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The interactions between residues in a protein tertiary structure can be studied effectively
using the approach of protein structure network (PSN). A PSN is a node-edge
representation of the structure with nodes representing residues and interactions
between residues represented by edges. In this study, we have employed weighted
PSNs to understand the influence of disease-causing mutations on proteins of known 3D
structures. We have used manually curated information on disease mutations from
UniProtKB/Swiss-Prot and their corresponding protein structures of wildtype and
disease variant from the protein data bank. The PSNs of the wildtype and disease-
causing mutant are compared to analyse variation of global and local dissimilarity in the
overall network and at specific sites. We study how amutation at a given site can affect the
structural network at a distant site which may be involved in the function of the protein. We
have discussed specific examples of the disease cases where the protein structure
undergoes limited structural divergence in their backbone but have large dissimilarity in
their all atom networks and vice versa, wherein large conformational alterations are
observed while retaining overall network. We analyse the effect of variation of network
parameters that characterize alteration of function or stability.
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INTRODUCTION

The amino acid sequence determines the protein 3-D structure (Anfinsen, 1973) which is related to
its function. An alteration in the amino acid sequence can bring about changes in the folding and
stability of the protein (Lorch et al., 1999; Lorch et al., 2000), interaction of the protein with other
molecules (Rignall et al., 2002; Ung et al., 2006) and change in functional levels (Tiede et al., 2006) or
overall function of the protein as well. A mutation in the amino acid sequence may alter the structure
of a protein but it does not necessarily alter its function, although, the mutation at specific sites such
as conserved residues can bring about a change in the structure and function of the protein.

In humans, the most frequent genetic variants are single nucleotide polymorphisms (SNPs) which
have been studied extensively (Buetow et al., 1999; Cargill et al., 1999; Collins et al., 1999; Halushka
et al., 1999). SNPs could be non-synonymous which bring about a change in the amino acid
sequence. Several such genetic variants are known to cause mutations in their gene product and their
information is available in resources such as the SNPdb (Sherry et al., 2001) and 1000 Genomes
project (Auton et al., 2015). Some of the mutations in a protein are known to enhance the
susceptibility or predisposition to a disease and are referred to as disease causing mutations. A
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few resources are available that map the gene variants to the
diseases they may cause. ClinVar is a public archive mapping
sequence variants and human phenotype (Landrum et al., 2018),
COSMIC is a large catalogue of mutations associated with cancer
(Forbes et al., 2017) and SwissVar is a one stop database for the
easy retrieval of amino acid polymorphisms and the phenotype
information (Mottaz et al., 2010). All the information from the
SwissVar is now directly available via the UniProt knowledgebase
(Bateman, 2019). However, specific information of the gene
variants is compiled as a catalogue and is available on the
Humsavar knowledge base which is an index of manually
curated human polymorphisms and disease mutations.
(https://www.uniprot.org/docs/humsavar).

Mutations in the protein sequence can alter the structure that
is natively conferred by the sequence of the wildtype (Taverna
and Goldstein, 2002; Tokuriki and Tawfik, 2009). In several
scenarios the site of mutation is distant from the site of
function, and still one observes a loss of function or alteration
in functional levels (Mitternacht and Berezovsky, 2011; Yang
et al., 2016). Although, the conformation of the mutant protein
may be highly similar to the conformation of the wildtype, there
could be alterations in their topologies at sites distant from the
site of mutation (Rajasekaran et al., 2017). This concept of
alteration of the structure at distant sites from the site of
perturbation has been well documented under the subject of
allostery (Gunasekaran et al., 2004; Weinkam et al., 2013;
Naganathan 2019). Without much change in the overall
topology of the protein an allosteric signal can transmit the
effect of a perturbation to a different site in the protein
structure (Guarnera and Berezovsky, 2019a; Guarnera and
Berezovsky, 2019b). The internal protein structural network
defines the connectivity between atoms/residues (Vijayabaskar
and Vishveshwara, 2010). When perturbations are bought into
the system such as disease-causing mutations, it is seen that the
variation in the connectivity of the elements within the system
brings about allosteric changes in functional sites and elsewhere
(Dubay et al., 2015; Guarnera et al., 2017; Tan et al., 2019; Tee,
Guarnera and Berezovsky, 2019; Guarnera and Berezovsky,
2020).

