∑

i=1

Ei ≥ n(E[E1] + δn)

)
. (56)

We will ensure that τn ≤ ε

4
. To do this, pick δn =

Dε√
n
, where Dε =

√
4σ2

E

ε
, and use Chebyshev’s

inequality.

We can rewrite (55) as

M ≤ sup
P∈F

En
∩Pn

sup
xn∈TP

1

β1−ε−τn (W ( · |xn), QY n)
, (57)

where TP denotes the type class of distribution P and Pn is the set of all types for sequences of
length n. Consider the inner supremum term,

sup
xn∈TP

1

β1−ε−τn(W ( · |xn), QY n)
.

The beta error function above is independent of which sequence x is picked provided that the

sequences have the same type [7] and QY n =
n∏

k=1
QY for some distribution QY on Y. Hence, pick

any sequence x from TP0 , where P0 ∈ FEn
∩ Pn.

Let QY = P0W . We recall [7, Theorem 48] for standard, nonexotic DMCs. Although this
bounded the maximal subcode of type P0 of the maximal code, we note that the term actually
being bounded is the beta error function as mentioned below.

Lemma 5. For 0 < ε < 1, for all P0 ∈ Pn, x ∈ TP0 , and n sufficiently large, we have

− log β1−ε(W
n( · |x), (P0W )n) ≤ nCD +

√
nVDΦ−1(ε) +

1

2
log n + O(1),

where

VD =

⎧
⎪⎨

⎪⎩

Vmin = min
P∈Γ

V (P ;W ), 0 < ε ≤ 1/2,

Vmax = max
P∈Γ

V (P ;W ), 1/2 < ε < 1,

and Γ is the set of capacity achieving distributions.

Note that the bound on the right-hand side does not depend on the distribution of the type.
Hence, if we make the following substitutions:

1. Replace Γ with

ΓEn
= {P ∈ FEn

: I(P ;W ) = CED}. (58)

This is because the outer supremum in (57) is over FEn
. Note that the original proof of Lemma 5

used the fact that Γ was compact and convex. These properties hold for ΓEn
, so we may

substitute this wherever Γ was used;

2. The final supremum that gives the uniform (over input distributions) bound was over P. Here
we substitute FEn

in its place;

3. ε is replaced by ε + τn;

then

logM∗(n, ε) ≤ nCD(En) +
√
nV̂ (En)Φ−1 (ε + τn) + O(log(n)), (59)
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where CD(·) is defined in (9) and

V̂ (En) =

⎧
⎪⎪⎨

⎪⎪⎩

V
(n)
min = min

P∈Γ
En

V (P ;W ), 0 < ε + τn ≤ 1/2,

V
(n)
max = max

P∈Γ
En

V (P ;W ), 1/2 < ε + τn < 1.
(60)

We can further simplify (59) by expanding CD(En), V̂ (En), and Φ−1(u).

Now CD(a) is a nondecreasing concave function (see [21]). Hence we have for any a > 0, b > 0,

CD(a + b) ≤ CD(a) + bC ′
D(a),

where C ′
D(·) is the derivative of CD(a). Let a = E[E1] and b = δn. Note that C ′

D(a) in this case is
a constant, since E[E1] is a constant.

Using Taylor series expansion, we get that for some constant Kε,

Φ−1(ε + τn) ≤ Φ−1(ε) + τnKε.

Now let εR be the root of

Φ−1(ε) +
Kεε

4
= 0.

Pick any η > 0. Observe that for n sufficiently large, ΓEn
⊂ ΓE[E1]+η. Hence, we can replace

V̂ (En) with

V ∗
ε (η) =

⎧
⎪⎨

⎪⎩

min
P∈ΓE[E1]+η

V (P ;W ), 0 < ε ≤ εR,

max
P∈ΓE[E1]+η

V (P ;W ), εR < ε < 1.

Note that CD(E[E1]) ≡ CED . Thus, we have for n sufficiently large

logM∗(n, ε) ≤ nCED +
√
nC ′(E[E1])Dε +

√
nV ∗

ε (η)

(
Φ−1(ε) +

Kεε

4

)
+ O(log n).

