A Force Directed Hill-Climbing Placement Algorithm

R. Mall
Dept. of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

L.M. Patnaik
Microprocessor Applications Laboratory
Indian Institute of Science
Bangalore 560 012

e-mail: lalit@vigyan.ernet.in

Abstract

In this paper, we propose a heuristic procedure for finding
near-optimal placement of VLSI circuit modules on a two-
dimensional layout. This heuristic procedure combines
ideas from a greedy placement algorithm and the Prob-
abilistic Hill-Climbing technique. The main advantage of
this alpproach is that while it retains the fast convergence
property of the greedy algorithm, it exhibits adaptive hill-
climbing capability. Performance evaluation studies on this
algorithm have been carried out and the results appear
promising. The results indicate that while the algorithm is
computationally less expensive than the simulated anneal-
ing algorithm, it yields better final placement solutions than
the greedy algorithm.

1. Introduction

The general placement problem of VLSI circuit layout
is that of placing a set of circuit modules on a layout area
such that a set of objective functions is optimized. An
important objective is the minimization of the total inter-
connection length. The problem of finding optimal
module placements subject to minimization of the objec-
tive functions is known to be an NP-hard problem 7). For
solving such computationally difficult problems, algo-
rithms based on greedy heuristics yielding suboptimal
solutions are usually employed in practice.

Greedy algorithms typically work in two phases. In the
first phase, an initial suboptimal solution is proposed. In
the second phase, the initial solution is improved through
a series of perturbations and greedy acceptances. How-
ever, greedy heuristics get stuck at local optima. Though
this is a major bottleneck, greedy algorithms are still very
popular, primarily due to the fact that they yield "good"
solutions while being computationally inexpensive.

Probabilistic Hill-climbing (PHC) algorithms have
been suggested for obtaining optimal solutions [6] to
difficult optimization problems. The intuitive idea be-
hind this approach is to generate new states via perturba-
tions and to accept all the states giving better configura-
tions. Also, some of the generated states giving worse
configurations, are accepted based on certain probability
distribution. This acceptance of "worse states” is known
as the hill-climbing steps. It has been proved that PHC
algorithms can converge to globally optimum solu-
tions[1]. However, the main disadvantages of the PHC
algorithms are that they require enormous amounts of
computing time [8], and that they are not amenable to
efficient parallel implementation [5]. Consequently, there
is a need for developing fast algorithms that can give
results of quality comparable to those of the PHC algo-
rithms.

0-8186-2465-5/91 $1.00 © 1991 IEEE

251

In this paper, we propose a hybrid algorithm that is, in
essence, a modification of the heuristic procedure
reported in [2] by applyingideas from the PHC technique.
We have named this hybrid algorithm Generalized Force
Directed Relaxation with Probabilistic Hill-Climbing
(GFDR-PHC) algorithm. GFDR-PHC has the charac-
teristic of a greedy algorithm possessing "some" hill-
climbing capability. The main motivation behind the
development of this algorithm is to retain the advantage
of fast convergence of greedy algorithms while at the
same time realizing near-optimal solutions. GFDR-PHC
algorithm has been coded and its performance has been
studied. The results appear promising,

The rest of this paper is organized as follows. In the next
section we describe some preliminary concepts and
definitions. Section 3 presents the GFDR-PHC algo-
rithm. Section 4 gives comparative performance analysis
of the algorithm. Section 5 presents the performance
evaluation studies. Section 6 concludes this paper.

2. Preliminary Concepts

The greedy part of the GFDR-PHC algorithm is based
on the Generalized Force Directed Relaxation (GFDR)
algorithm reported by Goto [2]. The algorithm proposed
in [2] is a popular algorithm that is widely used and
referred to by researchers. This algorithm operates in two
phases [2]. The first phase called SORG (Sub-Optimum
Random Generation), generates an initial constructive
placement. The second phase of the algorithm GFDR
(Generalized Force Directed Relaxation), carries out
iterative improvements to the initial placement. Details
of this algorithm can be found in [2]. We give a few
important definnitions below.
Definition 2.1
The wiring length (or routing length) of a signal net is
the half-perimeter of the smallest rectangle enclosing all
modules (terminals) of the net.
Definition 2.2
The total wiring length of all signal nets associated with a
module M is denoted by MWL(M).
Definition 2.3
The median of a module is the position of a module M,
where the total wiring length associated with the module
(i.e., MWL(M)) is minimum.
Definition 2.4
The e-neighborhood of a module M is the set of ¢ loca-
tions where the total wiring length associated with this
module is minimum (i.¢., first ¢ minimum MWL(M) loca-
tions). The e-neighborhood of a module M is obtained by

first sorting the values of MWL(M) for different positions
of M are in ascending order. The first € elements of this
list give the e-neighborhood for the module.
2.1. The GFDR Algorithm