In this study, we use the Humsavar knowledge base to identify
disease-causing mutations in proteins and analyse the variability
in protein structural networks between wildtype and disease-
causing variant. We explore the possibility of mutations at a given
site that can affect the structural network at a distant site which
may be involved in the function of the protein.

MATERIALS AND METHODS

A Dataset of Disease-Causing Variants in
Humans
The disease variant information provided in the Humsavar
knowledge base is a manually curated subset of UniProtKB/
Swiss-Prot protein data for human polymorphisms and disease
mutations with their amino acid variations imported from
Ensembl variation databases. Humsavar knowledge base has
been screened to identify proteins that have X-ray crystal

structures of the wildtype and associated disease-causing
mutant available on the protein databank (PDB) (Berman
et al., 2000; Berman et al., 2002). Of the 2,943 proteins
reported on the knowledge base having disease causing
variants, 1,316 of them have at least one crystal structure
available. In the protein structural networks involved in our
analysis we are looking into the geometry at local sites which
are closer than 4.5 Å while constructing all atom networks (Yao
et al., 2019). Hence, in our data set for analysis we have applied a
resolution cut-off criterion of 3Å. Additional condition of a
difference in refinement factors (Rfree−Rwork) of no more than
5% was also used. Protein structures available in the free form,
without a bound ligand are chosen by screening them using the
BioLip database (Yang et al., 2013). Disease cases are identified by
pairwise alignment of the sequences obtained from uniport and
PDB entries to obtain unique chains of disease-causing mutant
and wildtype structures having the best resolution. 74 cases with
crystal structures of the wildtype and corresponding disease-
causing mutant are found. Details of these protein structure
pairs are listed in Supplementary Table S1.

All Atom - Protein Structure Network Model
The Protein Structural Network (PSN) models residues as nodes
and constructs edges between nodes that satisfy the proximity
criteria. Atoms from a pair of non-adjacent residues that fall
within a distance cut-off of 4.5 Å are considered to make atom
contact and therefore form an edge between the corresponding
residues in the PSN (Brinda and Vishveshwara, 2005). The
network model is an all-atom based, weighted and non-
directed graph where the edge weight is given by:

Edgeweight(Iij) � number of atom contacts between the residues i, j
Highest number of atom contacts between the amino acids i, j

The highest number of atom contacts between any pair amino
acids is generated from analysing all the structures in the dataset
of high-resolution crystal structures. In this paper, the Cα-atom
position is used to represent the position of a node corresponding
to a residue and edges are represented using lines. A hub is a node
in the network that is well connected to several other nodes
(Cohen and Barabási, 2002). We identify the minimum number
of edges necessary to define at least one hub in all the structures of
the disease cases and hence defined any node in the PSN having
equal to or greater than 11 edges as a hub. We represent the hubs
using spheres.

Network Dissimilarity Score
The network dissimilarity score (NDS) iis used to compare two
networks with identical number of nodes to generate a
difference score that quantifies the dissimilarity in their
spectra and the weight of edges (Gadiyaram et al., 2017;
Ghosh et al., 2017). The adjacency matrix is a representation
of a network which is generated as described in the All Atom -
Protein Structure Network Model. Let us say we are comparing
the networks of a proteins A and B. The adjacency matrices of
PSN A and PSN B are compared to generate the edge difference
score (EDS).
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EDS � ||A − B||F�����������������������������(∑ edge weightA  × ∑ edge weightB)√

The edge difference score captures the difference in edge
weights between corresponding edges of the networks. A
Laplacian of the adjacency matrix is derived before their
spectra (eigen values and eigen vectors) are generated. The
spectral information is used in computing the
correspondence score (CRS) and eigen value weighted cosine
scores (EWCS).

CRS � 1 − 6∑ (Index EvecA − Index EvecB)2 
n(n2 − 1)

Where, n is number of nodes in the PSN. The index difference of
eigen vectors, once arranged in ascending order of their eigen
values, is used in the numerator.

EWCS � ∑(1 − cosine(θij))2|1 − EvalA||1 − EvalB|
∑|1 − EvalA||1 − EvalB| 

where, EvalA and EvalB are eigen values of PSN A and PSN B. The
cosine between a pair of nodes is generated using the ratio
between the dot product of their eigenvectors and the product
of their magnitudes. The spectral comparison scores capture the
local and global clustering of the nodes in the network. The
components are formulated in computing the NDS:

NDS �
�����������������������
EDS2 + EWCS2 + (1 − CRS)2

√

An in-house python program is used to calculate the NDS in
any pair of networks.

