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ABSTRACT

In this paper, we study modules over quotient spaces of certain categorified

fiber bundles. These are understood as modules over entwining structures

involving a small K-linear category D and a K-coalgebra C. We obtain

Frobenius and separability conditions for functors on entwined modules.

We also introduce the notion of a C-Galois extension E ⊆ D of cate-

gories. Under suitable conditions, we show that entwined modules over a

C-Galois extension may be described as modules over the subcategory E
of C-coinvariants of D.

1. Introduction

The purpose of this paper is to study a theory of modules over quotient spaces

of certain categorified fiber bundles. Suppose that X is an affine scheme over

a field K and let G be an affine algebraic group scheme with a free action

σ : X ×G −→ X on X . Let Y be the quotient given by the coequalizer

(1.1) X ×G
pr

��
σ

�� X
p−→ Y.

If X −→ Y is faithfully flat and the canonical map can : X ×G −→ X ×Y X is

an isomorphism, then X is said to be (see, for instance, [24], [28]) a principal

fiber bundle over Y with group G.
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The algebraic counterpart of (1.1) consists of an algebra A, a Hopf algebra H

and a coaction ρ : A −→ A⊗H that makes A into a right H-comodule algebra.

Let

B := AcoH = {a ∈ A|ρ(a) = a⊗ 1H}
be the algebra of coinvariants of A, i.e., B is given by the equalizer

(1.2) B −→ A
in

��

ρ
�� A⊗H .

In this case, there is a canonical map can : A⊗BA −→ A⊗H determined by set-

ting can(x⊗y) = x·ρ(y). If the Hopf algebraH has bijective antipode, B −→ A

is a faithfully flat extension and can : A ⊗B A −→ A ⊗H is an isomorphism,

it was shown by Schneider [28] that modules over B may be recovered as the

category of “(A,H)-Hopf modules.”

We work with a small K-linear category D, a K-coalgebra C and an “entwin-

ing structure” ψ consisting of a collection of morphisms

ψ = {ψXY : C ⊗HomD(X,Y ) −→ HomD(X,Y )⊗ C}(X,Y )∈Ob(D)2

satisfying conditions that we lay out in Section 2. We consider the cate-

gory M (ψ)
C
D of modules over the entwining structure (D, C, ψ) (see Defini-

tion 2.2). These may be seen as modules over a “categorical quotient space”

of D with respect to the coalgebra C and the entwining ψ.

The notion of a C-Galois extension E ⊆ D of categories is introduced in Sec-

tion 4. Additionally, a C-Galois extension gives rise to a canonical entwining

structure on D. Under certain conditions, we show that modules over the cate-

gory E of C-coinvariants of D may be described as modules over the canonical

entwining structure.

Entwining structures for algebras were introduced by Brzeziński and Majid

in [7] and it was realized in Brzeziński [3] that entwined modules provide a

unifying formalism for studying diverse concepts such as relative Hopf modules,

Doi–Hopf and Yetter–Drinfeld modules as well as coalgebra Galois extensions.

In fact, the study of entwining structures for algebras and entwined modules

over them is well developed in the literature and we refer the reader, for instance,

to [1], [3] [5], [9], [10], [12], [21], [27] for more on this subject.

Our notion of modules over an entwining structure (D, C, ψ) builds on the

analogy of Mitchell [22] which says that a small K-linear category should be

seen as a “K-algebra with several objects.” In particular, the category M (ψ)
C
D
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also generalizes the “relative (D, H)-Hopf modules” studied in our previous

work in [2], where H is a Hopf algebra and D is an H-comodule category in the

sense of Cibils and Solotar [16]. In other words, D is a small K-linear category

whose morphism spaces are equipped with a coaction of H that is compatible

with composition. When D has a single object, it reduces to an ordinary H-

comodule algebra and the relative (D, H)-Hopf modules reduce to the usual

notion of relative Hopf modules (see Takeuchi [30]).

For Doi–Hopf modules, Frobenius and separability conditions were studied

extensively in a series of papers [13], [14], [15]. Later, Brzeziński studied Frobe-

nius and Maschke type theorems for entwined modules in [4]. In this paper, we

proceed in a manner analogous to the unified approach of Brzeziński, Caenepeel,

Militaru and Zhu [8] for studying Frobenius and separability conditions for en-

twined modules over (D, C, ψ).
The idea is as follows: the “categorical quotient space” of D with respect

to C and ψ may be thought of as a subcategory of D and M (ψ)
C
D plays the role

of modules over this subcategory. Although this “subcategory” of D need not

exist in an explicit sense, we would like to study the properties of this extension

of categories. In particular, we would like to know if it behaves like a separable,

split or Frobenius extension of small K-linear categories. For this, we turn to a

pair of functors

F : M (ψ)
C
D −→ Mod -D, G : Mod -D −→ M (ψ)

C
D.

Here F is the left adjoint and behaves like an “extension of scalars” whereas

its right adjoint G behaves like a “restriction of scalars.” We recall here (see

[8, Theorem 1.2]) that in the classical case of an extension R −→ S of rings

inducing the pair of adjoint functors Mod -R
G←−−−−−−−−−−−−→
F

Mod -S given by extension

and restriction of scalars, we have:

R −→ S is split extension ⇔ Left adjoint F : Mod -R −→ Mod -S

is separable,

R −→ S is separable extension ⇔ Right adjoint G : Mod -S −→ Mod -R

is separable,

R −→ S is Frobenius extension ⇔ (F,G) is Frobenius pair of functors.

It is therefore natural to study criteria for the separability of the functors F

and G as well as conditions for (F ,G ) to be a Frobenius pair of functors.
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In this paper, we will always use the following convention: for f ∈HomD(Y,X)

and c ∈ C, we write

ψYX(c⊗ f) = fψ ⊗ cψ ∈ HomD(Y,X)⊗ C

with the summation omitted. We write h : Dop⊗D −→ VectK for the canonical

D-D-bimodule h(Y,X) = HomD(Y,X). The entwining structure makes h⊗ C

into a D-D-bimodule by setting

(h⊗ C)(Y,X) := HomD(Y,X)⊗ C, ((h⊗ C)(φ))(f ⊗ c) := φ′′fφ′ψ ⊗ cψ,

for any (Y,X) ∈ Ob(Dop ⊗ D), φ := (φ′, φ′′) ∈ HomDop⊗D((Y,X), (Y ′, X ′)),
f ∈ HomD(Y,X) and c ∈ C. We consider a collection

θ := {θX : C ⊗ C −→ EndD(X)}X∈Ob(D)

of K-linear maps satisfying the following conditions:

(θX(c⊗ d)) ◦ f =fψψ ◦ θY (cψ ⊗ dψ),

θX(c⊗ d1)⊗ d2 =(θX(c2 ⊗ d))ψ ⊗ c1
ψ,

for any f ∈ HomD(Y,X). Let V1 be the K-space consisting of all such θ. Our

first result gives conditions for the functors F and G to be separable.