Unlike the earlier cases, we do not provide an exact bound here. This is due to the original
bounds in [7] for DMC being described with unknown constants in the O(1) term.

8. INITIAL AND RESIDUAL ENERGY

Our analysis concerns the transmission of a single message, which is the usual case in information
theory [19] as well as information theoretic treatments of energy harvesting [11, 12]. In practice,
multiple messages are transmitted and in the beginning of transmission of some messages, there
will be some random residual energy. If the buffer length is finite, then with positive probability
the residual energy will be zero. Thus, our bounds correspond to the worst case scenario where
there is no initial energy in the buffer. Secondly, if the energy buffer had some residual energy e0,
then if e0 > E0n, we do not need to wait until we get E0n energy. However, to take into account the
general case of multiple transmissions, for any e0, we continue to have a block of Nn slots before
the transmission starts (otherwise, due to random e0, we will need to change the slot structure and
coding/decoding strategies for each message transmission). The following steps are to be noted
while deriving the lower bound.

1. We gather energy for Nn slots as before in the saving phase. The only change is that the energy
threshold is increased to E0n+e0. However, there is no change in (17), since we are still targeting
to gather E0n energy as before;
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2. Vi is now chosen Gaussian with variance E[E1] + e0/n. In (19), An is replaced with A′
n which

is the same as An but with E0n replaced with E0n + e0. Let

Bn =
n⋂

�=1

{
(vn,en) : s′� ≥ −E0n

}
, (61)

where s′� =
�∑

k=1
(e� − v2� + e0/n). Clearly, each term in the sum is i.i.d. zero mean as required for

Kolmogorov’s inequality and Bn ⊂ A′
n. There are no changes to the bound on Pr(E1).

Keeping in mind the aforementioned changes, it can be shown that

logM∗(n, ε) ≥ nC
(n)
EG +

√
n
[√

V
(n)
EGΦ−1(λε) −Kε,λC

(n)
EG

]
− log n + O(1), (62)

where C
(n)
EG =

1

2
log

(
1 +

E[E1] + e0/n

σ2

)
and V

(n)
EG =

E[E1] + e0/n

E[E1] + σ2 + e0/n
log22(e). The exact bound is

logM∗(n, ε) ≥ nCEG +
√
n
[√

VEGΦ−1(λε) −Kε,λCEG

]
− log n +

e0Kε,λ

2σ2
√
n

− log εK − Kε,λ

2
−

√
VEGΦ−1(λε)f̂

[
4σ2

E

Kε,λE[E1]2
+ 2K + λ

]
. (63)

The bound for EH-DMC is similar to (36) with E[E1] replaced with E[E1] + e0/n. Note that we
could further simplify to remove the e0/n terms from the first- and second-order terms, thereby
collecting them in O(1). However, our emphasis here was on the effects of initial energy which is
that the bounds improve, as does the achievable rate.

Considering converse bounds, assume that the energy buffer is pre-filled with some deterministic
energy, say e0, before communication starts. As an example, consider the derivation of EH-AWGN

converse. We replace
n∑

k=1
ek in (45) with e0 +

n∑
k=1

ek. Let En = E[E1] + e0/n. We take QY as

N (0, En). Similar steps until (48) follow except for the above substitutions. We replace Ei with
Ei + e0/n in (51), which does not change the CDF in this case. This would yield

logM∗(n, ε) ≤ nC
(n)
EG +

√
nV

(n)
EG2Φ

−1(ε) +
1

2
log n− logκ + 2κ

√
V

(n)
EG2f̂2, (64)

where

V
(n)
EG2 =

2E
2
n + σ2

E + 4σ2En

4(En + σ2)2
log22(e).

Now, C
(n)
EG ≤ CEG +

1

2
log

(
1 +

e0
nσ2

)
and

∣∣V (n)
EG2 − VEG2

∣∣ ≤ cve0
n

for some nonnegative constant cv.