The GFDR algorithm operates by examining a search
tree constructed by recursively interchanging a module
with the modules in its e-neighborhood. The GFDR algo-
rithm operates for a fixed value of the e-neighborhood
and for a fixed value of the maximum numbgr of modules
involved in any interchange sequence (4), ie., fixed
depth of the search tree. The number of modules involved
in a module interchange sequence is called the level of
interchange. First, the algorithm randomly selects a
module (level = 1). The level 1 module is called the
primary module. Pairwise trial-interchange of this module
with each of the modules in its e-neighborhood is carried
out (level = 2). The best interchange is accepted, if it
results in a cost reduction. If no cost reduction for this
module takes place in level = 2, then level = 3 (three
module interchange sequence) ig tried out and so on. This
procedure continues till level A (maximum interchange
level) is reached. This procedure isrepeated for different
primary modules.

3. GFDR-PHC Algorithm

GFDR-PHC algorithm retains the constructive place-
ment part (SORG) of the algorithm described in [2] and
modifies only the iterative improvement (GFDR) part of
the algorithm. In order to appreciate the modifications to
the GFDR algorithm, let us regard the modules in the
initial placement configuration to be joined together by
lines of force (similar to springs) that are under tension,
as in Hanan [3]. Our primary objective is to minimize the
energy (wire length) of the initial placement, subject to the
constraint that each module is assigned to a unique slot
on the chip. In the sequel, we will use the term energy
content of a module for its total module wiring length and
vice versa. The terms median position and minimum
energy location, are used interchangeably. Also, the terms
energy release and reduction in wiring length are used with
the same implication.

When a module is relaxed (allowed to move freely), it
moves to a minimum energy location. This minimum
energy position is analogous to the median location of
GFDR algorithm. Let us consider an e-neighborhood of
this module, this contains the first ¢ minimum energy
locations. When a module under tension is relaxed and is
positioned at one of its e-neighborhood locations, the
system goes to a lower energy state, that is, the total wiring
length decreases. In the first phase of the algorithm, an
initial constructive placement takes place. In the second
phase of the algorithm, a module M (from an abitrary
location focation p) is selected. This module is called as
the primary module. The primary module is trial inter-
changed with each of its e-neighborhood modules, e.g.,
in Fig.1, module M is trial-interchanged in turn with
modules X, Y, and Z respectively, where X, Y, and Z are
the e-neighborhood of module M. The total change in the
wiring length = MWL(M,P) - MWL(M,Q) +
MWL(J,Q) - MWL(J,P), for each trial-interchange of

252

module M located at P with a module J € {X)Y,Z}
located at Q is noted. The trial-interchange which gives
the maximum decrease in wiring length is noted and the
corresponding routing length as aresult of this trial-inter-
change is remembered as the minimum routing length
uptill now. The module at the e-neighborhood location
giving this minimum value becomes the current module
and is chosen for the next level of interchange. The chain
from the primary module to the current module (M-Y in
Fig.1) giving the maximum decrease in routing length is
stored in a linked list for future reference.

In the next step, the current module (Y) is relaxed
(second level relaxation), and placed at each of its -
neighborhood locations. Round robin interchange start-
ing with the primary module and ending up with each one
of the e-neighborhood locations of the current module is
effected (M-Y-A, M-Y-B, and M-Y-Cin Fig. 2). Foreach
such interchange sequence, the change in wiring length is
noted down. The module in the e-neighborhood location,
that gives the maximum decrease in wiring length is
selected as the current module. If the change in wiring
length in this case results in a value of routing length less
than the earlier minimum routing length, then the latter
is updated and the minimum chain is extended upto the
current module. Even though a particular level of relaxa-
tion may not result in an immediate reduction in minimum
routing length, the relaxation sequence continues
provided the total routing length decreases. Thus, the
change in MWL of a module at any single level of relaxa-
tion is allowed to be either positive or negative, as long as
the fotal routing length decreases.This is analogous to a
hill climbing step, because inspite of a "bad move" the
search process continues.