Theorem A (see 3.7, 3.8, 3.10 and 3.11): Let D be a small K-linear cate-

gory, (C,ΔC , εC) be a K-coalgebra and let (D, C, ψ) be a right-right entwining

structure.

(a) Let V = Nat(G F , 1M (ψ)CD
) be the space of natural transformations

from G F to 1M (ψ)CD
. Then:

(1) There is an isomorphism V ∼= V1 of K-vector spaces.

(2) The functor F is separable if and only if there exists θ ∈ V1 such

that

θX ◦ΔC = εC · idX ∀X ∈ Ob(D).

(b) Let W = Nat(1Mod -D,FG ) be the space of natural transformations

from 1Mod -D to FG . Then:

(1) There is an isomorphism of K-vector spaces from W to

W1 = Nat(h, h⊗ C).

(2) The functor G is separable if and only if there exists η ∈ W1 such

that

(idh⊗εC)η = idh .
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The next result gives conditions for (F ,G ) to be a Frobenius pair.

Theorem B (see 3.14): Let D be a small K-linear category, (C,ΔC , εC) be

a K-coalgebra and let (D, C, ψ) be a right-right entwining structure. Then,

(F ,G ) is a Frobenius pair if and only if there exist θ ∈ V1 and η ∈ W1 such

that the following conditions hold:

εC(d)f =
∑

f̂ ◦ θX(cf ⊗ d), εC(d)f =
∑

f̂ψ ◦ θX(dψ ⊗ cf ),

for any f ∈ HomD(X,Y ), d ∈ C and η(X,Y )(f) =
∑
f̂ ⊗ cf .

More generally, the D-D-bimodule h⊗ C may be treated as a functor

h⊗ C : D −→ M (ψ)CD

by setting (see Lemma 2.4)

(h⊗ C)(Y ) := HomD(−, Y )⊗ C, (h⊗ C)(f)(Z)(g ⊗ c) := fg ⊗ c,

for f ∈ HomD(Y,X) and g ⊗ c ∈ HomD(Z, Y ) ⊗ C. Additionally, let C be a

finite-dimensional coalgebra and let C∗ = Hom(C,K) be the linear dual of C.

Then, we show that there is a functor C∗ ⊗ h : D −→ M (ψ)CD.

Theorem C (see 3.19): Let (D, C, ψ) be an entwining structure and let C be

a finite-dimensional coalgebra. Then, the following statements are equivalent:

(i) (F ,G ) is a Frobenius pair.

(ii) C∗ ⊗ h and h⊗ C are isomorphic as functors from D to M (ψ)
C
D.

In the final part of this paper, we study coalgebra Galois extensions of cat-

egories in a manner analogous to Brzeziński [3], Brzeziński and Hajac [6] and

Caenepeel [11]. For this, we suppose that every morphism space HomD(X,Y )

carries the structure of a C-comodule

ρXY : HomD(X,Y ) −→ HomD(X,Y )⊗ C, f 
→
∑

f0 ⊗ f1.

This allows us to define a category E of C-coinvariants of D (see Definition 4.5).

Further, we say that D is a C-Galois extension of E if the canonical map

canX : h⊗E HomD(X,−) −→ HomD(X,−)⊗ C

is an isomorphism for each X ∈ Ob(D) (see Definition 4.7). We show that a

C-Galois extension leads to a canonical entwining structure.
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Theorem D (see 4.9): Let D be a C-Galois extension of E . Then, there exists

a unique right-right entwining structure (D, C, ψ) which makes HomD(−, Y ) an

object in M (ψ)
C
D for every Y ∈ Ob(D) with its canonical D-module structure

and right C-coactions {ρXY }X∈Ob(D).

Conversely, under suitable conditions, an entwining structure (D, C, ψ) may

be used to express D as a C-Galois extension. In that case, the category M (ψ)
C
D

reduces to the category of modules over the C-coinvariants of D.

Theorem E (see 4.12 and 4.21): Let C be a K-coalgebra and D be a small K-

linear category such that HomD(X,Y ) has a right C-comodule structure ρXY

for every X,Y ∈ Ob(D). Let E be the subcategory of C-coinvariants of D. If

there exists a convolution invertible collection

Φ = {ΦXY : C −→ HomD(X,Y )}X,Y ∈Ob(D)

of right C-comodule maps, then the following are equivalent:

(i) D is a C-Galois extension of E .
(ii) There exists a right-right entwining structure (D, C, ψ) such that

HomD(−, Y ) is an object in M (ψ)
C
D for every Y ∈ Ob(D) with its

canonical D-module structure and right C-coactions {ρXY }X∈Ob(D).

(iii) For any f ∈ HomD(X,Y ), the morphism
∑
f0◦Φ′ZX(f1) ∈ HomE(Z, Y )

for every Z ∈ Ob(D), where Φ′ is the convolution inverse of Φ.

In this case, the categories M (ψ)CD and Mod-E are equivalent.

Notations. Throughout the paper, K is a field, C is a K-coalgebra with co-

multiplication ΔC and counit εC . We shall use Sweedler’s notation for the

coproduct ΔC(c) = c1 ⊗ c2, and for a coaction

ρM :M −→M ⊗ C, ρM (m) = m0 ⊗m1

with the summation omitted. We denote by C∗ the linear dual of C. Sometimes

when the coaction is clear from context, we will omit the subscript.

2. Entwining structures

In this section, we introduce a categorical generalization of entwining structures

and entwined modules. We prove that the category of entwined modules is a

Grothendieck category. We begin by recalling the definition of modules over a

category (see, for instance, [29, 23]).
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Definition 2.1: A right module over a small K-linear category D is a K-linear

functor Dop −→ VectK , where VectK denotes the category of K-vector spaces.

Similarly, a left module over D is aK-linear functor D −→ VectK . The category

of all right (resp. left) modules overD will be denoted by Mod-D (resp. D-Mod).

For each X ∈ Ob(D), the representable functors

hX := HomD(−, X) and Xh := HomD(X,−)

are examples of right and left modules over D respectively. Unless otherwise

mentioned, by a D-module we will always mean a right D-module.

Let C be a K-coalgebra and let D be a small K-linear category. Suppose

that we have a collection of K-linear maps

ψ = {ψXY : C ⊗HomD(X,Y ) −→ HomD(X,Y )⊗ C}(X,Y )∈Ob(D)2 .