Thus, the upper bound is only affected by an O(1) term. This does not mean that initial energy
has little to no impact but rather that with increasing n, its impact reduces significantly; e.g.,
if e0 = O(n), then it would affect the first-order term. For the EH-DMC converse, a similar change
is made where we replace Ei with Ei + e0/n. The e0 term gets absorbed in the definition of δn
as defined in (56). Once again, it only yields O(1) changes, which still allow our bounds to hold.
We therefore conclude that initial deterministic energy in the buffer does not affect the first- or
second-order terms in the achievable and converse bounds.

Residual Energy. The above discussion assumed a fixed amount of initial energy. In practice,
when multiple messages are transmitted, one after another, then the left-over energy after each suc-
cessful transmission would vary randomly. Consider an EH-AWGN channel setup as before with n,
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the slots for transmission, and maximal probability of error ε fixed. Each message undergoes a
saving and transmission phase as before. In the following we assume that if during the transmis-
sion of a message we run out of energy at some point, then the transmission of that message stops
and this is conveyed to the receiver. However, the harvested energy during the rest of that slot is
stored, to be used for the transmission of the next message. In the following we denote the residual
energy after the transmission of the th slot by R�. We obtain lower bounds, r�, on it.

Define the random sequence r� as follows. Let r0 = e0 for initial energy e0 in the beginning of
slot  = 1. Then r�, for  ≥ 1 evolves as

r� = (r�−1 + ζ�)
+, (65)

where ζ� =
n+Nn∑
k=1

E(�−1)(n+Nn)+k−
n∑

j=1
Λ(X(�−1)(n+Nn)+j), and Λ(·) is the energy function as discussed

in EH-DMC and for EH-AWGN, Λ(x) = x2. Also E[ζ�] = (n + Nn)E[E1] − nP for 1 ≤  ≤ L,
where we assume that the channel inputs Xi are i.i.d. random variables with finite mean and
E[Λ(Xi)] = P , and P is to be decided. It can be shown that r� ≤ R� for  ≥ 1. In the study
of GI/GI/1 queues [27], (65) is the well-known Lindley equation. Thus, r� will have a stationary
distribution if E[ζ1] < 0. For our purposes, we do not gain anything by working in this regime.

Instead, we will actually take E[ζ1] > 0 but close to 0 and therefore P ≤
(
1+

Nn

n

)
E[E1]. This way

we will stay within the framework used so far and use the above results. Moreover, the residual
energy r�, will diverge to ∞ as  increases. We have from [28] that r� obeys

r�


p→ E[ζ1],
r� − E[ζ1]√

σζ

d→ N (0, 1) (66)

as  tends to infinity, where σ2
ζ = Var(ζ1). Thus, for  sufficiently large, one could resort to

setting e0 = r� ≈ E[ζ1] − a
√
σζ , where a is chosen large enough so that

r� − E[ζ1]√
σζ

≥ −a is a

high probability event. Using the e0 dependent bounds mentioned earlier, we could derive a lower
bound that considers residual energy. Further refinements on this approximation are available, but
for sake of brevity we skip those details.

9. MODERATE DEVIATION ASYMPTOTICS

In this section, we discuss the bounds on the moderate deviation asymptotics for the EH-AWGN
channel and the EH-DMC. In this analysis, unlike in the second-order analysis in the previous
sections, we allow probability of error to go to zero as a function of blocklength n. However, we do
so in the moderate deviations regime which is defined formally as follows (see [16]).

Definition 3 (moderate deviation coefficient). Given a channel W , let ρn be a sequence of non-
negative real numbers such that ρn → 0 and nρ2n → ∞. Then for codes of size Mn satisfying
logMn = n(C−ρn), where C is the channel capacity, the moderate deviations coefficient (MDC) ξ,
if it exists, is defined as

ξ = lim
n→∞

log ε(n)

nρ2n
,

where ε(n) is the probability of error as a function of blocklength n.

For memoryless channels with channel dispersion V > 0, it was shown in [16] that ξ = − 1

2V
is

the moderate deviation coefficient. In the case of energy harvesting channels, it is more involved.
This is due to not knowing the exact dispersion value as well as the fact that energy harvesting
channels are not truly memoryless due to the energy vector. However, they have a part which is
memoryless, and this is what we have been exploiting so far in our analysis.
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9.1. MDC for EH-AWGN Channels

We now state the following theorem bounding the MDC for EH-AWGN channels.

