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model. In particular, the resulting signal subspace fills up the whole 
M-dimensional space, where M is the array size, and the resulting 
covariance matrix is not guaranteed to be nonnegative definite. As 
a result of the spreading of the signal subspace, subspace-based 
methods, like MUSIC, induce bias in the DOA estimates. We fur- 
ther show that complete decorrelation is not possible with this 
method even if we make the array size infinitely large. 

11. PROBLEM STATEMENT 

Assume that two narrow-band correlated (partially or fully) 
sources impinge on a linear array consisting of M equispaced iso- 
tropic sensors, and the directions of arrival (DOA's) of these 
sources are ed and B,T with respect to the array normal. Let the sig- 
nals emitted by these sources be denoted by d ( r )  and s ( t ) ,  respec- 
tively, and the sensor noise v(r) be assumed uncorrelated from sen- 
sor to sensor and independent of the signals. Assuming that the 
signals and the noise are zero mean and stationary random pro- 
cesses, we can express the asymptotic array covariance matrix as 

where 

and 

a,,,, = u;,I. (4) 

Here, u i ,  uf and u:, denote the signal and noise powers, p denotes 
the coefficient of correlation between d ( t )  and s ( r )  and + denotes 
Hermitian transpose. The direction vector ~ ( 0 , )  is given by a(B,) = 
[ I ,  exp [ - j w o A / ~  sin B , ] ,  . . . , exp [- j ( M  - l ) w o A / c  sin BJT, 
where A is the interelement spacing, wo is the center frequency of 
the sources, and c is the velocity of propagation of the plane waves. 

Now consider the noise-free covariance matrix (@ - 9!,, ) .  We 
know that the column space of this matrix is the signal subspace 
which is two-dimensional in the present case if p # I .  Further, 
this matrix is not Toeplitz because of the presence of cross-corre- 
lation matrices ads and GS(/, and it reduces to Toeplitz form when 
these matrices vanish, which would be the case if the impinging 
signals are uncorrelated. 

In redundancy averaging, we average all the elements along a 
diagonal and replace each element in the diagonal by its average, 
and we repeat this for all the diagonals. In this correspondence, we 
address the following problems: 1 )  what would be the eigenstruc- 
ture of the resulting matrix after redundancy averaging? 2) will the 
cross-correlation matrices 9d, and aJd vanish after redundancy av- 
eraging? 

111. ANALYSIS OF REDUNDANCY AVERAGING METHOD 

Consider the noise-free covariance matrix (@ - 91,,,). From the 
assumed signal and array models, the mnth element of this matrix 
is given by 

[a - * . , , l , ~ , ,  = a: exp [ j w o ( n  - m ) ~ ~ ]  + u: exp [jw,(n - ~ ) T , I  

+ p%ud exp {.bol(n - 1)T, - (m - 1)T,1J 

+ p*udu, exp { -jw,[(m - 1)T, - ( n  - I)&]} 

( 5 )  

where Td = (A/c)  sin Bd and T, = (A/c)  sin 8, 

Let the Toeplitz matrix obtained after performing the redun- 
dancy averaging on [@ - +.,.,.I be denoted by 9.T. We can then show 
that 

where @ ( I )  is given by 

0 5 Is ( M  - 1) (7) 

with 

a = u,ud(p* exp [-jw,(M - I)(T, - T d ) / 2  

+ P exp b o ( M  - 1)(T, - Td)/2). (8) 

We note from (7) that when a goes to zero, 0 (1) reduces to the 
result that we would obtain in the uncorrelated case. Now, consider 
the expression for a (cf. (8)). It can be easily verified that (Y goes 
to zero when 

indicating that for certain combinations of p ,  ed, B, ,  and M, redun- 
dancy averaging yields complete decorrelation of the impinging 
signals; a similar observation was also made by Godara 161. We, 
however, note that for a given signal scenario and the array size, 
there may be at most one value of n for which (9) is satisfied. In 
other words, for a given array size and the correlation coefficient, 
the combinations of DOA's that satisfy (9) form a discrete set with 
countably infinite number of points. It then follows that the com- 
binations of DOA's which do not satisfy (9) form a continuous set 
excluding these discrete points implying that in almost all the cases, 
this condition will not be met. Thus, in practice, this method does 
not achieve complete decorrelation of the impinging signals. We 
now show how the resulting signal subspace is inconsistent with 
that of the underlying signal model. 