The process of examining the e-neighborhood loca-
tions of the current module is continued till the level of
interchange where all e-neighborhood locations give in-
creases in total wiring length. The round robin inter-
change of modules corresponding to the minimum chain
giving the best interchange sequence (i.e. resulting in
minimum total routing length) is carried out. The current
routing length is updated as the minimum routing length
for the next iteration. In an interchange sequence, no
module is allowed to be relaxed more than once as other-
wise it may result in improper cost calculations. In one
cycle of operation, every module is selected once as the
primary module. The algorithm terminates, when a com-
plete cycle of relaxation does not produce any improve-
ment to the placement configuration.

A major advantage of the GFDR-PHC algorjthm is
that the search procedure does not have a fixed A value,
but continues as long as the change in the fotal wiring
length is negative. Thus, it does not stop just because
negative cost change occur at some particular inter-
change. GFDR-PHC algorithm is outlined below.
Algorithm GFDR-PHC;

/* A cycle of the algorithm selects each module once as
the primary module. Initially, current-routing-
lengtﬁ =total-routing-length obtained by SORG */
step 0: chain = NULL;

/* chain stores module interchange sequences */

step 1: M = next primary module;
step 2: current-module = M;
step 3: [* initialization */
3.1: min-routing-length = current-routing-length;
3.2: least-wirelength-change =0; /* initialization */
3.3: append(chain, current-module);
[*store current module in chain */
step 4:e-neighbor =find_e-neighbor(current-module);
[* determine e-neighborhood of current-module */
step 5: for each module i € e-neighbor do
5.1: round_robin_interchange(i,chain);
[* interchange all modules from primary module
upto module i */
5.2:wirelength-change =X (MWL(j,p) — MWL(j,q));
/* Each module in the chain is trial interchanged
with the next module, and the new wire length after
the entire intechange sequence is found out. */
5.3: if(wirelegth-change < least-wirelength-
change)then
5.3. 1:least-wirelength-change = wirelength-change;
5.3.2:1east-module = current-module;
/* remember current-module */
5.4: reverse-interchange(i,chain);
[* restore the original configuration */
step 6: current-module = least-module;
step 7:if((current-routing-length + least-wirelength-
change) < min-routing-length) then
7.1: append(chain,current-module);
{* store current-module in chain*/
7.2: min-routing-length = current-routing-
length + least-wirelength-change;
/* update value of min-routing-length */
step 8: if (least-wirelength-change = 0)
then goto step 10 ; /*no improvement possible */
else goto step 3; /*start next level search */
step 9: round-robin-interchange(chain);
[* carry out interchange giving minimum total
wiring length */
step 10: current-routing-length= min-routing-length;
step 11: if cycle not over then goto step 0;
/* in one cycle each module is chosen once as
primary module */
step 12: if{improvement over previous cycle) goto
step 0 else stop.

4. Analysis

A closed-form analysis of the performance of the algo-
rithm becomes complicated due to the hill climbing steps
involved. However, an intuitive analysis of the algorithm
is given below.

The GFDR-PHC algorithm is develped based on two
simple observations. The first one is that, maximum ener-
gy reduction in a module interchange sequence occurs
when a the e-neighborhood of a relaxed module contains
the primary module. This is due to the fact that the relaxed
module moves into the slot of the primary module, thus
forming a cycle. The probability of finding such an inter-
change sequence becomes greater for larger values of the

253

depth of interchange. Thus, when large sequences of
module interchanges are allowed to occur, there is higher
chances of finding interchange sequences of the type just
described. Secondly, in a PHC algorithm better solutions
(crystalline order, in statistical mechanics terms) are ob-
tained when more uphill climbs are allowed to take place
during the hot phase in the cooling schedule than during
the cold phase; in the reverse case locally optimum (glas-
sy) solution are likely [4]. Simulated Annealing algorithm
achieves this by decreasing the acceptance probability of
a move as the temperature reduces. GFDR-PHC algo-
rithm inherently incorporates this principle. Initially, the
layout is at a high energy state as the non-optimally placed
modules are under great tension. Each time a module is
taken up for relaxation, large reductions are achieved. In
this phase, many interchange sequences are carried out
which do not immediately decrease the MWL because of
the large positive values of the total wirelength change.
Thus large number of uphill climbing steps take place
during this phase. However, when the system cools down,
that is, the modules are placed near-optimally and the
relaxation steps do not release much energy, less uphill
climbs can be entertained since the total wirelength
change usually has small positive values. The initial
temperature and the cooling schedule are automatically
taken care of by the algorithm (i.e., these are adaptive) as
was suggested by Nahar [5], being highly dependent on
the initial placement configuration.