We use the notation ψXY (c ⊗ f) = fψ ⊗ cψ for c ∈ C and f ∈ HomD(X,Y ).

We will say that the tuple (D, C, ψ) is a (right-right) entwining structure if the

following conditions hold:

(gf)ψ ⊗ cψ = gψfψ ⊗ cψ
ψ
,(2.1)

εC(c
ψ)(fψ) = εC(c)f,(2.2)

fψ ⊗ΔC(c
ψ) = fψψ ⊗ c1

ψ ⊗ c2
ψ ,(2.3)

ψXX(c⊗ idX) = idX ⊗c,(2.4)

for each f ∈ HomD(X,Y ), g ∈ HomD(Y, Z) and c ∈ C. Throughout this paper,

(D, C, ψ) will always be an entwining structure. A morphism between entwining

structures (D′, C′, ψ′) and (D, C, ψ) is a pair (F , σ) where F : D′ −→ D is a

functor and σ : C′ −→ C is a counital coalgebra map such that

F (f ′ψ′)⊗ σ(c′ψ
′
) = F (f ′)ψ ⊗ σ(c′)ψ

for any c′ ⊗ f ′ ∈ C′ ⊗HomD′(X ′, Y ′) where X ′, Y ′ ∈ Ob(D′).
Definition 2.2: LetM be a rightD-module with a given right C-comodule struc-

ture ρM(Y ) : M(Y ) −→ M(Y ) ⊗ C on M(Y ) for each Y ∈ Ob(D). Then, M
is said to be an entwined module over (D, C, ψ) if the following compatibility

condition holds:

(2.5) ρM(Y )(M(f)(m)) = (M(f)(m))0 ⊗ (M(f)(m))1 = M(fψ)(m0)⊗m1
ψ
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for every f ∈ HomD(Y,X) and m ∈ M(X).We denote by M (ψ)CD the category

whose objects are entwined modules over (D, C, ψ) and whose morphisms are

given by

HomM (ψ)CD
(M,N ) := {η ∈ HomMod -D(M,N ) |η(X) : M(X) −→ N (X)

is C-colinear ∀X ∈ Ob(D)}
We now give an important example of entwining structures.

Example 2.3: Let D be a right co-H-category (see [16] or the description in [2,

Definition 2.4]) and C be a rightH-module coalgebra. Then, the triple (D, C, ψ)
is an entwining structure, where ψ is given by

ψXY : C ⊗HomD(X,Y ) −→ C ⊗HomD(X,Y )⊗H
∼=−→HomD(X,Y )⊗ C ⊗H

−→HomD(X,Y )⊗ C.

Explicitly, we have

ψXY (c⊗ f) := f0 ⊗ cf1

for any f ∈ HomD(X,Y ) and c ∈ C. In this case, an entwined module is

precisely a right D-module with a given right C-comodule structure on M(X)

for each X ∈ Ob(D) and satisfying the following compatibility condition:

(M(f)(m))0 ⊗ (M(f)(m))1 = M(f0)(m0)⊗m1f1.

We will refer to these modules as (right-right) Doi–Hopf modules and their

category will be denoted by MC
D . If D is a right co-H-category with a single

object, i.e., an H-comodule algebra, then MC
D recovers the classical notion of

Doi–Hopf modules (see [18]). In the particular case where C=H , the right-right

Doi–Hopf modules have been referred to as relative Hopf modules in [2, §5].

Lemma 2.4: Let (D, C, ψ) be an entwining structure and let M be a right

D-module. Then, we may obtain an object M⊗ C ∈ M (ψ)CD by setting

(M⊗ C)(X) :=M(X)⊗ C,

(M⊗ C)(f)(m⊗ c) :=M(fψ)(m)⊗ cψ,

for X ∈ Ob(D), f ∈ HomD(Y,X) and m ⊗ c ∈ M(X) ⊗ C. In fact, this

determines a functor from Mod -D to M (ψ)CD .
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Proof. The fact that M ⊗ C is a right D-module follows from (2.1). For

each X ∈ Ob(D), it may be verified that M(X) ⊗ C has a right C-comodule

structure given by

(2.6) πrM(X)⊗C(m⊗ c) := (idM(X)⊗ΔC)(m⊗ c) = m⊗ c1 ⊗ c2.

It remains to check the compatibility condition in (2.5). By definition, we have

(M(fψ)(m)⊗ cψ)0⊗(M(fψ)(m)⊗ cψ)1

= M(fψ)(m)⊗ (cψ)1 ⊗ (cψ)2

= M(fψψ)(m)⊗ c1
ψ ⊗ c2

ψ (using (2.3))

= (M⊗ C)(fψ)(m⊗ c1)⊗ c2
ψ .

Lemma 2.5: Let (D, C, ψ) be an entwining structure and N be a right C-como-

dule. Then, for each X ∈ Ob(D) we may obtain an object N ⊗ hX ∈ M (ψ)
C
D

by setting

(N ⊗ hX)(Y ) :=N ⊗ hX(Y ),(2.7)

(N ⊗ hX)(f)(n⊗ g) :=n⊗ gf,(2.8)

for Y ∈ Ob(D), f ∈ HomD(Z, Y ), n⊗ g ∈ N ⊗ hX(Y ). In fact, this determines

a functor from Comod -C to M (ψ)
C
D .

Proof. By definition, it follows that N ⊗ hX is a right D-module. Further, for

each Y ∈ Ob(D), we define a K-linear map

σrN⊗hX (Y ) : N ⊗ hX(Y ) −→ N ⊗ hX(Y )⊗ C

as follows:

σrN⊗hX(Y )(n⊗ g) := n0 ⊗ gψ ⊗ n1
ψ.(2.9)

We now verify that the map defined in (2.9) makes N ⊗hX(Y ) a right C-co-

module. We have

(σr ⊗ idC)σ
r(n⊗ g) = (σr ⊗ idC)(n0 ⊗ gψ ⊗ n1

ψ)

= n0 ⊗ gψψ ⊗ n1
ψ ⊗ n2

ψ

= n0 ⊗ gψ ⊗ΔC(n1
ψ) (by (2.3))

= (idN⊗hX(Y ) ⊗ΔC)σ
r(n⊗ g).



10 M. BALODI, A. BANERJEE AND S. RAY Isr. J. Math.

Moreover, using (2.2) we have

(idN⊗hX(Y ) ⊗εC)σr(n⊗ g) = (idN⊗hX(Z) ⊗εC)(n0 ⊗ gψ ⊗ n1
ψ)

= n0 ⊗ εC(n1
ψ)gψ = n0 ⊗ εC(n1)g = n⊗ g.

