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1. Introduction

The theory of projective representations involves understanding homomorphisms from a group into the 
projective linear groups. Schur [21–23] extensively studied it. These representations appear naturally in 
the study of ordinary representations of groups and are known to have many applications in other areas 
of Physics and Mathematics. We refer the reader to Section 3 for precise definitions and related results 
regarding projective representations of a group. By definition, every ordinary representation of a group is 
projective, but the converse is not true. Therefore, understanding the projective representations is usually 
more intricate. Recall, the Schur multiplier of a group G is the second cohomology group H2(G, C×), 
where C× is a trivial G-module. The Schur multiplier of a group plays an important role in understanding 
its projective representations. By definition, every projective representation ρ of G is associated with a 
2-cocycle α : G × G → C× such that ρ(x)ρ(y) = α(x, y)ρ(xy) for all x, y ∈ G. In this case, we say, ρ is 
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an α-representation. Conversely, for every 2-cocycle α of G, there exists an α-representation of G, namely 
Cα(G) the twisted group algebra of G. So, the first step towards understanding the projective representations 
is to describe the 2-cocycles of G up to cohomologous, i.e., to understand the Schur multiplier of G. The 
second step involves constructing α-representations of G for all [α] ∈ H2(G, C×), where [α] denotes the 
cohomology class of α.

The complex ordinary representations of finite abelian groups are easy to understand. For example, all 
irreducibles are one dimensional. But this is not true for their projective representations. This problem 
has been studied by many authors, most notably by Morris, Saeed-ul-Islam, and Thomas in [14], [15]. All 
irreducible α-representations of (Z/nZ)k for some special α have been described in [14]. This work was 
generalized to all finite abelian groups for some special class of cocycles in [15]. Their results are outlined 
in [10, Chapter 3] and [11, Chapter 8]. Later, Higgs [4] constructed an irreducible α-representation of 
elementary abelian p-groups (Z/pZ)k, for every α. Also, he counted the number of [α] ∈ H2((Z/pZ)k, C×)
such that irreducible α-representations of (Z/pZ)k continue to be irreducible when restricted to a subgroup 
of index ≤ p2. The corresponding results for (Z/prZ)k with r > 1 are not yet known. The projective 
representations of dihedral groups are also well known in the literature; see [10, Theorem 7.3]. Schur [23]
studied the projective representations of the symmetric groups Sn. He proved that the Schur multiplier of Sn

for, n ≥ 4, is Z/2Z and described the representation group of Sn, see [16,24] for more details. Nazarov [18,19]
explicitly constructed the projective representations of Sn by providing suitable orthogonal matrices for each 
generator of the symmetric group.

In this article, our goal is to describe the Schur multiplier and the projective representations of the discrete 
Heisenberg groups and their t-variants. The t-variants of the Heisenberg groups, denoted by Ht

2n+1(R), are 
defined as follows. Let R be a commutative ring with identity and t ∈ R. Define the group Ht

2n+1(R) by 
the set Rn+1 ⊕Rn with multiplication given by,

(a, b1, . . . , bn, c1, . . . , cn)(a′, b′1, b′2, . . . , b′n, c′1, c′2, . . . , c′n)
= (a + a′ + t(

∑n
i=1 b

′
ici), b1 + b′1, . . . , bn + b′n, c1 + c′1, . . . , cn + c′n).

For t = 1, we recover the classical Heisenberg group and throughout we denote H1
2n+1(R) by H2n+1(R). 

Except Theorem 1.3, which is true for general commutative rings R with identity, the ring R will be Z/rZ
for r ∈ N ∪{0}. It follows from [10, Corollary 5.1.3] that the projective representations of Ht

2n+1(Z/rZ) are 
obtained from those of Ht

2n+1(Z/p
mi
i Z), where r = pm1

1 pm2
2 · · · pmk

k is the prime decomposition of r. Hence, 
for r ∈ N, we can further assume that t|r.

Our first result describes the Schur multiplier of Ht
2n+1(R) for R = Z/rZ. The description of the Schur 

multiplier of Ht
2n+1(R) for n > 1 differs from the case n = 1. For n = 1, we further assume that either r = 0

or r is an odd natural number.

Theorem 1.1.

(i) For n > 1,

H2(Ht
2n+1(Z/rZ),C×) =

{
(Z/rZ)2n2−n−1 × (Z/tZ)2n+1, if r ∈ N,

(C×)2n2−n−1 × (Z/tZ)2n, if r = 0.

(ii) For r ∈ (2N + 1) ∪ {0},

H2(Ht
3(Z/rZ),C×) =

{
(Z/rZ)2 × Z/tZ, if r ∈ (2N + 1),
(C×)2, if r = 0.
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The Schur multiplier of H3(Z/rZ) was obtained in [8, Theorem 1.1]. A proof of the above result is 
included in Section 2.

Our next aim is to describe the projective representations of Ht
2n+1(Z/rZ). Throughout this article, we 

consider these groups as discrete (abstract) groups and therefore the obtained projective representations 
may not be unitary or even continuous. It is well known that the projective representations of a group G are 
obtained from the ordinary representations of its representation group; see Corollary 3.3. Our next result 
describes a representation group of Ht

3(Z/rZ). For r ∈ N ∪ {0}, define a group Ĥ(r, t) by

Ĥ(r, t) = 〈x, y, z | [x, y] = zt, [x, z] = z1, [y, z] = z2, x
r = yr = zrt = 1〉.

Throughout the article, [x, y] = xyx−1y−1 and the relations of the form [x, y] = 1 for generators x and y
are omitted in the presentation of a group.

Theorem 1.2. For r ∈ (2N + 1) ∪ {0} and t | r, the group Ĥ(r, t) is a representation group of Ht
3(Z/rZ).

See Section 3 for the proof of this result. A construction of all finite-dimensional irreducible ordinary 
representations of Ĥ(r, t) is included in Section 4. Our next result focuses on the projective representations 
of Ht

2n+1(R) for n > 1. Recall that the group Ht
2n+1(R) projects onto the abelian group R2n ⊕ R/tR (see 

(2.0.2)). The following result is true for general commutative rings R with identity.

Theorem 1.3. For n > 1, every irreducible projective representation of Ht
2n+1(R) is obtained from an irre-

ducible projective representation of the abelian group R2n ⊕R/tR via inflation.

