Supplementary Online Material

In this Supplementary material, for an EA RS code constructed from two $\left[n, n-d_{m}+1, d_{m}\right]$ classical RS codes with parity check matrices $H_{b_{1}}$ and $H_{b_{2}}$, we obtain the set P_{O} for various cases of u and v, where $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and $u=v+2\left(d_{m}-1\right)$.

The ranges of i and j such that $(v+i+j) \bmod n=0$ for various cases ${ }^{11}$ based on u and v are provided in Table 1 .

Table 1: Ranges of i and j satisfying $(v+i+j) \bmod n=0$.

Case	Range of \boldsymbol{u} and \boldsymbol{v}	Range of \boldsymbol{i} and \boldsymbol{j}
Case 1	$u<n$	-
Case 2(a)	$n \leq u<2 n$ and $n-v<d_{m}$	$i \in\{1, \ldots, n-v-1\}, j=n-v-i_{m}$
Case 2(b)	$n \leq u<2 n$ and $n-v \geq d_{m}$	$i \in\left\{n-v-\left(d_{m}-1\right), \ldots, d_{m}-1\right\}, j=n-v-i_{m}$
Case 3	$2 n \leq u<3 n$	$i \in\{1, \ldots, n-v-1\}, j=n-v-i_{m}$
	$i \in\left\{2 n-v-\left(d_{m}-1\right), \ldots, d_{m}-1\right\}, j=2 n-v-i_{m}$	

We recall that the position index sets are

$$
\begin{align*}
P_{\mathrm{X}} & =\left\{n-b_{1}-d_{m}+3, \ldots, n-b_{1}+1\right\}, \tag{1}\\
P_{\mathrm{Z}} & =\left\{b_{2}+1, \ldots, b_{2}+d_{m}-1\right\}, \tag{2}\\
P_{\mathrm{O}} & =P_{\mathrm{X}} \cap P_{\mathrm{Z}} . \tag{3}
\end{align*}
$$

From equation (1), when an element s belongs to P_{X}, s satisfies the following inequality:

$$
\begin{aligned}
& n-b_{1}-d_{m}+3 \leq s \leq n-b_{1}+1 \\
\Rightarrow & n-\left(b_{1}-2+\left(d_{m}-1\right)\right) \leq s \leq n-\left(b_{1}-2+1\right) .
\end{aligned}
$$

Thus, the general form of an element s that belongs to P_{X} is

$$
\begin{equation*}
s=n-\left(b_{1}-2+i\right), \text { where } i \in\left\{1, \ldots,\left(d_{m}-1\right)\right\} \tag{4}
\end{equation*}
$$

From equation (2), when an element t belongs to P_{Z}, t satisfies the following inequality:

$$
\begin{gathered}
b_{2}+1 \leq t \leq b_{2}+d_{m}-1 \\
\Rightarrow b_{2}+1 \leq t \leq b_{2}+\left(d_{m}-1\right)
\end{gathered}
$$

Thus, the general form of an element t that belongs to P_{Z} is

$$
\begin{equation*}
b_{2}+j, \text { where } j \in\left\{1, \ldots,\left(d_{m}-1\right)\right\} \tag{5}
\end{equation*}
$$

We note that the value of s and t in equations (4) and (5) are considered modulo n and belong to the range 1 to n.

We next consider an element r that belongs to P_{O} from equation (3). As $P_{\mathrm{O}}=P_{\mathrm{X}} \cap P_{\mathrm{Z}}$, the element r belongs to both P_{X} and P_{Z}. Thus, from equations (4) and (5), for some $i, j \in$ $\left\{1, \ldots,\left(d_{m}-1\right)\right\}$, we obtain

$$
\begin{align*}
& r=n-\left(b_{1}-2+i\right) \text { and } r=b_{2}+j, \\
\Rightarrow & r=n-\left(b_{1}-2+i\right)=b_{2}+j, \\
\Rightarrow & \left(b_{1}+b_{2}-2\right)+i+j=n . \tag{6}
\end{align*}
$$

As the general form of the elements of P_{X} and P_{Z} in equations (4) and (5) are considered modulo $n, r=\left(n-\left(b_{1}-2+i\right)\right)$ and $r=\left(b_{2}+j\right)$ are also considered modulo n. As $v=\left(b_{1}+b_{2}-2\right) \bmod n$, the equation (6) is same as the condition $(v+i+j) \bmod n=0$ obtained in the paper to find the value of n_{e}. Thus, i and j in equation (6) belong to the ranges in Table 1 that was obtained using the condition $(v+i+j) \bmod n=0$.