It remains to verify the condition in (2.5). We have

((N ⊗ hX)(f)(n⊗ g))0⊗((N ⊗ hX)(f)(n⊗ g))1

= n0 ⊗ (gf)ψ ⊗ n1
ψ

= n0 ⊗ gψfψ ⊗ n1
ψψ (by (2.1))

= (N ⊗ hX)(fψ)(n0 ⊗ gψ)⊗ n1
ψψ

= (N ⊗ hX)(fψ)((n ⊗ g)0)⊗ (n⊗ g)1
ψ
.

It follows from Lemma 2.4 and Lemma 2.5 that both hY ⊗C and C⊗hY are

objects in M (ψ)CD for every Y ∈ Ob(D).

Lemma 2.6: Let (D, C, ψ) be an entwining structure. Then, for each Y ∈Ob(D),

we get a morphismΨY : C⊗hY −→ hY ⊗C in M (ψ)
C
D given byΨY (X) := ψXY .

Proof. First we verify that ΨY is a morphism of right D-modules. For any

f ∈ HomD(X ′, X), g ∈ HomD(X,Y ) and c ∈ C, we have

((hY ⊗ C)(f))ψXY (c⊗ g) = (hY ⊗ C)(f)(gψ ⊗ cψ) = gψfψ ⊗ cψ
ψ
=(gf)ψ ⊗ cψ

= ψX′Y (c⊗ gf) = ψX′Y (C ⊗ hY )(f)(c⊗ g).

Next, we will show that ΨY (X) is C-colinear for every X ∈ Ob(D). We have

(ψXY (c⊗ g))0⊗(ψXY (c⊗ g))1

= gψ ⊗ΔC(c
ψ)

= gψψ ⊗ c1
ψ ⊗ c2

ψ (by (2.3))

= (ψXY ⊗ id)(c⊗ g)0 ⊗ (c⊗ g)1 (by (2.9)).

We now recall from [22, §3] and [23] the notion of a finitely generated module

over a category. Given M ∈ Mod-D, we set

el(M) :=
∐

X∈Ob(D)

M(X)

to be the collection of all elements of M. Since D is small, we note that el(M)

is a set. If m ∈ el(M) is such that m ∈ M(X), we will write |m| = X .
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Definition 2.7: Let D be a small preadditive category and let M be a

right D-module. For each m ∈ el(M), we consider the corresponding mor-

phism ηm : h|m| −→ M. A family of elements {mi ∈ el(M)}i∈I is said to be a

generating set for M if the induced morphism

η :
⊕
i∈I

h|mi| −→ M, (0, . . . , 0, id|mi|, 0, . . . , 0) 
→ mi

is an epimorphism in Mod -D. In other words, every element m ∈ el(M) may

be expressed as a sum m =
∑

i∈I M(fi)(mi), where each fi ∈ HomD(|m|, |mi|)
and all but finitely many {fi}i∈I are zero.

Lemma 2.8: Let (D, C, ψ) be an entwining structure and let M be an en-

twined module. We consider an element m ∈ el(M). Then, there exists a

finite-dimensional C-subcomodule Vm of M(|m|) containing m and a morphism

ηm : Vm ⊗ h|m| −→ M in M (ψ)
C
D such that ηm(|m|)(m⊗ id|m|) = m.

Proof. By [17, Theorem 2.1.7], we know that there exists a finite-dimensional C-

subcomodule Vm ⊆ M(|m|) such thatm ∈ Vm. Now, we consider the D-module

morphism ηm : Vm ⊗ h|m| −→ M defined by setting ηm(Y )(v ⊗ f) := M(f)(v)

for any Y ∈ Ob(D), f ∈ HomD(Y, |m|) and v ∈ Vm. We also have

ρM(Y )(ηm(Y )(v ⊗ f)) = ρM(Y )(M(f)(v))

= M(fψ)(v0)⊗ vψ1 = ηm(Y )(v0 ⊗ fψ)⊗ vψ1

= (ηm(Y )⊗ idC)(ρVm⊗h|m|(Y )(v ⊗ f)) (by (2.9)).

This shows that ηm(Y ) is C-colinear for each Y ∈ Ob(D). Hence, ηm is a

morphism in M (ψ)
C
D such that ηm(|m|)(m⊗ id|m|) = m.

Proposition 2.9: Let (D, C, ψ) be an entwining structure. Then, the category

M (ψ)
C
D of entwined modules is a Grothendieck category.

Proof. Given a morphism η : M −→ N in M (ψ)
C
D, let Ker(η) and Coker(η)

be respectively the kernel and cokernel in Mod -D. Since Comod -C is an

abelian category, we know that Ker(η)(X), Coker(η)(X) ∈ Comod -C for each

X ∈ Ob(D). It is easily seen that Ker(η) and Coker(η) satisfy the compatibility

condition in (2.5), i.e., Ker(η), Coker(η) ∈ M (ψ)
C
D. Since limits and colim-

its in M (ψ)CD are obtained from those in Mod -D and Comod -C, it is clear

that M (ψ)
C
D is a cocomplete abelian category satisfying (AB5).
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By Lemma 2.8, there is an epimorphism

⊕
m∈el(M)

ηm :
⊕

m∈el(M)

Vm ⊗ h|m| −→ M

for any M ∈ M (ψ)
C
D. As such, the collection {V ⊗ hX}, where X ranges

over all objects in D and V ranges over all (isomorphism classes of) finite-

dimensional C-comodules gives a set of generators for M (ψ)
C
D in the sense of

[20, Proposition 1.9.1].

Corollary 2.10: The category MC
D of Doi–Hopf modules is a Grothendieck

category.

3. Separability and Frobenius conditions

Let F : M (ψ)
C
D −→ Mod-D be the forgetful functor. The next result shows

that the functor F has a right adjoint.

Lemma 3.1: The forgetful functor F : M (ψ)CD −→ Mod-D has a right adjoint

G : Mod -D −→ M (ψ)
C
D given by

G (N ) := N ⊗ C

for each N ∈ Mod -D.

Proof. From Lemma 2.4, we know that G (N ) = N ⊗ C ∈ M (ψ)
C
D for each

N ∈ Mod -D. We define α : HomM (ψ)CD
(M,G (N )) −→ HomMod -D(F (M),N )

by setting

α(ξ)(X)(m) := (idN (X) ⊗εC)(ξ(X)(m))

for each ξ : M −→ N ⊗ C in M (ψ)
C
D, X ∈ Ob(D) and m ∈ M(X).