We obtain its proof from a general result regarding the central product of groups; see Corollary 3.4 and 
Section 3.1. From the above result, the question of determining the projective representations of Ht

2n+1(R)
for n > 1 boils down to understanding the projective representations of abelian groups R2n ⊕ R/tR. As 
mentioned earlier, this result is not yet well understood. Next, for R = Z/rZ and n ∈ N, we describe the 
representation group of Rn ⊕R/tR. Define the group Fn(r, t) as follows.

Fn(r, t) = 〈xk, zij | 1 ≤ k ≤ n + 1, 1 ≤ i < j ≤ n + 1, [xi, xj ] = zij , x
t
1 = xr

j = 1〉.

Theorem 1.4. For r ∈ N ∪ {0} and t | r, the group Fn(r, t) is a representation group of (Z/rZ)n ⊕ Z/tZ.

A proof of this result is included in Section 3. See Section 4, for a construction of all finite-dimensional 
ordinary irreducible representations of Fn(r, t). We also obtain results regarding the projective representa-
tions of extra-special groups. Recall that a p-group G is called an extra-special group if its center Z(G)
is cyclic of order p and the quotient G/Z(G) is a non-trivial elementary abelian p-group. It is well known 
that for each n ≥ 1, there are two extra-special p groups of order p2n+1 up to isomorphism with exponents 
either p or p2. We denote the isomorphism classes of extra special groups of order p2n+1 with exponent p
and p2 by ES2n+1(p) and ES2n+1(p2) respectively. From definition, the groups ES2n+1(p) are isomorphic 
to H2n+1(Z/pZ). Above, we have already stated the results regarding the projective representations for 
H2n+1(Z/pZ). Combining this with our next result, we complete the picture for extra-special p-groups.

Corollary 1.5.

(i) Every projective representation of ES3(p2) is equivalent to an ordinary representation.
(ii) For n > 1, every irreducible projective representation of ES2n+1(p2) is obtained from an irreducible 

projective representation of (Z/pZ)2n via inflation.
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Above, (i) follows because the Schur multiplier of ES3(p2) is trivial; see [9, Theorem 3.3.6]. For the proof 
of (ii), see Section 3.1.

2. Schur multiplier of Ht
2n+1(Z/rZ), r ∈ N ∪ {0}

In this section, we prove Theorem 1.1. Throughout this article, we use xy to denote the conjugation 
yxy−1. The commutator subgroup and center of a group G are denoted by G′ and Z(G), respectively.

Recall, for a group G and i ∈ N, Hi(G, C×) = Zi(G, C×)/Bi(G, C×), where Zi(G, C×) and Bi(G, C×)
consists of cocycles and coboundaries of Gi respectively. We shall call elements of Z2(G, C×) as 2-cocycles 
(or sometimes just cocycles when it is clear from the context) and elements of H2(G, C×) the cohomology 
classes. For an element α ∈ Z2(G, C×), the corresponding element of H2(G, C×) will be denoted by [α]. For 
2-cocycles α, β ∈ Z2(G, C×) we say α is cohomologous to β, whenever [α] = [β].

A central extension,

1 → A → G → G/A → 1 (2.0.1)

is called a stem extension, if A ⊆ Z(G) ∩ G′. For a given stem extension (2.0.1), the Hochschild-Serre 
spectral sequence [5, Theorem 2, p. 129] for cohomology of groups yields the following exact sequence.

1 → Hom(A,C×) tra−−→ H2(G/A,C×) inf−−→ H2(G,C×),

where tra : Hom(A, C×) → H2(G/A, C×) given by f �→ [tra(f)], where

tra(f)(x, y) = f(μ(x)μ(ȳ)μ(x̄y)−1), x, y ∈ G/A,

for a section μ : G/A → G, denotes the transgression homomorphism and the inflation homomorphism, 
inf : H2(G/A, C×) → H2(G, C×) is given by [α] �→ [inf(α)], where inf(α)(x, y) = α(xA, yA). For groups 
Ht

2n+1(R), we have the following stem extension,

1 → tR
f−→ Ht

2n+1(R) g−→ R/tR⊕R2n → 1, (2.0.2)

given by

f(tr) �→ (tr, 0, 0, · · · , 0︸ ︷︷ ︸
2n-times

)

g(a, b1, . . . , bn, c1, . . . , cn) = (a mod (tR), b1, . . . , bn, c1, . . . , cn).

Let α ∈ Z2(G1 ×G2, C×). Recall that

H2(G1 ×G2,C
×) ∼=θ H2(G1,C

×) × H2(G2,C
×) × Hom(G1/G

′
1 ⊗G2/G

′
2,C

×) (2.0.3)

is an isomorphism defined by

θ([α]) = (resG1×G2
G1

([α]), resG1×G2
G2

([α]), ν),

where ν : H2(G, C×) → Hom(H⊗K, C×) is a homomorphism given by ν([α])(g̃1⊗g̃2) = α(g1, g2)α(g2, g1)−1, 
for g̃1 = g1G

′
1 and g̃2 = g2G

′
2. We will use this result without explicitly referring to it.

Now, we recall the definition of the central product of groups. A group G is called a central product of 
its two normal subgroups H and K amalgamating A if G = HK with A = H ∩K and [H, K] = 1.
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Theorem 2.1. ([3, Theorem A and Theorem 3.6]) Let G be a central product of two normal subgroups H and 
K amalgamating A = H ∩K. Set Z = H ′ ∩K ′.

(i) Then the inflation map inf : H2(G/Z, C×) → H2(G, C×) is surjective and

H2(G,C×) ∼= H2(G/Z,C×)/N,

where N ∼= Hom(Z, C×).
(ii) The subgroup Hom(Z, C×) embeds in H2(H/A, C×)/L ⊕ H2(K/A, C×)/M via tra : Hom(Z, C×) →

H2(G/Z, C×), where L ∼= Hom
(
(A ∩H ′)/Z, C×), M ∼= Hom

(
(A ∩K ′)/Z, C×).

Lemma 2.2. Let r ∈ N ∪ {0} and t divides r.