We note that the elements in the set P_{O} are modulo n and range from 1 to n. We next obtain the set P_{O} for the various cases in Table 1 by obtaining the range of r based on the ranges of i
and j as follows:

Case 1:

As $n_{e}=0$, there are no entangled qudits, and also there are no overlaps from Table 1. Thus, $P_{\mathrm{O}}=\varnothing$.

Case 2(a):

From Table 1, the range of i and j is from 1 to $(n-v-1)$. In equation (4), considering $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of i to be from 1 to $(n-v-1)$, we obtain that r satisfies the following inequality:

$$
\begin{align*}
& n-\left(b_{1}-2+(n-v-1)\right) \leq r \leq n-b_{1}+1, \\
& n-\left(b_{1}-2+\left(n-\left(b_{1}+b_{2}-2\right)-1\right)\right) \leq r \leq n-b_{1}+1, \\
\Rightarrow & b_{2}+1 \leq r \leq n-b_{1}+1 \tag{7}
\end{align*}
$$

In equation (5), considering $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of j to be from 1 to ($n-v-1$), we obtain that r satisfies the following inequality:

$$
\begin{align*}
& b_{2}+1 \leq r \leq b_{2}+(n-v-1), \\
& b_{2}+1 \leq r \leq b_{2}+\left(n-\left(b_{1}+b_{2}-2\right)-1\right) \text {, } \\
& \Rightarrow b_{2}+1 \leq r \leq n-b_{1}+1 \text {. } \tag{8}
\end{align*}
$$

From equations (7) and (8), the element r that belongs to both the sets P_{X} and P_{Z} also belongs to the range from $\left(b_{2}+1\right)$ to $\left(n-b_{1}+1\right)$. Thus, $P_{\mathrm{O}}=\left\{b_{2}+1, \ldots, n-b_{1}+1\right\}$.

Case 2(b):
From Table 1, the range of i and j is from $\left(n-v-\left(d_{m}-1\right)\right)$ to $\left(d_{m}-1\right)$. In equation (4), considering $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of i to be from $\left(n-v-\left(d_{m}-1\right)\right)$ to
$\left(d_{m}-1\right)$, we obtain that r satisfies the following inequality:

$$
\begin{align*}
& n-\left(b_{1}-2+\left(d_{m}-1\right)\right) \leq r \leq n-\left(b_{1}-2+\left(n-v-\left(d_{m}-1\right)\right)\right), \\
& n-\left(b_{1}-2+\left(d_{m}-1\right)\right) \leq r \leq n-\left(b_{1}-2+\left(n-\left(b_{1}+b_{2}-2\right)-\left(d_{m}-1\right)\right)\right), \\
\Rightarrow & n-d_{m}-b_{1}+3 \leq r \leq b_{2}+d_{m}-1 . \tag{9}
\end{align*}
$$

In equation (5), considering $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of j to be from $(n-v-$ $\left.\left(d_{m}-1\right)\right)$ to $\left(d_{m}-1\right)$, we obtain that r satisfies the following inequality:

$$
\begin{align*}
& b_{2}+\left(n-v-\left(d_{m}-1\right)\right) \leq r \leq b_{2}+\left(d_{m}-1\right) \\
& b_{2}+\left(n-\left(b_{1}+b_{2}-2\right)-\left(d_{m}-1\right)\right) \leq r \leq b_{2}+\left(d_{m}-1\right) \\
\Rightarrow & n-d_{m}-b_{1}+3 \leq r \leq b_{2}+d_{m}-1 \tag{10}
\end{align*}
$$

From equations (9) and (10), the element r that belongs to both the sets P_{X} and P_{Z} also belongs to the range from $\left(n-d_{m}-b_{1}+3\right)$ to $\left(b_{2}+d_{m}-1\right)$. Thus, $P_{\mathrm{O}}=\left\{n-d_{m}-b_{1}+3, \ldots, b_{2}+d_{m}-1\right\}$.