Theorem 5. For an EH-AWGN channel with energy process Ei i.i.d. with variance σ2
E , the

MDC is bounded as

lim inf
n→∞

log ε(n)

nρ2n
≥ − 1

2VEG2
, (67)

lim sup
n→∞

log ε(n)

nρ2n
≤ − 1

2VEG
, (68)

where VEG is defined in (11) and VEG2 is defined in (12).

Proof. To show (67), let us consider (47) whose terms are rearranged, replacing ε with ε(n), as

ε(n) ≥ Pr

[
log

W (Y n |xn(m,E))

QY n
≤ log γn

]
− γn

M
.

We also have from (52) that

Pr

[
log

W (Y n |xn(m,E))

QY n
≤ log γn

]
= Pr

[ n∑

i=1

ηi ≥ nCEG − log γn

]
.

Now let logM = n(CEG−ρn) and log γn = n(CEG−αρn) for any α > 1. From [29, Theorem 3.7.1],
we get

lim inf
n→∞

log Pr
[ n∑
i=1

ηi ≥ nCEG − log γn
]

nρ2n
≥ − inf

x≥α

x2

2VEG2
= − α2

2VEG2
,

where noting that VEG2 is the variance of ηi and letting α → 1, we get (67).

To show (68), we need to modify some of our arguments which we used while discussing the
save and transmit scheme. This is because we need to show that codes of logM = n(CEG − ρn)
exist. The analysis so far was done so as to work with the optimum order of

√
n. This is not valid

anymore, since ρn > 1/
√
n.

Recalling error events E0 from (17) and E1 from (20), we will show that with an appropriate
choice for Nn and E0n, we can set

Pr(E0) + Pr(E1) ≤
ε(n)

2
.

To ensure this, let us choose

Nn = max

⎧
⎨

⎩
16σ2

E

ε(n)E[E1]2
,
4
√
n(2E[E1]2 + σ2

E)

E[E1]
√
ε(n)

⎫
⎬

⎭ .

Clearly, Nn → ∞ as n → ∞, and both Pr(E0) and Pr(E1) are each upper bounded by ε(n)/4.

Hence, the probability of error ε(n) is bounded by

ε(n) ≤ ε(n)

2
+ Pr

[
log

(
W n(Y n |Xn)

PY n(Y n)

)
≤ log γn

]
+

M

γn
,

log(ε(n)/2)

nρ2n
≤ 1

nρ2n
log

[
Pr

{
n∑

i=1

Gi ≤ log γn

}
+ 2−(1−α)nρn

]
.
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Now let log γn = n(CEG − αρn), where α < 1 and logM = n(CEG − ρn). Codes of the latter
size are assured by Feinstein’s lemma. Now from (25) and [29, Theorem 3.7.1], we have

lim sup
n→∞

1

nρ2n
log Pr

{
n∑

i=1

Gi ≤ log γn

}
≤ − inf

x≤−α

x2

2VEG
= − α2

2VEG
. (69)

Letting α → 1, we get (68). �

9.2. MDC for EH-DMC

The MDC bounds for EH-DMC should be analogous to that of the EH-AWGN channel. However,
since VED varies with the choice of λ, we need to refine it slightly.

Theorem 6. For the EH-DMC, the following bounds on MDC apply :

lim inf
n→∞

log ε(n)

nρ2n
≥ − inf

η>0

1

2Vmin,η
, (70)

lim sup
n→∞

log ε(n)

nρ2n
≤ − 1

2Vmin
, (71)

where Vmin = min
P∈ΓE[E1]

V (P ;W ) and Vmin,η = min
P∈ΓE[E1]+η

V (P ;W ), where Γ is the set of capacity

achieving input distributions that are in FE[E1].

Proof. Bound (70) follows from [16, Theorem 6] with the following changes:

1. The distributions need to be admissible, i.e., from FEn
;

2. ε(n) is to be replaced with ε(n) + τn. But as per our construction, τn < ε(n)/4. Hence, it is the

same as replacing ε(n) with
5

4
ε(n).