With this interpretation, we can realize that in the
original GFDR algorithm, uphill climbs take place in the
reverse sequence. Since, initially modules are subop-
timally placed, almost every interchange sequence results
in decrease in total wirelength. Hence, according to the
GFDRin the initial phase few uphill moves are tried
(search terminates mostly at level = 2). Whereas, later
when the system cools down, more and more uphill moves
are attempted (search mostly continues up to A level).
Another important fact is that in the original GFDR
algorithm, the value of A (maximum allowed interchange
level) hastobe fixed at the start of the algorithm. But in
GFDR-PHC algorithm, A can take any value from 2
upwards, depending on optimality of the placement of the
modules under consideration. Thus, A has been made
adaptive.

5. Performance Studies

The GFDR-PHC algorithm has been implemented on
a SUN 3/260 Workstation. Also, for the sake of perfor-
mance comparison, the GFDR algorithm and the SA
algorithm have been implemented on the same machine.
The relative performances of these three algorithms has
been determined by running each of them for the same
set of test problems. The summary of performance results
is presented in Figs. 3 and 4. In the implementation of
both GFDR and GFDR-PHC algorithms, the optimal
value of ¢ has been taken to be 3 as suggested in [2].

From Fig, 3, we can observe that the solution given by
the GFDR-PHC algorithm is better than that given by the
GFDR algorithm and closer to the solution given by the
simulated annealing algorithm. Fig. 4 reflects the fact that

GFDR algorithm has almost a linear performance with
respect to the number of nets. Fig. 4 also shows that
GFDR-PHC algorithm outperforms the SA algorithm in
computation time requirements, although it takes rela-
tively more time than the GFDR algorithm for identical
problems. The results are in conformance with the discus-
sions of sections 4.

6. Conclusions

In this paper, we have proposed a hybrid placement
algorithm that retains the fast convergence property of a
greedy algorithm, while at the same time yields near-op-
timal solutions using probabilistic hill-climbing steps. Ex-
perimental studies to determine the performance of the
algorithm have been carried out, the results agree with
the predicted performance of the algorithm. Our current
work is directed towards exploring the possibility of ap-
plying the presented idea to other greedy algorithms to
improve the quality of their final solutions.

References

[1]1 E.H.L. Aarts et al,, "Statistical Cooling: A general

approach to combinatorial optimization problems",
. Philips Journal of Research, Vol. 40, No. 4,1985, pp.
193 - 226.

[2] S. Goto, "An efficient algorithm for the two dimen-
sional placement problem in electrical circuit
layout", IEEE Transactions on Circuits and Systems,
Vol. CAS-28, Jan 1981, pp. 12 - 18. -

[3] M. Hanan and J.M. Kurtzberg, "Placement techni-
ques", in Design Automation of Digital Systems Vol.
1: Theory and Techniques, Ed. M.A. Breuer,
Eaglewood Cliffs, New Jersey, Prentice Hall, 1972,
pp. 213 - 282,

[4] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi,
"Optimization by simulated annealing", Science, 13,
May 1983, Vol. 220, No. 4598, pp. 671 - 680.

[5]1 S. Nahar et al., "Simulated annealing and com-
binatorial optimization", in Proc. 23rd Design Auto-
mation Conference, pp. 29-297, 1986.

[6] F. Romeo et al., "Research on simulated annealing at
Berkeley", Proc. Int. Conf. on Comp. Design, pp.
652- 657, Oct. 1984.

[7]1 S. Sahni and A. Bhatt, "The complexity of design
automation problems", in Proc. 17th Design Auto-
mation Conference, pp. 402-411, 1980.

[8] S. Sechen and A. Sangiovanni Vincentelli, "The Tim-
berwolf placement and routing package", in
Proceedings of the 21st Design Automation Con-
ference, pp. 522 - 527, 1984.

0 Primary module

OB OB OLwis

FIG. 1 LEVEL-2 SEARCH TREE

Execution Time in CPU minutes

~

“ Current module
° ' e €-neighbor

hood modules

FIG.2 LEVEL-3 SEARCH TREE

1500 -

1250 GFOR

GFDR— PHC |
SA \

8
o

~3
wn
o

Final Routing Length

o
(=]
(@]

250

0] 1] |
0 20 40 60 80 100 120
No. of Modulus

FIG.3 PERFORMANC OF THE ALGORITHMS WR.T
ROUTING LENGTH SA

— —_ w
e N o 3 R 3 &
T I 1 I | I

GFDR-PHC

o

0 20 40 60 80 100 120
' No.of Nets
Fig.4 Routing time vs. Problem Size

254