The NDS between the PSNs of the wildtype and mutant chain
is generated.

NDS ranges from 0 (indicating absolute congruency/
identical networks) to a score of √3 (indicating absolute
dissimilarity to the extent of no match between the
networks). TM-align tool is employed to generate structure
based sequence alignment and structural difference
information (Zhang and Skolnick 2005).

Evaluating the Effect of Allostery
In order to study the effect of a perturbation such a disease-
causing mutation on the structure of protein, the AlloSigMA
server is employed. The server implements a structure-based
statistical mechanical model of allostery, abbreviated SBSMMA
(Guarnera and Berezovsky, 2016), to quantify the allosteric
response that is communicated due to the effect of a
perturbation like a molecular binding event or a mutation.
The wildtype crystal structure of the protein being analysed is
submitted as input to the server and an UPmutation perturbation
is introduced. In this case, An UPmutation simulates the effect of
mutation to a bulkier residue at the site of the disease-causing
mutation. Crystal structures that had missing residues were
completed using SWISS-MODEL (Guex and Peitsch, 1997).
The AlloSigMA server results in an output of the response
free energy of each residue that is accountable for the
allosteric signal initiated by the mutation.

RESULTS

The perturbation in the structure of a protein due to disease
causing mutations can be studied extensively using their native
structural topologies (Ambrus et al., 2015; Ambrus et al., 2016;
Szabo et al., 2018). It is understood that the resulting structural
change manoeuvres the function or functional levels of the
protein that is related to the onset of a disease. Here we study
such variations in terms of structural networks of wildtype and
disease related mutant. For the analysis, we identified proteins
with disease-causing mutational variants from the Humsavar
database and their corresponding wildtype and mutant crystal
structures from PDB. We identified crystal structure variants
corresponding to 74 disease cases and used those structures
solved with the best resolution. The effect of mutations on
their structure and network is analysed.

Analysis of Protein Structural Network
Protein structure networks are a node-edge representation of the
protein structure that efficiently displays the connectivity
between different elements of their tertiary structure. Several
studies in the past have made use of protein structure
networks in studying the connectivity between residues based
on features such as their spatial proximity and energy of
interaction. We have used an all-atom network model to
generate structural network information at the residue level
with edges made between residues that are spatially proximal.
Two residues are linked with an edge if a pair of their atoms is
situated within a distance of 4.5 Å. The strength of the edge
depends on the number of such atom pairs between the residues
that are forming an edge. We have discussed the criteria for
defining an edge in the Methods section. We generated the all-
atom protein structural networks for all the individual chains of
the wildtype and mutant protein structures in our dataset.

The alteration of the connectivity that arises as a result of
mutation is studied by comparing the PSNs of the wildtype and
the corresponding mutant. The variation in their connectivity is
observed by segregating the edges into those that are retained and
those that are unique to wildtype or mutant structures
(Supplementary Figure S1). This means that the edges found
to be unique to the wildtype structure are lost in the mutant.
Similarly, those edges that are unique to the mutant structure are
considered to be gained. The information of edges lost and gained
in the wildtype PSN and mutant PSN is presented in
Supplementary Figure S2A. Every wildtype and mutant
structure in the dataset have at least one edge that is unique
to it. Of the disease cases that are studied in the dataset, in 28 cases
the wildtype has more unique edges than the mutant and in 45
disease cases the mutant has more unique edges. This suggests
that in a majority of the disease cases more edges are gained than
those that are lost. Only in the case of the cAMP-dependent
protein kinase α catalytic subunit that is responsible for primary
pigmented nodular adrenocortical disease (by mutation L206R) it
is found that the number of edges lost in the wildtype is equal to
the number of edges that are gained in the mutant. The wildtype
and mutant in this disease case have 1,264 edges, 1,218 of these
are retained while the remaining are lost and gained.