We also define β : HomMod -D(F (M),N ) −→ HomM (ψ)CD
(M,G (N )) by set-

ting

β(η)(X)(m) := η(X)(m0)⊗m1

for each η : M −→ N in Mod -D, X ∈ Ob(D) and m ∈ M(X). First we check

that α(ξ) and β(η) are morphisms in Mod -D and M (ψ)CD respectively. Using

the fact that idN ⊗εC : N ⊗C −→ N and ξ are right D-module morphisms, for
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any f ∈ HomD(Y,X), we have

N (f)(α(ξ)(X)(m)) = N (f)((idN (X) ⊗εC)(ξ(X)(m)))

= (idN (Y ) ⊗εC)(N (f) ⊗ idC)(ξ(X)(m))

= (idN (Y ) ⊗εC)(ξ(Y )M(f)(m))

= α(ξ)(Y )(M(f)(m)).

We also have

(N ⊗ C)(f)(β(η)(X)(m))

= (N ⊗ C)(f)(η(X)(m0)⊗m1)

= N (fψ)η(X)(m0)⊗m1
ψ (by Lemma 2.4)

= η(Y )M(fψ)(m0)⊗m1
ψ

= η(Y )((M(f)(m))0)⊗ (M(f)(m))1 (by (2.5))

= β(η)(Y )(M(f)(m))

Moreover, it is easy to see that β(η)(X) is C-colinear for each X ∈ Ob(D). We

now verify that α and β are inverses to each other:

β(α(ξ))(X)(m)

= α(ξ)(X)(m0)⊗m1

= (idN (X) ⊗εC)(ξ(X)(m0))⊗m1

= (idN (X) ⊗εC ⊗ idC)(ξ(X)⊗ idC)ρM(X)(m)

= (idN (X) ⊗εC ⊗ idC)π
r
N (X)⊗C(ξ(X)(m)) (ξ(X) is C-colinear)

= ξ(X)(m) (by (2.6))

Further, we have α(β(η))(X)(m) = η(X)(m0)εC(m1) = η(X)(m). This proves

the result.

We now describe the unit μ :1M (ψ)CD
−→G F and the counit ν :FG −→1Mod -D

of the adjunction in Lemma 3.1:

μ(M) : M −→ M⊗ C μ(M)(X)(m) = m0 ⊗m1,(3.1)

ν(N ) = idN ⊗εC : N ⊗ C −→ N ν(N )(X)(n ⊗ c) = εC(c)n,(3.2)

for each M ∈ M (ψ)
C
D, N ∈ Mod -D, X ∈ Ob(D).
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We recall that a functor F : A −→ B between arbitrary categories is said to

be separable if the natural transformation

η : HomA(−,−) −→ HomB(F (−), F (−))

induced by F is a split monomorphism (see [25], [26, §1]). The following result

provides a characterization of separable functors.

Theorem 3.2 ([26, Theorem 1.2]): Let F : A −→ B be a functor which has a

right adjoint G : B −→ A. Let μ and ν be the unit and counit of this adjunction

respectively. Then:

(i) F is separable if and only if there exists υ ∈ Nat(GF, 1A) such that

υ ◦ μ = 1A, the identity natural transformation on A.

(ii) G is separable if and only if there exists ζ ∈ Nat(1B, FG) such that

ν ◦ ζ = 1B, the identity natural transformation on B.
3.1. Separability conditions. Let (D, C, ψ) be an entwining structure. We

now investigate the separability of the forgetful functor F : M (ψ)
C
D −→ Mod-D.

Since F has a right adjoint G , it follows from Theorem 3.2 that the functor F is

separable if and only if there exists a natural transformation υ : G F −→ 1M (ψ)CD
such that υ ◦ μ = 1M (ψ)CD

, where μ is the unit of the adjunction as explained

in (3.1). Throughout Section 3,

V := Nat(G F , 1M (ψ)CD
)

will denote the K-space of all natural transformations from G F to 1M (ψ)CD
. We

will shortly give another useful interpretation of V . We start by proving a few

preparatory results required for this.

We recall from Lemma 2.4 and Lemma 2.5 that both hY ⊗C and C⊗hY are

objects in M (ψ)
C
D for every Y∈Ob(D). We define a functor h⊗ C:D−→M (ψ)

C
D

as

(h⊗ C)(Y ) := hY ⊗ C,(3.3)

(h⊗ C)(f)(Z)(g ⊗ c) := fg ⊗ c,(3.4)

for f ∈ HomD(Y,X), g ∈ hY (Z) and c ∈ C. Similarly, we may also obtain a

functor h⊗ C ⊗ C : D −→ M (ψ)CD.
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Lemma 3.3: Let f ∈ HomD(Y,X). For any υ ∈ V and c, d ∈ C, we have

(3.5)
((idhX ⊗εC)υ(hX ⊗ C))(Y )(f ⊗ c⊗ d)

=f ◦ ((εC ⊗ idhY )υ(C ⊗ hY ))(Y )(c⊗ idY ⊗d).
In particular, we have

(3.6)
((idhX ⊗εC)υ(hX ⊗ C))(X)(idX ⊗c⊗ d)

=((εC ⊗ idhX )υ(C ⊗ hX))(X)(c⊗ idX ⊗d).
Proof. A morphism f : Y −→ X in D induces morphisms hY ⊗ C −→ hX ⊗ C

and hY ⊗ C ⊗ C −→ hX ⊗ C ⊗ C in M (ψ)
C
D as explained in (3.4). Since

υ : G F −→ 1M (ψ)CD
is a natural transformation, it follows that the following

diagram commutes:

hY (Y )⊗ C ⊗ C

υ(hY⊗C)(Y )

��

f
�� hX(Y )⊗ C ⊗ C

υ(hX⊗C)(Y )

��

hY (Y )⊗ C

(idhY
⊗εC)(Y )

��

f
�� hX(Y )⊗ C

(idhX
⊗εC)(Y )

��

hY (Y )
f

�� hX(Y ).

Thus, we have

(3.7)
f ◦ ((idhY ⊗εC)υ(hY ⊗ C))(Y )(idY ⊗c⊗ d)

=((idhX ⊗εC)υ(hX ⊗ C))(Y )(f ⊗ c⊗ d).

