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Fast Reduction of Potential Fields Measured Over an 
Uneven Surface to a Plane Surface 

P. S. Naidu and M.  P. Mathew 

Abstract-The present work is aimed at rapid reduction of 
the gravity and magnetic fields observed over an uneven sur- 
face to a horizontal plane. The approach suggested here is to 
estimate the Fourier transform of the potential field over an 
imaginary horizontal plane lying entirely above the ground sur- 
face and impose boundary conditions; namely, the solution must 
satisfy the observed field over the ground surface and vanish 
over an infinite hemisphere. The desired Fourier transform is 
obtained in an iterating manner. A 2-D FFT algorithm can con- 
siderably reduce the computational burden. The FFT approach 
cannot be used unless the discrete data is available on a rectan- 
gular grid. If the observations are scattered, interpolation to 
the nearest grid point will have to be carried out. Interpolation 
introduces marginal increase in the rms error. The iterating 
approach is about 10 times faster than the least squares ap- 
proach. 

I .  INTRODUCTION 
N geophysical surveys, and in particular, in gravity and I magnetic surveys, the observation stations are often 

controlled by topography, accessibility, and the distance 
to the base station to which one has to return for frequent 
calibration. These factors naturally control the distribu- 
tion of the observation stations; mostly along the existing 
motorable tracks. In aerial low-altitude mineral surveys 
the aircraft is often flown at a constant height (e.g., 
50 m) above the topographic surface. Consequently, the 
flight lines, specially in hilly terrain, are undulating in the 
vertical plane, though practically parallel in the horizontal 
plane. Thus, the observation stations may be considered 
as unevenly distributed on an irregular topographic sur- 
face or on flight lines lying on an irregular surface parallel 
to the topographic surface below. Such observations of 
the gravity and magnetic field are inadequate for modern 
quantitative methods that require discrete observations 
over a square grid on a horizontal plane. The earliest work 
on the subject of the continuation of the potential field 
measured on a curved line to a horizontal line above the 
curve line was by Strakhov and Devitsyn [l], who used 
the method of successive approximations for the solution 
of an integral equation of first order. Their method works 
well when the surface undulations are weak. Tsirul’skiy 
[2] reduced the problem to solving of an integral equation 
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of the second kind in the frequency domain. An algorithm 
to solve the integral equation by a method of successive 
approximation is given in [3]. Bhattacharya and Chen [4] 
have formulated the problem in terms of the Fredholm 
integral equation and gave a series solution in the space 
domain [ 5 ] .  Hansen and Miyazaki [6] modified the method 
given in [4] for better accuracy. Henderson and Cordell 
[7] have used finite harmonic series expansion of the ob- 
served data and then, using the estimated coefficients, they 
were able to reduce the field to a plane surface. The 
French workers used the Backus and Gilbert inverse prob- 
lem formalism for the continuation of the potential field 
from an uneven surface to a plane surface [8], [9]. Parker 
and Klitford [ 101 have used the Schwartz-Christoffel 
transformation to map an uneven track of a bottom-towed 
magnetometer to a straight line. 

The present paper addresses itself to the problem of re- 
ducing the field observed over an irregular surface onto a 
horizontal plane above the surface of observation. The ap- 
proach adopted here is similar to that in [l] and [2], but 
it is valid both for two- and three-dimensional problems 
and it uses a fast computational algorithm. The compu- 
tations require the repeated application of a 2-D fast Fou- 
rier transform, thus making the task of reduction very fast 
compared to the space-domain methods described in [4]- 
[lo] and currently used in industry. However, the major 
limitation of the present approach lies in the requirement 
that the x and y coordinates of a measurement station must 
lie on a square grid, though the z coordinate may take any 
arbitrary value (see Fig. 1). Only then can one exploit the 
high speed of the FFT algorithm. From a practical point 
of view this does not pose a serious problem as it is a 
common practice to generate gridded data from the scat- 
tered observations. Using such an approach we have ob- 
tained accurate reduction even when the observation sta- 
tions were scattered, but a sufficiently large number of 
them were available. The present paper is divided into 
five sections, In the next section we briefly review the 
least-squares inversion method and study its performance 
when the available data is randomly scattered. In Section 
I11 we describe the theory of an iterating FFT-based 
method and in Section IV we provide a few illustrations 
as well as a synthetic example. In Section V we provide 
a practical example. We shall also compare the accuracy 
and speed of the present method with that of the least- 
squares method. 
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Fig. 1. Profile of observation stations over a hilly terrain. The observed 
field is now reduced to a horizontal plane just above the highest point in 
the area of survey. 