Frontiers in Molecular Biosciences | www.frontiersin.org March 2021 | Volume 7 | Article 6205543

Prabantu et al. Disease-Causing Mutation Alters Structural Network

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


The information stored in the protein structure networks are
predominantly in their edges and their connectivity. In order to
study how well each element of the PSN is connected, we
employed the use of a few basic network parameters such as
the degree and strength of the nodes in the network. The
number of edges that connect to a node constitutes its degree
and the sum of all the edge weights connecting to a node spans
the strength of each node. It is possible for a node to not form an
edge with any other node; such a node is isolated in the network.
Alternatively, a node can be well connected with other nodes of
the network and form hubs. Hubs are elements in the network
that are generally crucial since they are well connected to many
other nodes. Perturbations in these nodes can have a more
significant effect on the network than those nodes that are not
hubs. Nodes from the PSNs in the dataset are found to have a
maximum degree ranging from 11 to 18 as shown in the
Supplementary Figure S3, hence for this analysis we have
chosen to consider any node with a degree 11 or higher as a
hub node, this ensures that each structure in our dataset is
composed of at least one hub.

We observe variability in the number of hubs between the
wildtype and mutant crystal structures (Supplementary
Figure S4). Hubs that are retained in between the
conformers are an indication of preserved local networks
and retained structure around them. Hubs that are unique
to the wildtype and mutant are also identified. Those hubs that
are specific to the wildtype structure are lost in the mutant
structure and the hubs unique to the mutant are gained. In 37
disease cases the number of hubs lost in the wildtype is greater
than the number of hubs that are gained in the mutant and in
28 disease cases the number of hubs gained in the mutant are
greater than those lost in the wildtype. In nine other disease
cases the number of hubs unique to the wildtype and mutant
are equal. There is no loss or gain of hubs in three disease cases.
The highest number of hubs lost in wildtype structures is 32
and the highest number of hubs gained in the mutants is 23.
The number of hubs unique to the wildtype structure and the
number of hubs unique to the mutant are shown as a scatter in
the Supplementary Figure S2B. The distribution of the
number of hubs in the structures of our dataset can be
found in the Supplementary Figure S4, S5. The functional
relevance of the change in number of hubs has been discussed
in detail for specific cases in a later section.

Local Site Variation of Structural and
Network Parameters
Change in degree of a residue between wildtype and the mutant
suggests loss or gain of edges. The strength of an edge (edge weight)
that connects two nodes may also change in the mutant. It is
expected that a node corresponding to a residue which is buried in
the protein structure has high degree and strength since they are in
the proximity of several other nodes of the network. We have
analysed the variation of network and structure parameters across
the topologically equivalent residues and nodes. Since the focus of
this work is on the mutation site that brings about the perturbation
in the network and structure of the protein that may affect the

functional sites, we have focused on studying the variability at these
local sites in detail.

The change in degree and strength at the site of mutation
reflects the change in local network at the site of perturbation. The
change in sidechain atoms of the residue at the site of mutation
plays a significant role in its degree that may or may not change in
the PSN. For example, the highest gain in degree is in the case of
apoptosis inducing factor where a glycine is mutated to a
glutamate residue and the degree increases by 5. Likewise,
when a phenylalanine is mutated to a serine in the case of
Lysine-specific histone demethylase the degree at the site of
mutation reduces by 7. The information of the change in
degree and solvent accessibility at the site of mutation is
shown in Supplementary Figure S5. In the dataset we find
that at 11 mutation sites the mutated residue undergoes
change in solvent accessibility. It is more common to see the
mutation site buried in the wildtype whereas in the mutant state
they are exposed since at 9 of the 11 sites we observe a buried
residue get exposed in the mutant.

Using the information of active site and binding sites
available in the Uniport database we identified 151 functional
sites in the dataset and analysed the change in network
parameters at these sites. The information of the change in
degree at the functional site is shown in Supplementary Figure
S6. No change in degree is observed at majority of the functional
sites. The variation of degree at the functional site (ranges from
loss of four edges to gain of four edges) is lower as compared to
the variation of degree at the mutation sites (ranges from loss of
seven edges to gain of five edges). In the dataset, only in the case
of Septin-12 protein it is found that a mutation occurs at a site of
function, where a threonine that is known to bind to GTP
(Castro et al., 2020) is mutated to methionine (T89M) and the
degree at the site changes from six in the wildtype to two in the
mutant.