To prove (71), we note that the steps are very similar to the proof of (68). To begin with, pick
a capacity achieving distribution PX and follow all the steps exactly as before. We get

lim sup
n→∞

log ε(n)

nρ2n
≤ − 1

2V (PX ;W )
.

Since this is valid for any PX ∈ Γ, the tightest bound is obtained when we replace V (PX ;W )
with Vmin. �

10. DISCUSSION AND COMPARISON WITH RECENT WORK

10.1. Comparison with [14]

In [14], the authors considered a version of the EH-AWGN channel with block energy arrivals.
In this model, each block is of length L and energy arrivals are i.i.d. across blocks. Within a
block, they are equal. The authors then studied the effects on finite blocklength rates when L was
constant and when L was sub-linearly increasing with n (i.e., L = ω(1)). For average probability
of error 0 ≤ ε < 1/2, they showed that for an EH-AWGN channel with block energy arrivals as
described above, for constant L, large enough n, and unit noise variance,

CEG + V −
ε

√
L

n
− o

(√
L

n

)
≤ 1

n
M∗(n, ε) ≤ CEG + V +

ε

√
L

n
+ o

(√
L

n

)
, (72)
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where

V −
ε = sup

0<λ<1
−CEG

√√√√2

(
E[E2

1 ]

E[E1]2
+ 1

)
log

1

λε
+

√
E[E1](log e)2

L(1 + E[E1])
Φ−1((1 − λ)ε), (73)

V +
ε =

log e

2(1 + E[E1])

√

σ2
E +

2E[E1](E[E1] + 2)

L
Φ−1(ε). (74)

The EH-AWGN model that we study is essentially the same as that in [14] but with L = 1, and
they were analyzing it under the average probability of error criterion. Comparing with (11), we

see that they are identical except for the first term, where they have log
1

λε
as opposed to our

2

λε
.

Thus, their second-order coefficients are slightly tighter than ours. As for the V +
ε term, we recover

it exactly, since in this case we provided an alternate proof. In terms of proof techniques, in our
case we split the energy harvesting constraints into two parts, namely energy gathering phase and
the transmission phase, and analyzed them individually (via Kolmogorov’s inequality), whereas
in their work it was tackled together using moment generating functions. Additionally, they took
advantage of the Gaussianness of the channel to simplify expressions for both achievability and
converse.

10.2. Alternate EH-AWGN Converse Using [7, 18]

The method of modifying the meta converse in [7], as we did for energy harvesting channels,
has been carried out correspondingly for quasi-static fading AWGN channels in [18, Appendix III].
While we were unable to use the methods directly due to the models being very different, our
framework is in a sense inspired by it. We provide a sketch of another derivation of converse
bound, as suggested by an anonymous reviewer.

Assuming avg p.o.e. ε, let ε(En) be the average p.o.e. given the energy realization En. Note that

the avg p.o.e. bound will upper bound the max p.o.e. bound. Letting En =
n∑

i=1
Ei/n and noting

that the energy harvesting condition to avoid outage is tantamount to
n∑

i=1
X2

i ≤ nEn, fixing n large,
we have, from [7],

ε(En) ≥ Φ

(
logM − nC(En) − 1/2 log n−K(En)√

nV (En)

)
. (75)

Taking expected value with respect to the distribution of En in (75) should yield a desirable
converse. We get

ε ≥ EΦ

(
logM − nC(En) − 1/2 log n−K(En)√

nV (En)

)
. (76)

In order to take the expectation inside the Φ function, we have, for any real-valued random vari-
able U ,

EΦ

(
U + a

b

)
= Pr(U ≥ bZ − a) =

∞∫

−∞

fZ(z) Pr(U ≥ bz − a) dz, (77)

where Z ∼ N(0, 1). When U is independent zero mean Gaussian with variance σ2
U , (77) equals

Φ
( a√

b2 + σ2
U

)
. Using Taylor’s approximation on V (En), (77), and the Berry–Esseen theorem,

(76) simplifies to

ε ≥ EΦ

(
logM − nC(En) − 1/2 log n−K(En)√

nVEG2

)
− c1(E [E1])

n1/3
(78)
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for a constant c1(E [E1]) independent of n. By using C(En) ≤ CEG +
En −E[E1]