(i) H2(Z/tZ ⊕ (Z/rZ)k, C×) ∼= (Z/tZ)k ⊕ (Z/rZ)
k(k−1)

2 . Further, any α ∈ Z2(Z/tZ ⊕ (Z/rZ)k, C×) with 
k ≥ 2 satisfies [α] = [ν] for ν ∈ Z2(Z/tZ ⊕ (Z/rZ)k, C×) such that

ν
(
(m1,m2, . . . ,mk,mk+1), (n1, n2, . . . , nk, nk+1)

)
=

∏
1≤i<j≤k+1

μ
nimj

i,j ,

for some μi,j ∈ C× satisfying μr
i,j = 1 for 2 ≤ i < j ≤ k + 1 and μt

1,l = 1 for 2 ≤ l ≤ k + 1.
(ii) Any α ∈ Z2(Ht

3(Z/rZ), C×) satisfies [α] = [σ] for σ ∈ Z2(Ht
3(Z/rZ), C×) such that for x = (m1, n1, p1)

and y = (m2, n2, p2) we have,

σ(x, y) =
{
λ(m2p1+tn2

p1(p1−1)
2 )μ(n1m2+tp1

n2(n2−1)
2 +tp1n1n2), r = 0,

λ(m2p1+tn2
p1(p1−1)

2 )μ(n1m2+tp1
n2(n2−1)

2 +tp1n1n2)δ(p1n2), r ∈ N,

for some λ, μ, δ ∈ C× such that λr = μr = δt = 1.

Proof. (i) Schur multiplier of finitely generated abelian groups follows from (2.0.3). We use [13, Theorem 
9.4] for the cocycle description. We obtain that every cocycle of Z/tZ ⊕Z/rZ is cohomologous to a cocycle 
of the form

α((m1,m2), ((n1, n2)) = σ1(m1, n1)σ2(m2, n2)g(n1,m2),

where σ1 ∈ H2(Z/tZ, C×), σ2 ∈ H2(Z/rZ, C×) and g : Z/tZ ⊕Z/rZ → C× is a map such that g(n1, m2) =
g(1, 1)n1m2 = μn1m2

1,2 . The general result follows using induction argument on k.
(ii) The proof of this result goes along the same lines as Packer [20, Proposition 1.1]. Following the cited 

proof, we obtain that every α ∈ Z2(Ht
3(Z/rZ), C×) is cohomologous to a cocycle of the form

β((m1, n1, p1), (m2, n2, p2)) =

λ(m2p1+tn2
p1(p1−1)

2 )μ(n1m2+tp1
n2(n2−1)

2 +tp1n1n2)δ(p1n2),

for some λ, μ, δ ∈ C× such that λr = μr = δr = 1 First assume that r = 0. Choose some δ1 ∈ C× such that 
δt1 = δ. Now, define a function b : Ht

3(Z) → C× by b(m, n, p) = δm1 . Then

b(m1, n1, p1)−1b(m2, n2, p2)−1b(m1 + m2 + tp1n2, n1 + n2, p1 + p2) = δp1n2

is a coboundary. Hence, every cocycle α ∈ Z2(Ht
3(Z), C×) is cohomologous to a cocycle of the form
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σ((m1, n1, p1), (m2, n2, p2)) = λm2p1+tn2
p1(p1−1)

2 μn1m2+tp1
n2(n2−1)

2 +tp1n1n2 ,

for some λ, μ ∈ C×.
Now, assume r ∈ N. If we define a map b : Ht

3(Z/rZ) → C× by b(m1, n1, p1) = δm1 , then we have

b(m1, n1, p1)−1b(m2, n2, p2)−1b(m1 + m2 + tp1n2, n1 + n2, p1 + p2) = δtp1n2 ,

which says that δtp1n2 is cohomologous to a trivial cocycle. Then every cocycle α ∈ Z2(Ht
3(Z/rZ), C×) is 

cohomologous to a cocycle of the form

σ((m1, n1, p1), (m2, n2, p2)) = λm2p1+tn2
p1(p1−1)

2 μn1m2+tp1
n2(n2−1)

2 +tp1n1n2δp1n2 ,

for some λ, μ, δ ∈ C× such that λr = μr = δt = 1. �
Corollary 2.3. Let r > 1 and μ is a primitive r-th root of unity. Then α ∈ Z2(Z/rZ ⊕ Z/rZ) defined by

α((m,n), (m′, n′)) = μnm′
,

corresponds to a non-trivial element of H2(Z/rZ ⊕ Z/rZ, C×).

2.1. Proof of Theorem 1.1

Proof. (i) Schur multiplier of Ht
2n+1(Z/rZ) for n > 1: Let G = Ht

2n+1(Z/rZ), r ∈ N∪{0} and n > 1. Then 
the group G is a central product of K1 = Ht

2n−1(Z/rZ) and K2 = Ht
3(Z/rZ) amalgamating at A = Z(G). 

Consider Z = K ′
1∩K ′

2 which is isomorphic to tZ/rZ. Here G/Z ∼= A/Z⊕(K1/A ⊕K2/A) ∼= Z/tZ ⊕(Z/rZ)2n. 
By Theorem 2.1, it follows that the homomorphism inf of the following exact sequence is surjective.

1 → Hom(Z,C×) tra−−→ H2(G/Z,C×) inf−−→ H2(G,C×).

Also, Hom(tZ/rZ, C×) embeds in H2(K1/A, C×) ⊕ H2(K2/A, C×) via tra homomorphism. Hence,

H2(G,C×) ∼= H2(K1/A,C×)×H2(K2/A,C×)
Hom(Z,C×) × Hom((Z/rZ)4n−4,C×) × (Z/tZ)2n

∼= Hom((Z/rZ)2n
2−5n+4,C×)

Hom(tZ/rZ,C×) × Hom((Z/rZ)4n−4,C×) × (Z/tZ)2n

∼= Hom((Z/rZ)2n
2−n,C×)

Hom(tZ/rZ,C×) × (Z/tZ)2n. (2.1.1)

Here the map inf : H2(G/Z, C×) → H2(G, C×) is surjective, so every cocycle of Z2(Ht
2n+1(Z/rZ), C×)

is cohomologous to a cocycle of the form

β((l1,m1, . . .m2n), (l′1,m′
1, . . .m

′
2n)) =

∏
1≤i<j≤2n

μi,j
m′

imj

2n∏
k=1

μk
l′1mk ,

for some μi,j , μk ∈ C× and μt
k = 1 for 1 ≤ k ≤ 2n, follows from Lemma 2.2(i).