Global Structural and Network Variation in
the Crystal Conformers
The overall variability in the crystal structures when the protein
undergoes a disease-causing mutation has been studied by
comparing their structures and networks separately. The
structural difference between the conformers is calculated
using the root mean square deviation (RMSD) that measures
the divergence in the backbone topologies. In order to quantify
the variation in the protein structure networks (PSN), a spectral
comparison tool that is referred to as the NDS (network
dissimilarity score) is used. The spectral comparison method
quantifies the extent of dissimilarity between two networks with
identical number of nodes. Only those residues that are
topologically equivalent are identified by structural alignment
and used for the comparison. All the structural and network
comparison scores between the wildtype and mutant crystal
structures in the dataset is generated using information of
their coordinates. Figure 1 shows the scatter plot between Cα-
atom RMSD and all-atom NDS.

The scatter of comparison scores suggests that the variation in
the network is not strongly correlated to the variation of their
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structural topologies. The mean and standard deviation in the
scores is plot on the scatter using red and blue (dotted) lines
respectively. The mean NDS of the disease cases is 0.175 and the
mean RMSD is 0.92 Å. A dataset of all pairs of available wildtype
structures is used as a control in analysing the significance of the
observed variability. In the control dataset the mean NDS is 0.12
and the mean RMSD is 0.57 Å which is relatively lesser than the
variability in the disease cases (Supplementary Figure S7). It
should be noted that RMSD and NDS plotted correspond to Cα
positions and all atoms (including sidechains) respectively. Near
absence of correlation in Figure 1 also conveys the message that
there are examples with Cα positions well retained between
wildtype and the mutant while the sidechain orientations are
altered. There are also cases where the sidechain connectivity in
networks are highly similar between wildtype and the mutant, but
Cα trajectory has undergone a significant change.

Specific Cases of Network and Structure
Variability
In the global analysis of protein structure and network variability,
we find several cases where the structural topology (Cα positions)
is preserved but the all-atom network have changed considerably
and the vice versa. In the first type of cases, the network variability
is high, NDS is greater than the mean and standard deviation,
even though the structures are well superimposed with lower than
mean RMSD. In the second type of cases, the networks are not
strongly dissimilar i.e. NDS lower than the mean of the dataset,
but the structural difference suggests that they might not be as

well preserved as their networks with RMSD greater than the
mean and standard deviation of the dataset. Three disease cases
from the dataset that fall into each of these categories are studied
in detail.

Network Variable Cases
Disease Mutation in Medium-Chain Specific Acyl-CoA
Dehydrogenase (MCAD) Alters Local Network at the
Functional Site
The MCAD mitochondrial protein is known to catalyse the first
step of fatty acid beta oxidation in humans. The functional
protein is a homo-tetrameric complex with subunits bound to
FAD molecules (Lee et al., 1996). The coding gene undergoes a
single nucleotide polymorphism (A985G) that results in the
protein mutant (K304E) which leads to the disease state
(Gregersen et al., 1993). The protein undergoes a significant
variation in the all-atom network (NDS 0.248), however the
Cα RMSD is quite low (0.46Å). 67 edges and five hubs are
lost in the wildtype PSN whereas 83 unique edges and 17
hubs are gained in the mutant (Supplementary Figure S8). It
is observed that mutational site is far away from the site of
function (S142, N191, G377, and R388). The site of function in
the protein is shown in Figure 2A, the corresponding nodes and
their edges in the wildtype PSN and mutant PSN are shown in
Figures 2B,C respectively. Due to the rearrangement of edges at
the nodes corresponding to functional site residues as shown in
Figure 2, there is change in the local network at the functional
site. It is reported that the mutation (K304E) leads to a deficiency
of the protein that can result in death at infancy.

FIGURE 1 | A scatter plot comparing the structural topology (Cα positions) and PSN of the wildtype and mutant using RMSD and NDS respectively. The
comparison scores for each disease case are plot on the scatter. It is found that the structural divergence and network dissimilarity do not share strong linear
relationship.
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Porphobilinogen Deaminase Undergoes Disease
Mutation That Leads to Loss of Essential Edges and
has Reduced Thermostability
Porphobilinogen deaminase is a transferase that catalyses the
synthesis of hydroxymethylbilane which is a precursor for heme
and porphyrin biosynthesis. The disease mutant has defects of
heme biosynthesis, which is mainly due to the enhanced
excretion of porphyrins and porphyrin precursors. It is
reported that the hydrogen bonding network in the ordered
regions of the protein allows for the protein to display higher
thermostability (Bustad et al., 2013). It has also been reported
that the mutant crystal structure is less thermo stable and has
lost its function and hence may be the leading cause for Acute
intermittent porphyria (Gill et al., 2009). Although a significant
number of edges and hubs are found to be preserved in the PSN,
it is observed that 68 edges and 11 hubs that are unique to the
wildtype is lost and 46 edges and three hubs unique to the
mutant is gained (Supplementary Figure S9). Since there is loss
of edges around the ordered secondary structures in the
wildtype the important network necessary for thermostability
is lost.