We now consider the morphism ΨY : C ⊗ hY −→ hY ⊗ C in M (ψ)
C
D

given by ΨY (X) := ψXY as in Lemma 2.6. Then, using the naturality of

υ : G F −→ 1M (ψ)CD
and (2.2) we have the following commutative diagram:

C ⊗ hY (Y )⊗ C
ψY Y ⊗idC−−−−−−→ hY (Y )⊗ C ⊗ C

υ(C⊗hY )(Y )

⏐⏐� ⏐⏐�υ(hY ⊗C)(Y )

C ⊗ hY (Y )
ψY Y−−−−→ hY (Y )⊗ C

(εC⊗idhY
)(Y )

⏐⏐�
⏐⏐�(idhY

⊗εC)(Y )

hY (Y )
idhY

(Y )−−−−−→ hY (Y ).
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Using the fact that ψY Y (c⊗ idY ) = idY ⊗c, we now have

(3.8)
((idhY ⊗εC)υ(hY ⊗ C))(Y )(idY ⊗c⊗ d)

=((εC ⊗ idhY )υ(C ⊗ hY ))(Y )(c⊗ idY ⊗d).
Combining (3.7) and (3.8), we have

(3.9)
((idhX ⊗εC)υ(hX ⊗ C))(Y )(f ⊗ c⊗ d)

=f ◦ ((εC ⊗ idhY )υ(C ⊗ hY ))(Y )(c⊗ idY ⊗d).
By putting Y =X and taking f=idX , the result of (3.6) is clear from (3.9).

Lemma 3.4: For any υ ∈ V and Y ∈ Ob(D), we have

υ(C ⊗ C ⊗ hY ) = idC ⊗υ(C ⊗ hY )

as a morphism of D-modules.

Proof. For each d ∈ C, we define ηd : C ⊗ hY −→ C ⊗ C ⊗ hY by

ηd(X)(c⊗ g) := d⊗ c⊗ g

for each X ∈ Ob(D), g ∈ hY (X) and c ∈ C. It may be easily verified that ηd is

a morphism of right D-modules. We now verify that

ηd(X) : C ⊗ hY (X) −→ C ⊗ C ⊗ hY (X)

is right C-colinear. We have

σrC⊗C⊗hY (X)(ηd(X)(c⊗ g))

= σrC⊗C⊗hY (X)(d⊗ c⊗ g) = (d⊗ c)0 ⊗ gψ ⊗ (d⊗ c)1
ψ

= d⊗ c1 ⊗ gψ ⊗ c2
ψ = (ηd(X)⊗ idC)(c1 ⊗ gψ ⊗ c2

ψ)

= (ηd(X)⊗ idC)σ
r
C⊗hY (X)(c⊗ g).

Thus, ηd : C ⊗hY −→ C ⊗C ⊗hY is a morphism in M (ψ)
C
D. Therefore, using

the naturality of υ, we have the following commutative diagram:

C ⊗ hY (X)⊗ C
υ(C⊗hY )(X)−−−−−−−−−→ C ⊗ hY (X)

ηd(X)⊗idC
⏐⏐� ⏐⏐�ηd(X)

C ⊗ C ⊗ hY (X)⊗ C
υ(C⊗C⊗hY )(X)−−−−−−−−−−−→ C ⊗ C ⊗ hY (X).



Vol. TBD, 2021 ENTWINED MODULES 17

Thus, for any g ∈ HomD(X,Y ) and c, c′ ∈ C, we get

(3.10)

υ(C ⊗ C ⊗ hY )(X)(d⊗ c⊗ g ⊗ c′)

= (υ(C ⊗ C ⊗ hY )(ηd ⊗ idC))(X)(c⊗ g ⊗ c′)

= (ηd ◦ υ(C ⊗ hY ))(X)(c ⊗ g ⊗ c′)

= d⊗ υ(C ⊗ hY )(X)(c⊗ g ⊗ c′)

= (idC ⊗υ(C ⊗ hY ))(X)(d⊗ c⊗ g ⊗ c′).

The result follows.

We now proceed to give another interpretation of V = Nat(G F , 1M (ψ)CD
).

We consider a collection θ := {θX : C ⊗ C −→ EndD(X)}X∈Ob(D) of K-linear

maps satisfying the following conditions:

(θX(c⊗ d)) ◦ f = fψψ ◦ θY (cψ ⊗ dψ),(3.11)

θX(c⊗ d1)⊗ d2 =(θX(c2 ⊗ d))ψ ⊗ c1
ψ,(3.12)

for any f ∈ HomD(Y,X). Let V1 be the K-space consisting of all such θ.

Proposition 3.5: Let υ ∈ V = Nat(G F , 1M (ψ)CD
). For each X ∈ Ob(D), we

define a K-linear map

θX : C ⊗ C −→ EndD(X), c⊗ d 
→ ((idhX ⊗εC)υ(hX ⊗ C))(X)(idX ⊗c⊗ d).

Then, θ := {θX}X∈Ob(D) is an element in V1.

Proof. Since idhX ⊗εC : hX ⊗C −→ hX is a morphism of right D-modules, we

have

(3.13) (θX(c⊗ d)) ◦ f = (idhX ⊗εC)(Y )(υ(hX ⊗ C)(X)(idX ⊗c⊗ d) · f)
for f ∈ HomD(Y,X) and c, d ∈ C. Since υ(hX ⊗ C) : hX ⊗C ⊗C −→ hX ⊗C

is a morphism of right D-modules, we also have

(3.14)

(υ(hX ⊗ C)(X)(idX ⊗c⊗ d)) · f
= υ(hX ⊗ C)(Y )((idX ⊗c⊗ d) · f)
= υ(hX ⊗ C)(Y )((hX ⊗ C ⊗ C)(f)(idX ⊗c⊗ d))

= υ(hX ⊗ C)(Y )((hX ⊗ C)(fψ)(idX ⊗c)⊗ dψ)

= υ(hX ⊗ C)(Y )(hX(fψψ)(idX)⊗ cψ ⊗ dψ)

= υ(hX ⊗ C)(Y )(fψψ ⊗ cψ ⊗ dψ).
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The morphism fψψ : Y −→ X in D induces morphisms hY ⊗ C −→ hX ⊗ C

and hY ⊗ C ⊗ C −→ hX ⊗ C ⊗ C in M (ψ)CD. Therefore, we have

(θX(c⊗ d)) ◦ f=(idhX ⊗εC)(Y )(υ(hX ⊗ C)(X)(idX ⊗c⊗ d) · f) (by (3.13))

=((idhX ⊗εC)υ(hX ⊗ C))(Y )(fψψ ⊗ cψ ⊗ dψ) (by (3.14))

=fψψ ◦ ((idhY ⊗εC)υ(hY ⊗ C))(Y )(idY ⊗cψ ⊗ dψ) (by (3.7))

=fψψ ◦ θY (cψ ⊗ dψ).

This proves (3.11). We now verify that θ satisfies (3.12). Using Lemma 2.5,

we know that C ⊗ hY and C ⊗C ⊗ hY belong to M (ψ)CD for each Y ∈ Ob(D).