Case 3:

From Table 1, there are two ranges of i and j as follows:

1) The first range of i and j is from 1 to $n-v-1$. In equation (4), considering $v=$ $\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of i to be from 1 to $n-v-1$, we obtain that r satisfies the following inequality:

$$
\begin{align*}
& n-\left(b_{1}-2+n-v-1\right) \leq r \leq n-b_{1}+1 \\
& n-\left(b_{1}-2+n-\left(b_{1}+b_{2}-2\right)-1\right) \leq r \leq n-b_{1}+1, \\
\Rightarrow & b_{2}+1 \leq r \leq n-b_{1}+1 \tag{11}
\end{align*}
$$

In equation (5), considering $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of j to be from 1 to
$n-v-1$, we obtain that r satisfies the following inequality:

$$
\begin{align*}
& b_{2}+1 \leq r \leq b_{2}+n-v-1, \\
& b_{2}+1 \leq r \leq b_{2}+n-\left(b_{1}+b_{2}-2\right)-1, \\
& \Rightarrow b_{2}+1 \leq r \leq n-b_{1}+1 . \tag{12}
\end{align*}
$$

From equations (11) and (12), the element r that belongs to both sets P_{X} and P_{Z} also belongs to the range from $\left(b_{2}+1\right)$ to $\left(n-b_{1}+1\right)$. Thus,

$$
\begin{equation*}
\left\{b_{2}+1, \ldots, n-b_{1}+1\right\} \subset P_{\mathrm{O}} \tag{13}
\end{equation*}
$$

2) The second range of i and j is from $\left(2 n-v-\left(d_{m}-1\right)\right)$ to $\left(d_{m}-1\right)$. In equation (4), considering $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of i to be from $\left(2 n-v-\left(d_{m}-1\right)\right)$ to $\left(d_{m}-1\right)$, we obtain that r satisfies the following inequality:

$$
\begin{align*}
& n-\left(b_{1}-2+\left(d_{m}-1\right)\right) \leq r \leq n-\left(b_{1}-2+\left(2 n-v-\left(d_{m}-1\right)\right)\right), \\
& n-\left(b_{1}-2+\left(d_{m}-1\right)\right) \leq r \leq n-\left(b_{1}-2+2 n-\left(b_{1}+b_{2}-2\right)-\left(d_{m}-1\right)\right), \\
\Rightarrow & n-d_{m}-b_{1}+3 \leq r \leq b_{2}+d_{m}-1, \tag{14}
\end{align*}
$$

In equation (5), considering $v=\left(b_{1}+b_{2}-2\right) \bmod n$ and the range of j to be from $\left(2 n-v-\left(d_{m}-1\right)\right)$ to $\left(d_{m}-1\right)$, we obtain that r satisfies the following inequality:

$$
\begin{align*}
& b_{2}+\left(2 n-v-\left(d_{m}-1\right)\right) \leq r \leq b_{2}+\left(d_{m}-1\right), \\
& b_{2}+2 n-\left(b_{1}+b_{2}-2\right)-\left(d_{m}-1\right) \leq r \leq b_{2}+d_{m}-1, \\
\Rightarrow & 2 n-d_{m}-b_{1}+3 \leq r \leq b_{2}+d_{m}-1, \\
\Rightarrow & n-d_{m}-b_{1}+3 \leq r \leq b_{2}+d_{m}-1, \tag{15}
\end{align*}
$$

where $\left(n-d_{m}-b_{1}+3\right)$ is obtained from $\left(2 n-d_{m}-b_{1}+3\right)$ by considering modulo n as the element $r \in P_{\mathrm{O}}$ is considered modulo n.

From equation (14) and (15), the element r that belongs to both the sets P_{X} and P_{Z} also belongs to the range from $\left(n-d_{m}-b_{1}+3\right)$ to $\left(b_{2}+d_{m}-1\right)$. Thus,

$$
\begin{equation*}
\left\{n-d_{m}-b_{1}+3, \ldots, b_{2}+d_{m}-1\right\} \subset P_{\mathrm{O}} \tag{16}
\end{equation*}
$$

Thus, for Case 3, from equations (13) and (16), the set $P_{\mathrm{O}}=\left\{b_{2}+1, \ldots, n-b_{1}+1, n-\right.$ $\left.d_{m}-b_{1}+3, \ldots, b_{2}+d_{m}-1\right\}$.

References and Notes

[1] Nadkarni, P. J., Garani, S. S.: Entanglement-Assisted Quantum Reed-Solomon Codes. IEEE Information Theory Applications Workshop, San Diego (2019).