11. LEAST-SQUARES INVERSION 
We shall assume that all observation points are scat- 

tered in a three-dimensional space but that they all lie on 
a smooth plane representing a topographic surface. The 
data points when projected onto a horizontal plane are 
scattered over the plane. Let f ( x ,  y, H) be the potential 
field on a horizontal plane H units above the mean obser- 
vation surface and F(u,  v, H) be its 2-D Fourier trans- 
form (see Fig. 1). We shall continue the unknown field 
on the horizontal plane downward to every point of ob- 
servation, 
f(xi, yi, H + Azi)  

. lrca n m  

d~ dv, i = 0,  1 ,  - * * N - 1 .  ( 1 )  . e j W i  + U y i )  

In above equation the unknown quantity is F(u,  v ,  H ) ,  
which may be discretized over a finite domain with the 
assumption that it vanishes outside this domain. For the 
sake of simplicity we shall assume the domain is rectan- 
gular, 2a X 2b, and it is divided into (2p + 1) x (2q + 
1) cells. We shall discretize the integral in ( 1 )  and write 

f @ i ,  yi, H - Azi) 
l P  

= -  C C F 
PQ k =  - p  I =  -4 

where P = 2p + 1 and Q = 2q + 1 .  Define following 
matrices: 

f = C O ~  { f ( ~ ; ,  yi, H - Azi), i = 1 ,  2 ,  3 * N }  
Size: N x 1 

1 k =  - p ,  - p  + 1 * * ' p  - 1 , p  

l = - q , - q + l * . .  9 -  1 7 q  
Size: N x (2p + 1)(2q + 1) 
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Table I 

and 

k = - p , - p + l . * * p - l , p  

I =  -9, - q +  1 * * .  4 -  1 , q  

Size: (2p + 1)(2q + 1 )  

Equation (2) in matrix version becomes f = AF. We 
should be able to solve the above system of linear equa- 
tions for the unknowns contained in vector F. Naturally, 
we must have N 1 (2p + 1 )  (2q + 1 ) ;  in the presence of 
noise a reliable solution is obtained only when N >> (2p 
+ 1) (2q + 1 ) .  A least-squares solution of ( 2 )  is given by 

F = (AHA)-'AHf (3) 

where the superscript H stands for the hermitian trans- 
pose. We have evaluated (3) on a Vax 750. The compu- 
tation time required for different data sizes is shown in 
Table I. 

A. Numerical Example 
A ground magnetic survey over an area of 140 X 140 

units (arbitrary units) over an undulating terrain was sim- 
ulated. The field at randomly scattered stations uniformly 
covering the entire area was calculated. The magnetic field 
is caused by four semiinfinite prisms. A map of the un- 
dulating surface including the stations and an outline of 
magnetic targets are shown in Fig. 2. The undulating sur- 
face was generated mathematically using the equation 

1 X 2  

[ J x 2  + y2 + 16 
A.z(x, y) = 4 . 0  + 2.0 COS 

Jx' + y 2  + 16 
y2 + 4 

+ sin - 

The height of the observation stations varied from 1 . 1  to 
7.0 units. First, the scattered field measurements were 
used for reduction. The least-squares inversion approach 
was used to reconstruct the field at a height of 7.5 units, 
just above the highest point. The mean-square error be- 
tween the reconstructed field and the actual (computed) 
field is tabulated in Table I. 

The error is expressed in percentage relative to the peak- 
to-trough anomaly amplitude of 65.5 gamma. The rms er- 
ror is found to increase rapidly when the number of sta- 
tions is reduced below 600. 
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Fig. 2.  A map of the undulating surface including the observation stations 
(+) and an outline of magnetic targets. 

111. FFT-BASED METHOD 
Letfo(x, y ,  Az) be the potential field (gravity or mag- 

netic) observed over a known but arbitrary surface Az(x, 
y ) .  We shall assume that the x and y coordinates of each 
observation station lie on a regular grid; however, the z 
coordinate is arbitrary. Where this is not true we shall 
assume that through interpolation, gridded digital mag- 
netic data has been prepared. The data points, when pro- 
jected onto a horizontal plane, fall on a regular grid of 
points. Only the height of a data point is irregular. Let 
f ( x ,  y ,  h) be the desired field on a horizontal plane Hunits 
above the mean observation surface [ H  > A z  (x, y ) ] .  Now 
we shall continue the field downward to the observation 
surface and require that the downward continued field 
must satisfy the observed field 

(4) . e j ( u + v Y )  du d v  

where F(u ,  u, h) is the Fourier transform of the desired 
fieldf(x, y ,  h) and s = v. Note that the repre- 
sentation of the potential field given in (4) satisfies the 
Laplace equation and the vanishing boundary condition at 
+ 00. Next, we express Az (x, y) lh  = €17 (x, y )  where E < 
1 and r] (x, y )  is a normalized surface, that is, 

1 x y  
- c c $(x, y )  = 1, x, Y -+ 00 
4XY -x -Y 

Use the following expansions: 

k = O  k!  
IXI 

F ( u ,  u, h) = c eiFi(u,  u, h) 
i = O  

in (4). Express the right-hand side of (4) as a polynomial 
in E .  Then, (4) becomes 

1 
h(x, Y ,  Az) = 4 7 ~ 2  1: A @ ,  u, r](x, Y ) )  

. esh e l(u + VY) du dv ( 5 )  

r] (x, Y )  * s 2 F I ( ~ , u , h )  +- 1 

* sF2(u, u, h) - F3(u, u, h) I + - * - . 