If r = 0, then μi,j ∈ C× and μt
k = 1 for 1 ≤ i < j ≤ 2n, 1 ≤ k ≤ 2n. Let δ ∈ C× and 

define a map b : Ht
2n+1(Z) → C× such that b(l1, m1, . . .m2n) = (δ1/t)l1 . By using the map b, we ob-

tain that δ(
∑

1≤i≤n m′
imn+i) is cohomologous to a trivial cocycle. Therefore, up to cohomologous we can 

choose (μi,n+i)1≤i≤n ∈ (C×)n/〈(δ, δ, δ, · · · , δ) | δ ∈ C×〉 which is isomorphic to (C×)n−1. As by (2.1.1), 
(C×)2n2−n−1 × (Z/tZ)2n embeds in H2(Ht

2n+1(Z), C×), hence
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H2(Ht
2n+1(Z),C×) ∼= (C×)2n

2−n−1 × (Z/tZ)2n.

If r ∈ N, then μr
i,j = 1 for 1 ≤ i < j ≤ 2n and μt

k = 1 for 1 ≤ k ≤ 2n. We observe that 
x(t

∑
1≤i≤n m′

imn+i) is cohomologous to a trivial cocycle, by using the map b : Ht
2n+1(Z/rZ) → C× such 

that b(l1, m1, . . .m2n) = xl1 , for x ∈ C×, xr = 1. So, up to cohomologous, we can choose (μi,n+i)1≤i≤n ∈
(Z/rZ)n/〈(xt, xt, xt, · · · , xt) | x ∈ Z/rZ〉 ∼= (Z/rZ)n−1 × Z/tZ. Therefore, by (2.1.1),

H2(Ht
2n+1(Z/rZ),C×) ∼= (Z/rZ)2n

2−n−1 × (Z/tZ)2n+1.

(ii) Schur multiplier of Ht
3(Z/rZ): The group G = Ht

3(Z/rZ) is the semi direct product of normal subgroup 
N = 〈(m, n)〉 ∼= Z/rZ ⊕ Z/rZ and a subgroup T = 〈p〉 ∼= Z/rZ, where the action of T on N is defined by 
p.(m, n) = (m + tpn, n). Here T act on Hom(N, C×) by (x.f)(n) = f(x.n) for f ∈ Hom(N, C×), n ∈ N, x ∈
T . Then

H1(T,Hom(N,C×)) = Z1(T,Hom(N,C×))
B1(T,Hom(N,C×)) ,

where

Z1(T,Hom(N,C×)) = {f : T → Hom(N,C×) | f(xy) = (x.f(y))f(x)∀x, y ∈ T}

and B1(T, Hom(N, C×)) consists of f ∈ Z1(T, Hom(N, C×)) such that there exists g ∈ Hom(N, C×) satis-
fying f(x) = (x.g)g−1 for all x ∈ T .

Given α ∈ Z2(N, C×), let αx ∈ Z2(N, C×) be defined by αx(n, n′) = α(x.n, x.n′) for x ∈ T and n, n′ ∈ N . 
Let H2(N, C×)T denote the T -stable subgroup of H2(N, C×), i.e.,

H2(N,C×)T = {[α] ∈ H2(N,C×) | [αx] = [α] ∀ x ∈ T}.

We have the following exact sequence.

1 → H1(T,Hom(N,C×)) ψ−→ H2(G,C×) res−−→ H2(N,C×)T ,

which follows from [9, Theorem 2.2.5] and [12, Corollary 2.5] for the finite and infinite discrete cases respec-
tively. Here the map ψ is defined by

ψ([χ])((m1, n1, p1), (m2, n2, p2)) = χ(p1)(m2, n2),

for χ ∈ H1(T, Hom(N, C×)). Since, by Corollary 2.3, every cocycle α ∈ Z2(N, C×) is cohomologous to a 
cocycle of the form α((m1, n1), (m2, n2)) = μn1m2 , so for p ∈ T , we have

αp((m1, n1), (m2, n2)) = α((m1 + tpn1, n1), (m2 + tpn2, n2)) = μn1m2+tpn1n2 .

Then [αp] = [α] as

ααp−1((m1, n1), (m2, n2)) = b(m1, n1)b(m2, n2)b(m1 + m2, n1 + n2)−1,

where b : N → C× defined by b(m, n) = μtpn2/2 (as r is odd). Hence,

H2(N,C×)T = H2(N,C×).

Now, we define a map φ : H2(N, C×) → H2(G, C×) given by [α] �→ [φ[α]], where
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φ([α])((m1, n1, p1), (m2, n2, p2)) = μn1m2+tp1
n2(n2−1)

2 +tp1n1n2 .

Then the composition map res ◦ φ : H2(N, C×) → H2(N, C×) becomes the identity homomorphism. Hence, 
φ is injective and res is surjective map.

Thus we have

H2(Ht
3(Z/rZ),C×) ∼= H1(T,Hom(N,C×)) × H2(N,C×). (2.1.2)

Now onwards, we consider the cases r = 0 and r ∈ N separately.

Case 1: r = 0. We follow the proof of [12, Theorem 2.11]. We show that

H1(T,Hom(N,C×)) ∼= C×.

Define a map τ : Z1(T, Hom(N, C×)) → (C×)2 by τ(χ) = (χ(1)(1, 0), χ(1)(0, 1)). Then τ is injec-
tive. For c1, c2 ∈ C×, define χ(p)(m, n) = c

(mp+tn p(p−1)
2 )

1 cpn2 . By [12, Lemma 2.7], it follows that 
χ ∈ Z1(T, Hom(N, C×)) and τ(χ) = (c1, c2). So, τ is surjective. Hence, via the isomorphism τ , we have

Z1(T,Hom(N,C×)) ∼= (C×)2.

Here B1(T, Hom(N, C×)) is the set of all f : T → Hom(N, C×) satisfying the following,

f(p)(m,n) = g(m + tpn, n)g(m,n)−1 for g ∈ Hom(N,C×),m, n ∈ N, p ∈ T.

Observe that τ(f) = (1, g((1, 0)t)) and hence, τ(B1(T, Hom(N, C×))) ∼= C×. Thus it follows that

H1(T,Hom(N,C×)) ∼= C×.