The Network Around the Functional Site in the Disease
Mutant of Glutamine--tRNA Ligase Is Altered
The glutamine tRNA ligase is essential for the biosynthesis of
glutamine in humans. The function of this protein is crucial for
brain development in infants (Zhang et al., 2014; Ognjenović et al.,
2016). The wildtype and mutant structures of the protein are well
superposable (RMSD0.68 Å) although their PSNs are quite dissimilar
(NDS 0.24). The mutant node is far from the functional site where
minimal variation of edges is observed. However, the significant loss
of 176 edges and 32 hubs which are majorly found around the
functional site in the wildtype PSN (Supplementary Figure S10) can
be the cause for reduced aminoacylation activity reported in the

mutant to cause microcephaly, progressive, with seizures and
cerebral/cerebellar atrophy.

Cases with Backbone Structure Variation
The Mutant Structure of the Major Prion Protein
Undergoes a Conformational Switch
The primary physiological function of the major prion protein is
unclear. However, the functional state of the protein (Figure 3A)
forms a well interacting dimer that is known to be involved in several
different functions (Knaus et al., 2001). In the disease mutant state
(Figure 3B), a conformational transition is observed in the
C-terminal helix (Non-aligned helix shown in Figure 3) that
forms a dimer with fewer interaction between the dimeric chains
(Lee et al., 2010). The conformational change alters the topology at
several other regions of the protein resulting in a high structural
difference (RMSD2.11 Å).However, the network in the topologically
equivalent regions of the protein is preserved (NDS 0.153). There is
only one hub in the wildtype that is not altered in the mutant and
very few edges are rearranged, 19 edges and 23 edges unique to the
wildtype and mutant respectively (Supplementary Figure S11). The
newmutant conformation is found to be associatedwith Creutzfeldt-
Jakob disease where cases are reported of degeneration of neurons
and amyloid plaque formation due to protein aggregation.

Calmodulin-1 Mutant Acquires a Closed Conformation
With Minimal Change in Network
Calmodulin is a membrane binding calcium transporter protein
that transports metal ions across ion channels. A calcium ion
binding sequence motif that occurs in pairs is conserved in the
structures of this family of proteins (Tsang et al., 2006; Sarhan
et al., 2012). There are two pairs of these binding site regions
which are far apart in the open conformation of the wildtype
structure. In the current case, when one of the calcium binding
sites undergoes mutation (N98S), the functional state of the

FIGURE 2 | The functional site in the crystal structures of the wildtype (PDB ID: 1EGE) andmutant (PDB ID: 4P13) of the MCAD protein. (A) The functional site of the
protein consists of four residues (S142, N191, G377, and R388) that are shown (using stick representation) in the superposed structures. The edges corresponding to
these residues in the networks are shown in (B) the wildtype PSN and (C) the mutant PSN (using orange line representation). While N191 looses three edges, S142,
G377, and R388 gain 1, 2, and 1 edges respectively.
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protein is lost (Wang et al., 2020). The mutant structure has a
closed conformation which is reported not to bind to the metal
ion at one of the calcium binding sites with the mutation. 21 edges
in the wildtype and 18 edges in the mutant are lost and gained
respectively. Seven hubs are retained and a single hub in the
wildtype is lost in the mutant (Supplementary Figure S12). The
overall network difference (NDS 0.121) is found to be minimal.
However, due to the mutational site region that is found not to
align well with the residues in the wildtype results in a large
structural difference (RMSD 1.82 Å).

Structural Divergence in Wilms Tumour Protein
The Wilms tumour protein is a transcriptional factor
consisting of a DNA binding domain which has four zinc
finger repeats that determine sequence specific binding to
DNA (Hamilton et al., 1995). While two of the zinc fingers
bind to the DNA others are essential for recognising the
cognate nucleotide base. One of these zinc fingers that is
responsible for recognising the cognate nucleotide base
undergoes a mutation (M342R) that enhances the affinity
for a different nucleotide base leading to errors in
transcription (Wang et al., 2018). The conformation of the
wildtype does not superpose well with the mutant (RMSD
1.69 Å). In the PSN, 12 edges are lost in the wildtype and eight
edges are gained in the mutant. One new hub is gained in the
mutant along with the 1 hub that is retained between the
wildtype and mutant PSN (Supplementary Figure S13).
Hence, the network in the several regions of the protein is
still preserved depicting low network dissimilarity (NDS
0.144).