For each X ∈ Ob(D), it may be easily seen that C ⊗ hY (X) is also a left

C-comodule with coaction given by

ρlY (X) := ΔC ⊗ idhY (X) .

Moreover, it may be easily verified that the following diagram commutes:

C ⊗ hY (X)
ρlY (X)−−−−→ C ⊗ C ⊗ hY (X)

σrC⊗hY (X)

⏐⏐�
⏐⏐�σrC⊗C⊗hY (X)

C ⊗ hY (X)⊗ C
ρlY (X)⊗id−−−−−−→ C ⊗ C ⊗ hY (X)⊗ C.

This shows that ρlY (X) is a morphism of right C-comodules. Further, for any

g ∈ HomD(X,X ′), we have the following commutative diagram:

C ⊗ hY (X
′)

ρlY (X′)−−−−−→ C ⊗ C ⊗ hY (X
′)

(C⊗hY )(g)

⏐⏐� ⏐⏐�(C⊗C⊗hY )(g)

C ⊗ hY (X)
ρlY (X)−−−−→ C ⊗ C ⊗ hY (X).

Thus, ρlY : C ⊗ hY −→ C ⊗C ⊗ hY is a morphism of right D-modules. This

shows that ρlY is a morphism in the category M (ψ)CD. Therefore, using the

naturality of υ and Lemma 3.4, we have the following commutative diagram:

C ⊗ hY (X)⊗ C
υ(C⊗hY )(X)−−−−−−−−−→ C ⊗ hY (X)

ρlY (X)⊗idC
⏐⏐� ⏐⏐�ρlY (X)

C ⊗ C ⊗ hY (X)⊗ C
υ(C⊗C⊗hY )(X)=idC ⊗υ(C⊗hY )(X)−−−−−−−−−−−−−−−−−−−−−−−−→ C ⊗ C ⊗ hY (X).
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For any c⊗ idX ⊗d ∈ C ⊗ hX(X)⊗ C, we set

ai ⊗ fi := υ(C ⊗ hX)(X)(c⊗ idX ⊗d),

Then, we have

ρlX(X)(ai ⊗ fi) = ai1 ⊗ ai2 ⊗ fi = (idC ⊗υ(C ⊗ hX)(X))(c1 ⊗ c2 ⊗ idX ⊗d).

Now applying the map idC ⊗εC ⊗ idhX to both sides, we get

ai ⊗ fi = c1 ⊗ ((εC ⊗ idhX )υ(C ⊗ hX))(X)(c2 ⊗ idX ⊗d)
= c1 ⊗ ((idhX ⊗εC)υ(hX ⊗ C))(X)(idX ⊗c2 ⊗ d) (by Lemma 3.3)

= c1 ⊗ θX(c2 ⊗ d).

Therefore, we have

(3.15) ψ(ai ⊗ fi) = (θX(c2 ⊗ d))ψ ⊗ c1
ψ .

Since υ(C ⊗ hY )(X) is a morphism of right C-comodules, we also have the

following commutative diagram:

C ⊗ hY (X)⊗ C
υ(C⊗hY )(X)−−−−−−−−−→ C ⊗ hY (X)

πrC⊗hY (X)⊗C

⏐⏐� ⏐⏐�σrC⊗hY (X)

C ⊗ hY (X)⊗ C ⊗ C
υ(C⊗hY )(X)⊗idC−−−−−−−−−−−−→ C ⊗ hY (X)⊗ C

Thus, we have

σrC⊗hX(X)(ai ⊗ fi) = ai1 ⊗ fiψ ⊗ ai2
ψ

=(υ(C ⊗ hX)(X)⊗ idC)(c⊗ idX ⊗d1 ⊗ d2).

Now, applying the map εC ⊗ idhX ⊗ idC to both sides, we get

εC(ai1)(fiψ ⊗ ai
ψ
2 )

= ((εC ⊗ idhX )υ(C ⊗ hX))(X) (c⊗ idX ⊗d1)⊗ d2

= ((idhX ⊗εC)υ(hX ⊗ C))(X) (idX ⊗c⊗ d1)⊗ d2 (by Lemma 3.3).

Therefore,

(3.16) ψ(ai ⊗ fi) = θX(c⊗ d1)⊗ d2.

It now follows from (3.15) and (3.16) that θ satisfies (3.12).
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Proposition 3.6: Let θ∈V1. Then, we have an element υ∈Nat(G F , 1M (ψ)CD
)

defined by

υ(M) : M⊗ C −→ M, m⊗ c 
→ M(θX(m1 ⊗ c))(m0),

for M ∈ Ob(M (ψ)
C
D), X ∈ Ob(D), m ∈ M(X) and c ∈ C.

Proof. We need to verify that υ(M) : M⊗C −→ M is a morphism in M (ψ)CD
and that υ is indeed a natural transformation. We first verify that υ(M) is a

morphism of right D-modules. Let f ∈ HomD(Y,X). Then, we have

M(f)(υ(M)(X))(m⊗ c)

= M(f)M(θX(m1 ⊗ c))(m0)

= M((θX(m1 ⊗ c)) ◦ f)(m0)

= M(fψψ ◦ θY (mψ
1 ⊗ cψ))(m0) (by (3.11))

= M(θY (m
ψ
1 ⊗ cψ))M(fψψ)(m0)

= M(θY ((M(fψ)(m))1 ⊗ cψ))(M(fψ)(m))0 (by (2.5))

= υ(M)(Y )(M(fψ)(m)⊗ cψ)

= υ(M)(Y )(M⊗ C)(f)(m ⊗ c).

We now verify that υ(M)(X) : M(X) ⊗ C −→ M(X) is a morphism of right

C-comodules for every X ∈ Ob(D). For each m⊗ c ∈ M(X)⊗ C, we have

(υ(M)(X)⊗ idC)π
r(m⊗ c)

= υ(M)(X)(m⊗ c1)⊗ c2

= M(θX(m1 ⊗ c1))(m0)⊗ c2

= M((θX((m1)2 ⊗ c))ψ)(m0)⊗ (m1)1
ψ

(by (3.12))

= M((θX(m1 ⊗ c))ψ)(m0)0 ⊗ (m0)1
ψ

= ρM(X)(M(θX(m1 ⊗ c))(m0)) (by (2.5))

= ρM(X)(υ(M)(X)(m⊗ c)).

It remains to show that υ : G F −→ 1M (ψ)CD
is a natural transformation.