2(E[E1] + σ2)
and applying a

uniform bound on K(En), we get the upper bound

logM ≤ nC(P ) +
√
nVEGΦ−1

(
ε +

c1(E[E1])

n1/3
+

c2√
n

)
+ 0.5 log n + O(1)

≤ nC(P ) +
√
nVEGΦ−1(ε) + n1/6c1(E[E1]) + 0.5 log n + O(1), (79)

which is weaker than (12). Moreover, this proof implicitly uses properties of the Gaussian channel
structure which cannot directly be applied to EH-DMCs. However, it is a direct way to get an
upper bound (not necessarily the best bound) on rates for special channels (like fading channels)
perturbed by AWGN noise, and further details are available in [18].

11. NUMERICAL RESULTS

We now evaluate and plot the finite blocklength bounds on rate as well as the slots consumed
in the saving part of save and transmit as a function of blocklength. We use the formulae derived
in the earlier sections, for a specified set of parameters, to evaluate the aforementioned quantities.
For the EH-DMC, we describe an energy harvesting binary symmetric channel (BSC) and a binary
erasure channel (BEC) and plot the corresponding bounds for these. Note that in all plots, we are
ignoring the constant terms in the bounds, i.e., coefficients of O(1/n) in the rates. Additionally,
we compare our results with the finite blocklength lower bounds of an equivalent non-energy har-
vesting channel. For example, in the EH-AWGN case, we consider an AWGN channel with average
power constraint E[E1], while in the EH-DMC cases, we consider corresponding DMCs with power
constraint E[E1]. This will allow us, when the equivalent channel’s lower bound is above the en-
ergy harvesting upper bound, to comment on the effects of energy harvesting on rate. The gap in
rates mentioned henceforth will be the difference between the bounds divided by the upper bound,
expressed as a percentage.

11.1. EH-AWGN Results

We take the maximal probability of error ε = 0.1, E[E1] = 1, and σ2
E = 5. We consider

blocklengths n between 5000 to 10 000. We consider three different regimes, i.e.,

1. Low SNR (−20 dB). In this regime (Fig. 2), we observe that the lower bound is a poor approxi-
mation to the finite blocklength rate. Due to a larger number of errors, this regime also requires
more slots to harvest energy to lower the error due to outage (about 20.5% to 27.6%);

2. Moderate SNR (0 dB). Compared to low SNR, this regime (see Fig. 3) gives a better approx-
imation to finite blocklength. The gap in rates is significantly lowered to approximately 19%
to 27%. Additionally, the number of slots required in the saving phase are also considerably
reduced (16% to 22%);

3. High SNR (20 dB). In this regime (Fig. 4), the gap between rates is about 18.2% to 24.2% and
the slots required in saving energy is between 15.8% to 21.6%. While this is an improvement
from moderate SNR, it is not as significant as that between low SNR to moderate SNR.

To summarize, the finite blocklength bounds are decent approximations to the finite blocklength
rate in the moderate to high SNR regime. Further improvements would require an improved lower
bound, which would require changing the transmission scheme. Except for the low SNR case, we
observe that the energy harvesting upper bound is below the lower bound of the equivalent AWGN
channel. We can infer from this that the finite blocklength energy harvesting rates are lower than
that of the non-energy harvesting case in the moderate and high SNR regime.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 57 No. 1 2021



26 SHENOY, SHARMA

0.010

0.008

0.006

0.004

0.002

0.000
50005000 60006000 70007000 80008000 90009000 1000010000

2100

2000

1900

1800

1700

1600

1500

1400

1300

Blocklength nBlocklength n

R
a
te

in
b
it
s

p
er

ch
a
n
n
el

u
se

S
lo

ts
fo

r
h
a
rv

es
ti
n
g

en
er

g
y

Channel capacity

Upper bound on rate

AWGN channel lower bound

Lower bound on rate

Fig. 2. Plot of FB rates for an EH-AWGN channel versus the total blocklength (harvesting plus
transmission) in low SNR regime. The other plot shows the number of slots used for harvesting
energy.
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Fig. 3. Plot of FB rates for an EH-AWGN channel versus the total blocklength (harvesting plus
transmission) in moderate SNR regime. The other plot shows the number of slots used for harvesting
energy.