We set the coefficients of E to zero giving us the following 
set of interconnected equations from which we can obtain 
Fk(u, u, h),  k = 0, 1, 2, - . For example, 

Fo(u, v, h) = e-sh c X Y  cfo(x, y ,  Az)e-i(ux+vy) 

(.+ P T  

Fo(u, u, h)sesheei("x+vy)du du s -  s, 

(6) 

and so on. The above system of iterating equations is eas- 
ily evaluated using the FFT algorithm. The convergence 
is rapid, usually requiring about 10 iterations, depending 
upon the amplitude of the surface undulations. 

IV. COMPUTER SIMULATION 
For the purposes of testing the new method of reduction 

to a horizontal surface we have a synthetically generated 
field along a set of 16 nearly parallel lines placed on the 
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Fig. 3. The contoured maps of measured field are shown in (a) (parallel 
flight lines) and (b) (scattered stations). The results of field reduction to a 
horizontal plane at 7.5 units above using the new method are shown in (c) 
and (d). Compare the reduced field with the theoretical field shown in Fig. 
4 

Fig. 4. The theoretically computed field on the plane of reduction. 

undulating surface, as well as at randomly scattered (2500) 
points (see Fig. 2). The parallel lines would correspond 
to undulating flight paths of an aircraft over a hilly terrain. 
On each line 160 samples were collected, giving a total 
of 2560 samples. The data thus created was gridded using 
a commercially available software package (e.g., Data 
Plotting Services Inc., Toronto, Ont., Canada). The con- 
toured maps are shown in Fig. 3(a) and (b). The result of 
field reduction to a horizontal plane at 7.5 units above 
using the new method is shown in Fig. 3(c) and (d). The 
theoretically computed field on the plane of reduction is 
shown in Fig. 4. Table I1 gives the rms difference be- 

?.I' .d ??* *.' 

Fig. 5 .  Aeromagnetic field over a hilly terrain flown at low altitude (nom- 
inal height 50 m above ground). Contour interval is 207. 

Table I1 

Parallel 
Profiles 
Grid data 1 . 4 4  

tween the reduced and the theoretical field. We note that 
in comparison with the least-squares methods there is a 
marginal increase in the rms error; however, there is a 
considerable savings in computer time, by a factor of 10 
to 12. The increase in the rms error is largely due to the 
interpolation error. In support of this statement we have 
carried out the reduction to a horizontal plane using data 
on a regular grid requiring no gridding. From the last row 
in Table I1 we note that the rms error has come down and 
is of the same magnitude as in the least-squares approach. 

V. APPLICATION TO REAL DATA 
We have applied our new method of reduction to a real 

data set obtained in a low altitude (nominal flight height 
50 m) aeromagnetic survey carried over a part of the dia- 
mond-bearing rocks, consisting of granites and granite 
gneisses belonging to the south Indian shield. The survey 
was carried out by the AMSE division of the Geological 
Survey of India using the Scintrex system mounted on a 
Twin Otter aircraft. In addition to the total magnetic field, 
the system provided continuous measurements of baro- 
metric height and air column thickness, which were used 

I 
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Fig. 6. Reconstructed flight surface from the barometric data along with 
the flight paths. Contour interval is 20 m. 

Fig. 7. Total field reduced to a horizontal plane at a height of 678 m above 
MSL, The plane of reduction is just above the highest point in the survey 
area. 

to reconstruct the actual flight surface. The navigation 
system consisted of Doppler as well as a visual method 
based on aerial photostrips. It is believed that the posi- 
tional accuracy is better than 5 m. The total measured 
field after the application of the diurnal and instrumental 
drift corrections and subtracting a base level of 41 loOy is 
shown in Fig. 5 and the reconstructed flight surface is 
shown in Fig. 6 .  On the flight surface we have also su- 
perposed actual flight lines. The contour values are in me- 

ters, representing the height above MSL plus 297 m. In 
Fig. 7 we show the reduced field, which now corresponds 
to what would have been observed on a horizontal plane 
at a height of 678 m above MSL or 381 m above the local 
base level. 
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