Note that the column space of 9, is the resulting signal subspace 
and its dimension is equal to the rank of 9,. By performing ele- 
mentary row operations' on the matrix G r ,  we can get an upper 
triangular matrix as follows: 

'Elementary row operations preserve the rank of a matrix 
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where 
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and so on. 
Recall that the rank of a triangular matrix is equal to or more 

than the number of nonzero entries on the main diagonal [7]. We 
now investigate the situations under which all the diagonal terms 
are nonzero. 

Consider the expression for P ( / )  (cf. ( 7 ) ) .  For any set of pre- 
assigned values of M, woT,, p ,  uz and ui, p ( / )  is a rational poly- 
nomial in elwoTd. Substituting p = elwnr'' and (Y (cf. (8)) in (7), and 
simplifying, we get 

I )  (12) 

where K ,  ( r )  and K2 ( r )  are given by 

exp [-j(r - M + l)oOT,], K2(r) = ___ 
( M  - I )  
P* UY ad I 

\ M 5 r 5 2(M - 1) - 1. 

We observe the following from (11) and (12): i) The order of 
numerator polynomial of the diagonal term, d,,, n = 1, 2 ,  . . . , 
M, is, 2(M - 1)2'"- I ) .  ii) The poles of d,, are the zeros of 
d l n - ~ ) ( n - ~ ) ,  d(,-2)ln-~)r . . . and dIl.  

Thus, the number of zeros of d l l  to d,,,, is at most C,"= I 2(M - 
1)2'"- 1 )  = 2(M - 1)(2M - 1). In other words, the number of val- 
ues of p at which one o r  several of the diagonal terms become zero 
is finite. What this means is the following. 

For given values of the array size M, the correlation coefficient 
p ,  signal powers ui and u:, and the DOA of one source O r ,  the 
number of values of ed for which the matrix @r may not attain full 
rank is finite implying that for all other values of Odr which consti- 
tute a continuous set (excluding a finite number of discrete points), 
it attains full rank. Thus, the resulting signal subspace (column 
span of Q T )  fills up the whole M-dimensional space in almost all 
the cases. Consequently, the space spanned by the eigenvectors 
corresponding to the (M - D )  least eigenvalues of (@T + a;[) does 
not represent the true noise subspace. Hence, a MUSIC-like algo- 
rithm, when applied to this covariance matrix, gives biased DOA 
estimates. 

To illustrate the effect of redundancy averaging on the eigen- 
structure of the resulting matrix, we considered a scenario with two 
equipower (at = ui = 10) narrow-band coherent ( p  = 1) sources 

~ 

located at 0" and lo" ,  and a linear array with 4 isotropic sensors 
placed half-wavelength apart. 

Table I shows the ordered eigenvalues of the noise-free covari- 
ance matrix under different situations. For the purposes of com- 
pleteness, we also included the eigenvalues that result when the 
sources are uncorrelated. Note that the redundancy averaging 
stretches the dimensionality of the signal subspace to 4 and the 
resulting matrix is indefinite; the possibility of the second phenom- 
enon was also noted in [5], but in the context of finite data. 

The MUSIC algorithm (spectral version) was applied to the above 
example, taking the sensor noise power as unity (uf, = 1) and the 
spatial spectrum obtained with both methods, one using spatial 
smoothing with 2 subarrays and the other using redundancy aver- 
aging. This is plotted in Fig. 1 .  Note the bias in the DOA estimates 
obtained with the redundancy averaging method. 

We now investigate whether perfect decorrelation is guaranteed 
if the array size is made infinitely large. In this context, we use 
Frobenius norm (F-norm) of the cross-correlation part of @ T  as a 
measure of the correlation. The motivation for the use of this mea- 
sure is as follows. 

Recall that the cross-correlation matrices, @dc and @cd (cf. (3)), 
vanish when the correlation coefficient p is zero, and the redun- 
dancy averaging affects only these matrices since the autocorrela- 
tion matrices, add and (cf. (2)), are already in Toeplitz form. 
Further, we can show that 

(with \/XI1 denoting the squared F-norm of the matrix X ) ,  which 
clearly shows that the F-norm of the sum of the cross-correlation 
matrices is proportional to the correlation coefficient. 

Now, consider the F-norm of the sum of the cross-correlation 
matrices that result with redundancy averaging. Let (@dr + @,& 
denote this sum. From (5) and (6), it follows that the third term in 
( 7 )  represents each element on the Ith diagonal of (@dA + @rd)T .  

We can then show that 

M- 2  1 + 2 ) .  

(16) 

We note the following from (16): 
i) When the angular separation of the sources is very small com- 

pared to the beamwidth of the array, the F-norm is approximately 
equal to 