Hence, by (2.1.2),

H2(Ht
3(Z),C×) ∼= (C×)2.

Case 2: r ∈ N. For this case, our claim is

H1(T,Hom(N,C×)) ∼= Z/rZ⊕ Z/tZ.

Let ζ be a primitive r-th root of unity and Hom(N, C×) ∼= 〈φ1, φ2〉 where φ1 : N → C× is defined by 
φ1(1, 0) = ζ, φ1(0, 1) = 1 and φ2(1, 0) = 1, φ2(0, 1) = ζ. Now, T acting on Hom(N, C×) by pφ1(1, 0) =
φ1(1, 0) and pφ1(0, 1) = φ1(tp, 1) = ζpt. So, pφ1 = φ1φ

pt
2 . Similarly it is easy to see that pφ2 = φ2. Now, 

define a map Norm : Hom(N, C×) → Hom(N, C×) by

Norm(φ) =
∏
p∈T

pφ.

Consider another map h : Hom(N, C×) → Hom(N, C×) defined by h(φ) = pφφ−1, where p is a generator 
of T . It is a well known result that H1(T, Hom(N, C×) ∼= ker(Norm)

image(h) (see step 3 in the proof of Theorem 5.4 
of [6]). Since r is odd, it is easy to check that Norm(φ1) = 1 and Norm(φ2) = 1. Therefore, ker(Norm) =
〈φ1, φ2〉 and image of h is < φt

2 >. Therefore, H1(T, Hom(N, C×) ∼= Z/rZ ⊕ Z/tZ. Thus by (2.1.2),

H2(Ht
3(Z/rZ),C×) ∼= (Z/rZ)2 × Z/tZ. �
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3. Projective representations of Ht
2n+1(R)

In this section, we first recall some basic definitions and results regarding projective representations of a 
group and then prove Theorems 1.2, 1.3, and 1.4.

Let V be a complex vector space. A projective representation of a group G is a homomorphism of G into 
the projective general linear group, PGL(V ) = GL(V )/Z(V ). Equivalently, a projective representation is a 
map ρ : G → GL(V ) such that

ρ(x)ρ(y) = α(x, y)ρ(xy), ∀x, y ∈ G,

for suitable scalars α(x, y) ∈ C×. By the associativity of GL(V ), the map (x, y) �→ α(x, y) gives a 2-cocycle 
of G, i.e., an element of Z2(G, C×). We denote this cocycle by α itself and say ρ is an α-representation. 
Two projective representations ρ1 : G → GL(V ) and ρ2 : G → GL(W ) are called projectively equivalent if 
there is an invertible T ∈ Hom(V, W ) and a map b : G → C× such that

b(g)Tρ1(g)T−1 = ρ2(g) ∀ g ∈ G.

Equivalent projective representations are said to have equivalent 2-cocycles. Thus two cocycles α, α′ : G ×
G → C× are equivalent if there exists a map b : G → C× such that α(x, y) = b(x)b(y)

b(xy) α′(x, y) for all x, y ∈ G. 
In terms of Schur multiplier, this means that the representations ρ and ρ′ are equivalent implies that their 
cocycles α and α′ are cohomologous, i.e., [α] = [α′] in H2(G, C×). It is to be noted that to determine all 
projective representations of G up to equivalence, it is enough to determine projectively inequivalent α-
representations of G for a set of all 2-cocycle representatives of elements of H2(G, C×). We further note that 
two projectively equivalent α-representations (ρ1, V ) and (ρ2, W ) are called linearly inequivalent if b(g) = 1
for all g ∈ G. Any α-representation ρ of G such that α is cohomologous to trivial 2-cocycle, will be called 
equivalent to an ordinary representation of G.

The set of all inequivalent irreducible ordinary representations of a group G will be denoted by Irr(G). 
Let Irrα(G) be the set of complex linearly inequivalent irreducible representations of G corresponding to a 
2-cocycle α. We can further assume that α is normalized cocycle, i.e., α ∈ Z2(G, C×) satisfies

α(g, 1) = α(1, g) = 1, ∀g ∈ G. (3.0.1)

Throughout this section, we assume that the cocycle representative of [α] with which we work, satisfies 
(3.0.1). Next, we recall the definition of a representation group (also called a covering group) of a group G
from [21, Page 23].

Definition 3.1 (Representation group of G). A group G∗ is called a representation group of G, if there is a 
central extension

1 → A → G∗ → G → 1

such that corresponding transgression map

tra : Hom(A,C×) → H2(G,C×)

is an isomorphism.

In [21], Schur proved that the representation group of a finite group always exists. For infinite groups, the 
parallel result is also known; see [2] for related results. The next result relates the projective representations 
of a group G and its certain quotient group.
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Theorem 3.2. Let A be a subgroup of a finitely generated group G such that A ⊆ G′ ∩ Z(G) and, [α] ∈
H2(G, C×) be in the image of inf : H2(G/A, C×) → H2(G, C×). Then 

⋃
{[β]∈H2(G/A,C×)|inf([β])=[α]} Irrβ(G/A)

and Irrα(G) are in bijective correspondence via inflation.

Proof. We have the following exact sequence

1 → Hom(A,C×) tra−→ H2(G/A,C×) inf−→ H2(G,C×).

Fix a [β] ∈ H2(G/A, C×) such that inf([β]) = [α]. Due to the exactness of the above sequence, the set ⋃
χ∈Hom(A,C×)[β]tra(χ) consists of all distinct elements of H2(G/A, C×) that map to [α] via inf.
Let ρ : G → GL(V ) be an irreducible α-representation of G. Then there exists a representative of [β], 

denoted by β itself, such that α(g, h) = β(gA, hA) for all g, h ∈ G. Therefore, for all a ∈ A and g ∈ G, we 
have α(g, a) = α(a, g) = 1. Hence,

ρ(g)ρ(a) = ρ(a)ρ(g), ∀a ∈ A, g ∈ G.