11.2. EH-BSC

Consider a binary symmetric channel W with crossover probability α. That is X = Y = {0, 1}
and W (0 |1) = W (1 |0) = α. Let p0 := Pr(X = 0). If the capacity achieving distribution, which
satisfies the energy harvesting requirements, is unique with p0 as before, then

CED = CBSC = h(αp0 + α p0) − h(α),

V (P ;W ) = VBSC =
∑

x∈{α,α}

∑

y∈{p0,p0}
xy

[
log

(
x

xy + x y

)]2
−C2

BSC ,
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Fig. 4. Plot of FB rates for an EH-AWGN channel versus the total blocklength (harvesting plus
transmission) in high SNR regime. The other plot shows the number of slots used for harvesting
energy.
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Fig. 5. Plot of FB rates for an EH-BSC channel versus the total blocklength (harvesting plus trans-
mission). The plot on the right gives the number of slots used for harvesting energy.

where u := 1 − u and h(x) = −x log2(x) − x log2(x) is the binary entropy function. Note that the
choice of p0 is influenced by energy harvesting constraints. In this example, we pick α = 0.05, the
energy function Λ(x) = 3x, and E[E1] = 1. This ensures the uniqueness of the capacity achieving
distribution with p0 = 2/3. We take ε = 0.1 and σ2

E = 0.2 here. Figure 5 plots the lower and upper
bounds for this example where n is between 5000 and 10 000.

We observe that the difference between upper and lower bounds for this example is between
13.7% to 23%. The blocklength required for saving energy varies from 9.8% to 13.8% in this range.
In this case, the non-energy harvesting lower bound is below the energy harvesting upper bound.
Hence, we cannot infer anything about the rates as a function of σ2

E here.
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Fig. 6. Plot of FB rates for an EH-BEC channel versus the total blocklength (harvesting plus trans-
mission). The plot on the right gives the number of slots used for harvesting energy.

11.3. EH-BEC

A binary erasure channel W is a channel with binary inputs X = {0, 1} and ternary outputs
Y = {0, ER, 1} with W (0 |0) = W (1 |1) = 1 − α and W (ER |0) = W (ER |1) = α, where α is the
erasure probability. Similarly to the BSC case, if we have a unique capacity achieving distribution,
p0 = Pr(X = 0), then

CED = CBEC = (1 − α)h(p0),

V (P ;W ) = VBEC = (1 − α)p0(log(p0))
2 + (1 − α)(1 − p0)(log(1 − p0))

2 − C2
BEC .

Using the same parameters as in the BSC case, we plot the bounds in Fig. 6.

We observe a difference of 8.6% to 12.2% between the upper and lower bounds as well as saving
energy slot utilization of 9.3% to 12.8% for the specified range of parameters. Here our bounds
appear to better approximate the rates as opposed to BSC. Moreover, the non-energy harvesting
lower bound is above the upper bound, meaning that in this case the effects of energy harvesting
are detrimental to the rate.

11.4. Effects of Energy Harvesting Variance σ2
E

Comparing the bounds (11) and (12) derived for EH-AWGN channels, we observe that both
bounds are lowered with increasing σ2

E . This is illustrated in Fig. 7. Interestingly, when compared
to the AWGN lower bound, the EH-AWGN upper bound appears to only differ by O(log n/n) when
σ2
E = 0. However, the lower bound is strongly affected by the variance.

12. DISCUSSION OF RESULTS AND CONCLUSION

In this paper, we have shown that for both EH-AWGN and EH-DMC channels, the finite block-
length code size varies as nC − Θ(

√
n) under the maximal probability of error criterion. This was

shown by deriving lower and upper bounds with second-order
√
n. We also bounded the moderate

deviation asymptotics for both channel types.
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Fig. 7. Plot of finite blocklength rates for an EH-AWGN for different energy harvesting variances.