Allosteric Effect due to Disease Causing
Mutation
In specific cases wherewe observe network variation that is far from
the site of mutation, we describe the possibility of observing an
allosteric signal that repacks the residues resulting in the alteration
of PSN. In order to corroborate the exhibition of allostery in these
proteins AlloSIgMA (Tan et al., 2020) is employed to quantify the
energetics compounding the allosteric effects of a mutation. Crystal
structures of the wildtypes of three proteins in our dataset that
undergo significant network change upon mutation were studied

using AlloSIgMA andUPmutations (A perturbation that simulates
the effect of mutation to a bulkier residue) at known disease-
causing mutation sites are implemented. The output generated is
illustrated in Figure 4 and discussed in the following section.

DISCUSSION

The protein structure network is an efficient tool in analysing
allostery in the protein structure (Süel et al., 2003; Di Paola and
Giuliani, 2015). In our study, we have analysed the variation of PSN
brought about by disease causingmutations to the native functional
protein.We have observed the variability in edges and hubs that are
important parameters that make the protein structural network.
We have identified edges and hubs that are unique to the wildtype
structure that are lost in the mutant where new edges and hubs
unique to the mutant structure are gained. The use of such
information can be discussed with the help of an example.

The human serum albumin which is found abundantly in
blood plasma is known to transport several different molecules
including thyroxine (Robbins et al., 1978). In the dataset of
disease cases, it is found that the mutant structure of albumin
protein undergoes the largest variation in the number of edges
and hubs. 294 edges and 25 hubs are lost in the wildtype and 305
edges and 20 hubs are gained in the mutant (Supplementary
Figure S14). At the site of mutation (R218P) an edge with the
residue L238 that is also a hub is found to be lost in the mutant
(Figure 5). The loss of the edge is indicative of decrease in
proximity between the residues suggesting that the thyroxine
molecule that binds to K240, hormone binding site (Jacobsen,
1978), can be better accommodated in the mutant. It is reported
that the mutation enhances the binding affinity of the protein to
thyroxine that causes the elevated serum thyroxine levels
associated with familial dysalbuminemic hyperthyroxinemia
(FDH) (Petitpas et al., 2003).

We have analysed the variability in the disease cases by
comparing their network and structure using the network
dissimilarity score and RMSD. A control dataset is employed
where the wildtype is compared to all other wildtype structures of
the protein that satisfy the criteria for the dataset. The variability
in disease cases (mean RMSD 0.92 Å and mean NDS 0.175) is
much greater than in the variability in case of only wildtype

FIGURE 3 | (A) The wildtype conformer (PDB ID: 1I4M) is crystallised as a monomer in the asymmetric unit, although it exists as a dimer functionally. (B)The
structure of the disease-causing mutant (PDB ID: 3HEQ) shows conformational change in the non-aligned helix. The mutant residue is shown in red spheres.
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structures (mean RMSD 0.57 Å and mean NDS 0.12) which
signifies that the mutant structure and network explore diverse
conformations with different interconnectivity of residues. The
variability observed in protein structural networks is not strongly
correlated to the topological structure difference that is used in the

traditional analysis of protein structures. It is found that in a few
cases, the network variability is relatively higher than the amount of
structural difference. The vice versa is also true, where the structural
difference is quite large but their networks seem to be well
preserved. Such cases have been specifically picked for a detailed

FIGURE 4 | Free energy values obtained for three specific proteins that undergo disease-causing mutation. Specific cases where we observe significant network
variability have been subject to the analysis of allosteric effects due to mutation. The AlloSigMA server employs the SBSMMA (Guarnera and Berezovsky, 2016) method
to generate the response free energies when perturbations (UP mutation) are introduced at known sites of disease-causing mutations. Cartoon of the wildtype coloured
according to their free energy values obtained for the cases of (A) Medium-chain specific acyl-CoA dehydrogenase, (C) Porphobilinogen deaminase and (E)
Glutamine--tRNA ligase are shown on the left. Their free energy profiles are illustrated graphically with residue index on the x-axis and Δg value on the y-axis in (B), (D) and
(F) shown on the right in the same order. The orange square points to the site of mutation.