Since every irreducible representation in our case is countable dimensional, by Schur’s lemma (due to Dixmier 
for countable dimensional complex representations), for all a ∈ A, ρ(a) is a scalar multiple of identity. Further 
α(a, a′) = 1 for all a, a′ ∈ A, so ρ|A is a homomorphism on A. Let μ : G/A → G be a section of G/A in 
G such that gA = μ(gA)A for all g ∈ G. Every element g ∈ G can be written uniquely g = agμ(gA) for 
some ag ∈ A. Note that tra(ρ|A)(gA, hA) = ρ(μ(gA)μ(hA)μ(ghA)−1). Now, define ρ̃ : G/A → GL(V ) by 
ρ̃(gA) = ρ(μ(gA)). Then

ρ̃(gA)ρ̃(hA)ρ̃(ghA)−1 = ρ(μ(gA))ρ(μ(hA))ρ(μ(ghA))−1

= β(gA, hA)ρ(μ(gA)μ(hA))ρ(μ(ghA))−1

= β(gA, hA)ρ(μ(gA)μ(hA)μ(ghA)−1μ(ghA))ρ(μ(ghA))−1

= (βtra(ρ|A))(gA, hA)α−1(μ(gA)μ(hA)μ(ghA)−1, μ(ghA))

= (βtra(ρ|A))(gA, hA),

(3.0.2)

where α−1(μ(gA)μ(hA)μ(ghA)−1, μ(ghA)) = 1 as μ(gA)μ(hA)μ(ghA)−1 ∈ A. Thus ρ̃ is β′-representation 
of G/A such that [β′] = [β][tra(ρ|A)] and inf([β′]) = [α]. Since ρ is irreducible representation and ρ(a) is a 
scalar multiple of identity for a ∈ A, ρ̃ is also an irreducible representation.

Define a map

φ : Irrα(G) −→
⋃

{[β]∈H2(G/A,C×)|inf([β])=[α]}
Irrβ(G/A)

by φ(ρ) = ρ̃. It is easy to see that φ is a well defined map. Next, we prove that φ is injective. Suppose 
ρ, ρ′ ∈ Irrα(G) and φ(ρ) = ρ̃, φ(ρ′) = ρ̃′ such that ρ̃ and ρ̃′ are linearly equivalent, i.e., ρ̃′(gA) = T ρ̃(gA)T−1

for all g ∈ G and for some T ∈ GL(V ). Since ρ̃ and ρ̃′ are βtra(ρ|A) and βtra(ρ′|A)-representations of G/A

respectively, tra(ρ|A) = tra(ρ′|A). But tra is injective, so ρ|A = ρ′|A. Now it is easy to check that ρ′(g) =
Tρ(g)T−1 for g ∈ G. Hence, φ is injective. It remains to show that φ is surjective. Let ρ̃ : G/A → PGL(V )
be an irreducible β1-projective representation such that inf(β1) = α. Define ρ : G → PGL(V ) via inflation, 
i.e., ρ(g) = ρ̃(gA). Then ρ is an irreducible α-representation of G and φ(ρ) = ρ̃. �
Corollary 3.3. Let A be a central subgroup of a finitely generated group G∗ such that G∗ is a representation 
group of G = G∗/A. Then there is a bijection between the sets ∪[α]∈H2(G,C×)Irrα(G) and Irr(G∗).
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Proof. By the definition of representation group and the exactness of the sequence

Hom(G∗,C×) res−−→ Hom(A,C×) tra−−→ H2(G,C×) inf−−→ H2(G∗,C×),

we have res : Hom(G∗, C×) → Hom(A, C×) is trivial. Hence, A ⊆ [G∗, G∗]. Since inf is a trivial map, result 
follows from Theorem 3.2. �
Corollary 3.4. Let G be a central product of its subgroups H and K with Z = H ′∩K ′. Then every projective 
representation of G is obtained from a projective representation of G/Z via inflation.

Proof. By Theorem 2.1, it follows that inf : H2(G/Z, C×) → H2(G, C×) is a surjective map. Therefore, 
proof follows by Theorem 3.2. �
3.1. Proof of Theorem 1.3 and Corollary 1.5

For n > 1, Ht
2n+1(R) is a central product of Ht

2n−1(R) and Ht
3(R). We obtain a natural homomorphism 

from H2(R2n ⊕R/tR, C×) to H2(Ht
2n+1(R), C×), via inflation. Let [α] be a cohomology class of Ht

2n+1(R). 
We obtain the following from Theorem 2.1 and Corollary 3.4.

(i) The inflation map from H2(R2n ⊕R/tR, C×) to H2(Ht
2n+1(R), C×) is surjective.

(ii) Every irreducible α-representation of Ht
2n+1(R) is obtained by composing a irreducible β-representation 

of R2n ⊕R/tR for some β ∈ Z2(R2n ⊕R/tR, C×) such that [α] = inf([β]).

The proof of Theorem 1.3 now follows from (ii). Similarly, the group ES2n+1(p2) is a central product of 
ES2n−1(p2) and ES3(p2), hence Corollary 1.5(ii) again follows from Corollary 3.4.

3.2. Proof of Theorem 1.4

Proof. For finite abelian groups it follows by [10, Theorem 5.4 in Chapter 3] that Fn(r, t) is a representation 
group of (Z/rZ)n ⊕Z/tZ. Hence, in the proof below, we assume r = 0 and t is a positive integer. However, 
we remark that the following proof also works for r ∈ N and not the same as appeared in [10, Theorem 5.4 
in Chapter 3]. Consider Z = 〈zij , 1 ≤ i < j ≤ n + 1〉, a central subgroup of Fn(r, t). There exists a central 
extension

1 → Z → Fn(r, t) π−→ Z/tZ⊕ (Z/rZ)n → 1,

where π is defined by π(
∏n+1

i=1 xmi
i

∏
1≤i<j≤n+1 z

kij

ij ) = (m1, m2, . . . , mn+1). Then we have the exact sequence

1 → Hom(Z,C×) tra−−→ H2(Fn(r, t)/Z,C×) inf−−→ H2(Fn(r, t),C×).

We want to show that inf is a trivial homomorphism.
Let X =

∏n+1
i=1 xmi

i

∏
1≤i<j≤n+1 z

kij

ij and Y =
∏n+1

i=1 x
m′

i
i

∏
1≤i<j≤n+1 z

k′
ij

ij be two elements of Fn(r, t). 
Then the element XY is of the following form:

XY = xm1
1 xm2

2 . . . x
mn+1
n+1 .x

m′
1

1 x
m′

2
2 . . . x

m′
n+1

n+1 .
∏

1≤i<j≤n+1
z
kij+k′

ij

ij

= x
m1+m′

1
1 x

m2+m′
2

2 . . . x
mn+1+m′

n+1
n+1 .