Additionally, the bounds were plotted for a few examples. In certain cases, such as the AWGN
channel with moderate to high SNR as well as the BEC case, we observed that the rates are
exacerbated with increased variance of the energy harvesting process. It is desirable to tighten the
gap between lower and upper bounds so that this conjecture may be further verified. As future
work, obtaining matching bounds in the finite blocklength as well as the moderate deviations regime
will be useful.
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APPENDIX A: PROOF OF (41)

Let U ∈ [M ] denote the message to be transmitted and similarly Û the decoded message. We
have for channel W , if the maximal probability of error is ε, the following steps:

1 − ε ≤ Pr
[
Û = m |U = m

]

=

∫

y,e

Pr
[
Û = m |Y = y

]
W (y | c(m,e)) dPE(e), (80)

where the above holds for any message m.

Now Pr
[
Û = m |Y = y

]
is a test on the decoder end that achieves the probability of error

requirement. Even though it does not depend on e, since the decoder does not have access to the
energy samples, it is still a valid test on (y,e).

Now assume that instead of channel W , the message is sent on channel QY which is an auxiliary
channel that ignores the input but has the same output alphabet. Using the above decoder,
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let m be the message that achieves the maximal probability of error under QY . Then, clearly,

P
(
Û = m |U = m

)
≤ 1

M
under QY . But then, from (80) and the definition of the beta error

function, we have

β1−ε (W ( · | c(m, ∗))PE(∗), QY PE) ≤
∫

y

P
(
Û = m |Y = y

)
dQY (y) ≤ 1

M
.

APPENDIX B : PROOF OF THEOREM 4

The proof follows the steps used in proving the original meta-converse (see [7]) up to a point.
Given distribution QY , which is essentially a reference channel that does not depend on input, let
the maximal probability of error for this “channel” be ε′. Let U be the random variable denoting
the message to be sent and Û be the message that was decoded.

Consider the definition of maximal probability of error. We see that there is a message, call
it m, such that

1 − ε′ = Pr
[
Û = m |U = m

]
=

∫

y

P
Û |Y (m |y) dQY (y). (81)

But we also have
1 − ε′ = min

m
Pr

[
Û = m |U = m

]

≤ 1

M

M∑

m=1

Pr
[
Û = m |U = m

]

=
1

M

M∑

m=1

∫

y

Pr
[
Û = m |Y = y

]
dQY (y)

=
1

M

∫

y

(
M∑

m=1

Pr
[
Û = m |Y = y

]
)

dQY (y)

=
1

M
. (82)

Combining equation (81) and (82), we get

M ≤ 1∫
y
P
Û |Y (m |y) dQY (y)

. (83)

Now we have, for any E1 ⊂ R
n
+,

1 − ε ≤
∫

e

∫

y

P
Û |Y (m |y) dPY |X(y | c(m,e)) dPE(e)

≤
∫

e∈E1

∫

y

P
Û |Y n(m |y) dPY |X(y | c(m,e)) dPE(e) + PE(Ec

1).

Rearranging and using the definitions given in the statement of the lemma, letting E1 =
{
e :

n∑
i=1

ei ≤ nEn

}
and τn = PE(Ec

1), we get

1 − ε− τn ≤
∫

e∈E1

∫

y

P
Û |Y (m |y) dPY |X(y | c(m,e)) dPE(e) (84)

⇒ 1 − ε− τn ≤ 1 − ε− τn
1 − τn

≤
∫

y

P
Û |Y (m |y)

{ ∫

e∈E1

dPY |X(y | c(m,e))
dPE(e)

1 − τn

}
. (85)
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Note that we divide by 1− τn to ensure that the term in braces is a probability distribution. From
(83), (85), and the definition of β error function, we get

1

M
≥ β1−ε−τn

( ∫

e∈E1

dPY |X( · | c(m,e))
dPE(e)

1 − τn
, QY

)

≥ inf
x∈F

En

β1−ε−τn

( ∫

e∈E1

dPY |X( · |x)
dPE(e)

1 − τn
, QY

)

= inf
x∈F

En

β1−ε−τn

(
PY |X( · |x), QY

)
.

Note that we could take the infimum over FEn
, a nonrandom set here, because when en ∈ E1, it

implies that c(m, en) ∈ F. Hence, we have (43).
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