FIGURE 5 | The PSN of human serum albumin protein at the site of mutation and function in the wildtype (PDB ID: 1N5U) and mutant (PDB ID: 1HK3) is shown. The
node corresponding to the mutation site makes an edge with a hub node L238 (green sphere) in (A) the wildtype PSNwhich is lost in the case of (B) the mutant PSN. It is
observed that hubs near to the binding site (K240) are lost, which is indicative of the increase in proximity between the nodes. It has been reported that the mutant
structure is able to better accommodate a substrate with greater binding affinity which leads to the FDH disease condintion. Hubs unique to the wildtype and
mutant are show in green and cyan sphere representation respectively, those hubs that are retained are shown in red.
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analysis of their global and local changes.We have also attempted to
provide the functional relevance of the observed variability.

In the disease cases where the site of mutation is not involved
with function, allosteric changes brought about in the
connectivity of the internal network of the protein seem to
affect the function which leads to a disease state. Where the
contribution of the mutation may be as minimal as no change in
the local network at the site of mutation, a large network
alteration can be observed far away from the site of
perturbation due to the disturbance in the network of edges
connecting each element in the PSN to the other as discussed in
the example of glutamine tRNA ligase. A significant
improvement in the number of edges and hubs attributing to
an improved network stabilises the MCAD protein although the
distant mutation site alters the network at the functional site and
hence the protein loses its function. Contrarily, a reduction in the
number of edges and hubs in the case of the porphobilinogen
deaminase protein is attributed to reduced thermostability due to
loss of essential edges in the network within the protein.
Conformational transition from one state to the other brings
structural changes and loss of function in the case of major prion
protein. However, their networks are found to be preserved since
the aligned regions have retained edges and hubs that are very
small in number. Likewise, it is found that there may not be a
significant network variation but the structure varies considerably
adding to the change in interaction with other molecule due to the
mutation that eventually contributes to the alteration of function
as observed in the case of Wilms tumour protein.

So as to substantiate the exhibition of allostery due to the
mutations, theoretical free energy is computed using the
AlloSigMA. The predicted free energy obtained for the specific
cases of network variability when an UP mutation (mimicking
substitution with a bulkier residue) is implemented at the site of
disease-causing mutation are shown in Figure 4. A free energy
value of zero suggests that the residue may not respond to the
perturbation (mutation) whereas a non-zero value suggests that the
residue may respond with more or less effect due to the
perturbation. In the specific cases with large network variability,
it is found that the disease-causing mutations stabilise (negative
free energy) the residues around them and communicates the
allosteric signal that destabilises (positive free energy) residues
elsewhere within the structure. This suggests that the significant
change in protein structural network that is observed due to the
mutation at a site known to cause a disease is also due to the
allosteric mechanism that arises fromperturbation of the given site.

In Summary, our work highlights the perturbation of protein
structural network as understood from the variability between a
wildtype structure and the structure of a disease-causing mutant.
Network features such as edges and hubs help to analyse the overall
variation of networks while parameters such as degree of each node
help to analyse their local network variability. The allostery due to a
disease-causing mutation is noticeable from the loss and gain of
network elements that result in variation of protein structural
networks that is also corroborated using theoretical free energy
calculations. We find cases where the network change is confined
to the local site of mutation or far away from the site of mutation.
We have also noted cases where repacking of sidechains occurs

upon mutation and cases where the backbone conformation is
altered with preserved sidechain network. From our work, the
effect of mutation on the structural network of the wildtype may be
used as a learning to extend to the next phase of the project to
explore its predictive power of mutant structures and allosteric
effects. Themajor challenge in the future is to translate the learning
from the current work to predict the structure of the mutant which
is a prerequisite to predict the effect of mutation on the stability and
function. Availability of accurate structures of wildtype and reliably
modelled mutant structures may be used in the context of
thermodynamic cycle towards calculation of free energy
difference between the wildtype and the mutant as for example
used by Topham et al., (Topham, Srinivasan and Blundell, 1997).
The protein structural network approach is an effective tool to
understand the structural effects of disease-causing mutation,
further we also suggest that the protein structural network
approach is a convenient approach to understand the allostery
caused by other kinds of structural perturbations.
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