∏
z
kij+k′

ij−m′
imj

ij .

1≤i<j≤n+1
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Let α ∈ Z2(Fn(r, t)/Z, C×) and inf([α]) = [β]. Then by Lemma 2.2,

β(X,Y ) = α(π(X), π(Y )) = α
(
(m1,m2, . . . ,mn+1), (m′

1,m
′
2, . . . ,m

′
n+1)

)
=

∏
1≤i<j≤n+1

μ
m′

imj

i,j ,

for some μi,j ∈ C×. Define a function τ : Fn(r, t) → C× by

τ(xm1
1 xm2

2 . . . xmr
r

∏
1≤i<j≤n+1

z
kij

ij ) =
∏

1≤i<j≤n+1
μ
−kij

i,j .

Now we have

τ(X)−1τ(Y )−1τ(XY )

=
∏

1≤i<j≤n+1
μ
kij

i,j

∏
1≤i<j≤n+1

μ
k′
ij

i,j

∏
1≤i<j≤n+1

μ
−kij−k′

ij+m′
imj

i,j

=
∏

1≤i<j≤n+1
μ
m′

imj

i,j = β(X,Y ).

Hence, β is, in fact, a coboundary, and therefore inf is trivial. This along with Theorem 3.2 and Lemma 2.2
completes the proof. �
3.3. Proof of Theorem 1.2

Proof. Consider Z = 〈z1, z2, zr〉 which is a central subgroup of Ĥ(r, t). Now consider the central extension

1 → Z → Ĥ(r, t) π−→ Ht
3(Z/rZ) → 1,

where π is defined by π(zk1
1 zl12 zm1yn1xp1) = (m1, n1, p1). Then we have the following exact sequence.

1 → Hom(Z,C×) tra−−→ H2(Ht
3(Z/rZ),C×) inf−−→ H2(Ĥ(r, t),C×).

We have the following relations in Ĥ(r, t).

[xn, y] = [x, y]n[x, zt]
n(n−1)

2 = ztnz
tn(n−1)

2
1 ,

[x, yn] = [x, y]n[y, zt]
n(n−1)

2 = ztnz
tn(n−1)

2
2 ,

[xm, yn] = ztmnz
tnm(m−1)

2
1 z

tmn(n−1)
2

2 .

Let X = zk1
1 zl12 zm1yn1xp1 and Y = zk2

1 zl22 zm2yn2xp2 be two elements of Ĥ(r, t). Then XY =
zk1
1 zl12 zm1yn1xp1 .zk2

1 zl22 zm2yn2xp2 has the following expression.

z
k1+k2+m2p1+tn2

p1(p1−1)
2

1 z
l1+l2+n1m2+tp1

n2(n2−1)
2 +tp1n1n2

2 zm1+m2+tp1n2yn1+n2xp1+p2 .

We first assume that r ∈ N. Then by Lemma 2.2(ii), every α ∈ Z2(Ht
3(Z/rZ), C×) is cohomologous to a 

cocycle of the form

α((m1, n1, p1), (m2, n2, p2)) = λm2p1+tn2
p1(p1−1)

2 μn1m2+tp1
n2(n2−1)

2 +tp1n1n2δp1n2 ,
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for some λ, μ, δ ∈ C×. Let α ∈ Z2(H3(Z/rZ), C×). Then inf([α]) = [β] is given by

β(X,Y ) = α(π(X), π(Y ))

= α((m1, n1, p1), (m2, n2, p2))

= λm2p1+tn2
p1(p1−1)

2 μn1m2+tp1
n2(n2−1)

2 +tp1n1n2δp1n2 .

Define a function b : Ĥ(r, t) → C× by b(zk1
1 zl12 zm1yn1xp1) = λk1μl1δm1

1 , where δ1 ∈ C× such that δrt1 = 1
and δt1 = δ. The existence of such δ1 follows by t|r. Then we have

b(X)−1b(Y )−1b(XY )

= λm2p1+tn2
p1(p1−1)

2 μn1m2+tp1
n2(n2−1)

2 +tp1n1n2δp1n2

= β(X,Y ).

Therefore, inf is trivial. By Theorem 3.2 and Lemma 2.2, our result follows for r ∈ N. For r = 0, proof goes 
on the same lines as above by defining the function b : Ĥ(r, t) → C× by b(zk1

1 zl12 zm1yn1xp1) = λk1μl1 . �
4. Ordinary representations of Ĥ(r, t) and Fn(r, t) for r ∈ N ∪ {0}

In this section, we discuss methods to obtain the irreducible representations of Ĥ(r, t) and Fn(r, t) for 
both the finite as well as the discrete case. For this, first we define induction for the discrete case and state 
some of the required results. Then we prove a general statement that gives a uniform construction of the 
irreducible representations for Ĥ(r, t) and Fn(r, t). We use the notation Irr(G) to denote the isomorphism 
classes of all irreducible ordinary representations of G. Let Irr◦(G) = {ρ ∈ Irr(G) | dim(ρ) < ∞}.

For a normal subgroup N of G and ρ ∈ Irr◦(N), the sets {δ ∈ Irr(G) | 〈δ|N , ρ〉 �= 0} and {δ ∈ Irr◦(G) |
〈δ|N , ρ〉 �= 0} are denoted by Irr(G | ρ) and Irr◦(G | ρ) respectively. We use the following definition of 
induced representation for the discrete groups. This is an analogue of compact induction for Lie groups and 
has already been explored in literature; see for example Parshin [1, Definition 1].

Definition 4.1 (Induced representation). Let H be a subgroup of a finitely generated group G and (ρ, W )
be a representation of H. The induced representation (ρ̃, ̃W ) of ρ from H to G has representation space W̃
consisting of functions f : G → W satisfying the following:

(1) f(hg) = ρ(h)f(g) for all g ∈ G and h ∈ H.
(2) The support of f is contained in a union of finitely many right cosets of H in G.

The homomorphism ρ̃ : G → Aut(W̃ ) is given by ρ̃(g)f(x) = f(xg) for all x, g ∈ G. We denote this induced 
representation by IndG

H(ρ).

We note that it agrees with the usual definition of induction for finite groups. We use a few standard 
properties of the above induction in the next result; see [17, Remark 2.6] for exact results used.

Proposition 4.2. Let G be a finitely generated discrete group with a normal subgroup N such that G/N is 
cyclic. Let (ρ, V ) be an irreducible representation of N and let IG(ρ) = {g ∈ G | ρg ∼= ρ} be the inertia 
group of ρ in G. Then the following are true.

(1) The representation ρ extends to IG(ρ).
(2) Any δ ∈ Irr◦(IG(ρ)) such that 〈ρ, δ|N 〉 �= 0 satisfies the following.
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(a) δ|N = ρ.
(b) The representation IndGIG(ρ)(δ) is irreducible.

(3) For |G/IG(ρ)| < ∞, the sets Irr◦(IG(ρ) | ρ) and Irr◦(G | ρ) are in bijection via δ �→ IndGIG(ρ)(δ).

Proof. For the finite group G, (1) is well known; see [7, Theorem 11.7]. We remark that the proof of the 
above-cited result also works for infinite cases as long as H2(G/N, C×) = 1. This fact is well known for 
discrete cyclic groups. Therefore, the result follows in this case also.

For finite groups, both (2) and (3) are consequences of the Clifford theory. So, we only deal with the case 
of infinite discrete group G. Let (δ, W ) be a finite-dimensional representation of IG(ρ) such that 〈ρ, δ|N 〉 �= 0. 
Let y ∈ G such that IG(ρ)/N = 〈yN〉. Then we have V ⊆ W . For V = W , we are done. Otherwise, there 
exists smallest t ∈ N such that W = V ⊕ V y ⊕ V y2 ⊕ · · · ⊕ V yt−1 and V yt = V . Here we have used the fact 
that W is finite-dimensional and both V and W are irreducible. Consider a subgroup S = 〈yt〉 of IG(ρ) and 
its action on the finite-dimensional space V of Nt = 〈N, S〉 via δ. Then by (1), the representation ρ extends 
to a representation ρ̃ of Nt such that ρ̃|N = ρ and 〈ρ̃, δ|Nt

〉 �= 0. The group Nt is a finite index subgroup 
of IG(ρ). Therefore, by Frobenius reciprocity, we obtain 〈IndIG(ρ)

Nt
(ρ̃), δ〉 �= 0. We note that IndIG(ρ)

Nt
(ρ̃) is a 

finite-dimensional representation. By part (1) we obtain,

IndIG(ρ)
Nt

(ρ̃) ∼= ⊕
χ∈ ̂IG(ρ)/Nt

ρ̃⊗ χ.

Therefore, ρ̃⊗ χ ∼= δ for some χ ∈ ̂IG(ρ)/Nt. This implies δ|N = ρ. Next, we note that

EndG(IndG
IG(ρ)(δ)) ∼= ⊕g∈G/IG(ρ)HomIG(ρ)(δ, δg).

By definition of IG(ρ) and the fact that δ|N = ρ, we have HomIG(ρ)(δ, δg) �= 0 for g ∈ G/IG(ρ) if and 
only if g ∈ IG(ρ). This implies that EndG(IndG

IG(ρ)(δ)) ∼= C, that is IndG
IG(ρ)(δ) is Schur irreducible. By 

[17, Theorem 3.1], we obtain that IndG
IG(ρ)(δ) is irreducible. Finally, (3) follows by the definition of IG(ρ), 

δ|N = ρ and the fact that,

IndG
IG(ρ)(δ)|IG(ρ) ∼= ⊕g∈G/IG(ρ)δ

g. �
4.1. Construction for two-step nilpotent groups

In this section, we outline a well-known method to construct all finite-dimensional irreducible represen-
tations of a two-step nilpotent group G.

(1) Let χ : Z(G) → C× be a one dimensional character of Z(G) such that χ|G′ is of finite order. Define the 
bilinear form,

βχ : G/Z(G) ×G/Z(G) → C×; βχ(xZ(G), yZ(G)) = χ([x, y])

(2) Let Rχ = {g ∈ G | βχ(g, g′) = 1 ∀ g′ ∈ G}. Then the character χ extends to Rχ.
(3) For every χ̃ ∈ Irr◦(Rχ | χ), there exists a unique irreducible representation, denoted ρχ̃ ∈ Irr(G | χ).
(4) By [17, Theorem 1.3], ρχ̃ ∈ Irr◦(G | χ) because χ|G′ has finite order. Furthermore, we have dim(ρχ̃) =√

|G|/|Rχ|.
(5) The map χ̃ �→ ρχ̃ gives a bijection in the sets Irr◦(Rχ | χ) and Irr◦(G | χ).

The benefit of this method over Mackey Theory for two-step nilpotent groups lies in the fact that many 
properties about irreducible representations can be easily deduced from this construction. For example, every 
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finite-dimensional irreducible representation of a two-step nilpotent group is monomial follows directly from 
the above construction. Also, determining the dimensions of all finite-dimensional irreducible representations 
is easier in this case. For example, the construction implies that all ρ ∈ Irr◦(G | χ) satisfy dim(ρχ̃) =√
|G|/|Rχ|.

4.2. Irreducible representations of Ĥ(r, t) and Fn(r, t)

The group Fn(r, t) is a two-step nilpotent group. So, its ordinary representations can be directly obtained 
from its central characters as in Section 4.1. However, below, by using Proposition 4.2 and Section 4.1, we 
indicate a method that works for both Fn(r, t) and Ĥ(r, t).

Consider the subgroups NH = 〈x, z, z1, z2〉 and NF = 〈xk, zij , zk | 1 ≤ k ≤ n, 1 ≤ i < j ≤ n〉 of 
Ĥ(r, t) and Fn(r, t) respectively. Then NH and NF are normal subgroups of Ĥ(r, t) and Fn(r, t) such that 
Ĥ(r, t)/NH and Fn(r, t)/NF are cyclic. We note that both NF and NH are two-step nilpotent groups. 
Therefore, irreducible representations of these are obtained from one dimensional representation of the 
radical of each central character as described in Section 4.1. So, it remains to determine the inertia group 
of these representations of NH and NF in Ĥ(r, t) and Fn(r, t) respectively and then the construction is 
obtained by Proposition 4.2.
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