Let η : M −→ N be a morphism in M (ψ)
C
D. Then, for every X ∈ Ob(D)
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and m⊗ c ∈ M(X)⊗ C, we have

(υ(N )(η ⊗ idC))(X)(m⊗ c)

= υ(N )(X)(η(X)(m) ⊗ c)

= N (θX((η(X)(m))1 ⊗ c))(η(X)(m))0

= N (θX(m1 ⊗ c))η(X)(m0) (since η(X) is C-colinear)

= η(X)M(θX(m1 ⊗ c))(m0)

= η(X)υ(M)(X)(m⊗ c).

This proves the result.

Proposition 3.7: TheK-spaces V =Nat(G F , 1M (ψ)CD
) and V1 are isomorphic.

Proof. We define α : V −→ V1 by setting α(υ) = θ, where θ is the collection of

K-linear maps {θX : C ⊗ C −→ EndD(X)}X∈Ob(D) defined by

θX(c⊗ d) := ((idhX ⊗εC)υ(hX ⊗ C))(X)(idX ⊗c⊗ d)

for c, d ∈ C. Then, α is a well-defined map by Proposition 3.5. We also define

β : V1 −→ V by setting β(θ) = υ, where υ : G F −→ 1M (ψ)CD
is defined by

(3.17) υ(M) : M⊗ C −→ M, m⊗ c 
→ M(θX(m1 ⊗ c))(m0),

for M ∈ Ob(M (ψ)
C
D), X ∈ Ob(D), m⊗ c ∈ M(X)⊗C. By Proposition 3.6, β

is well-defined. We will now verify that α and β are inverses of each other. Let

θ ∈ V1. Then, for any X,Y ∈ Ob(D), we have

(αβ(θ))X (c⊗ d)

= (idhX ⊗εC)(X)(β(θ)(hX ⊗ C)(X)(idX ⊗c⊗ d))

= (idhX ⊗εC)(X)(hX ⊗ C)(θX((idX ⊗c)1 ⊗ d))(idX ⊗c)0
= (idhX ⊗εC)(X)(hX ⊗ C)(θX(c2 ⊗ d))(idX ⊗c1)
= (idhX ⊗εC)(X)(hX((θX(c2 ⊗ d))ψ)(idX)⊗ c1

ψ) (by Lemma 2.4)

= (idhX ⊗εC)(X)(hX(θX(c⊗ d1))(idX)⊗ d2) (by (3.12))

= (θX(c⊗ d1))εC(d2) = θX(c⊗ d).

This proves that (αβ(θ))X = θX for all X ∈ Ob(D). Therefore, (αβ)(θ) = θ.

For any υ ∈ V , we now verify that (βα)(υ) = υ. We set θ = α(υ). Then, by
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definition we have

(3.18)

(βα)(υ)(M)(X)(m⊗ c)

= ((β(θ))(M))(X)(m ⊗ c)

= M(θX(m1 ⊗ c))(m0)

= M((idhX ⊗εC)(X)υ(hX ⊗ C)(X)(idX ⊗m1 ⊗ c))(m0).

For any m′ ∈ M(X), it may be easily verified that ηm′ : hX −→ M defined by

ηm′(Y )(f) := M(f)(m′)

for each f ∈ HomD(Y,X) is a morphism in Mod -D. By Lemma 2.4, this induces

the morphism ηm′ ⊗ idC : hX ⊗ C −→ M⊗ C in M (ψ)CD defined by

(ηm′ ⊗ idC)(Y )(f ⊗ c) := M(f)(m′)⊗ c

for f ∈ HomD(Y,X) and c ∈ C. Since υ is a natural transformation, it follows

easily that the following diagram commutes:

hX(X)⊗ C ⊗ C
ηm′ (X)⊗idC ⊗ idC−−−−−−−−−−−−→ M(X)⊗ C ⊗ C

υ(hX⊗C)(X)

⏐⏐� ⏐⏐�υ(M⊗C)(X)

hX(X)⊗ C
ηm′ (X)⊗idC−−−−−−−−→ M(X)⊗ C

(idhX
⊗εC)(X)

⏐⏐� ⏐⏐�(idM ⊗εC)(X)

hX(X)
ηm′ (X)−−−−−→ M(X).

In particular, we have

(3.19)
M(((idhX ⊗εC)υ(hX ⊗ C))(X)(idX ⊗m1 ⊗ c))(m0)

=((idM⊗εC)υ(M⊗ C))(X)(m0 ⊗m1 ⊗ c).

The comodule structure on entwined modules determines a morphism in

M (ψ)CD as follows. We define ρ̃ : M −→ M⊗ C given by

ρ̃(X) := ρM(X) : M(X) −→ M(X)⊗ C

for any M ∈ Ob(M (ψ)CD) and X ∈ Ob(D). We first verify that ρ̃ is a morphism

of right D-modules. For any f ∈ HomD(Y,X) and m ∈ M(X), we have

(M⊗ C)(f)(ρ̃(X)(m)) = (M⊗ C)(f)(m0 ⊗m1)

= M(fψ)(m0)⊗m1
ψ

= ρM(Y )(M(f)(m)) = ρ̃(Y )(M(f)(m)) (by (2.5)).
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It may be verified easily that ρ̃(X) : M(X) −→ M(X)⊗C is right C-colinear.

Thus, ρ̃ : M −→ M ⊗ C is a morphism in M (ψ)
C
D. Therefore, we have the

following commutative diagram:

M(X)⊗ C
υ(M)(X)−−−−−−→ M(X)

ρ̃(X)⊗idC
⏐⏐� ⏐⏐�ρ̃(X)

M(X)⊗ C ⊗ C
υ(M⊗C)(X)−−−−−−−−→ M(X)⊗ C.

Thus, we get

υ(M⊗ C)(X)((ρ̃(X)⊗ idC)(m⊗ c)) = υ(M⊗ C)(X)(m0 ⊗m1 ⊗ c)

= ρ̃(X)(υ(M)(X)(m⊗ c))

= ρM(X)(υ(M)(X)(m⊗ c)).

Now applying idM(X) ⊗εC on both sides, we obtain

(βα)(υ)(M)(X)(m ⊗ c) = (idM⊗εC)(X)υ(M⊗ C)(X)(m0 ⊗m1 ⊗ c)

= υ(M)(X)(m⊗ c).

Theorem 3.8: Let F : M (ψ)
C
D −→ Mod-D be the forgetful functor and

G : Mod -D −→ M (ψ)CD, N 
→ N ⊗ C

be its right adjoint. Then, F is separable if and only if there exists θ ∈ V1 such

that

θX ◦ΔC = εC · idX ∀X ∈ Ob(D).

Proof. We first recall from (3.1) that the unit of the adjunction is given by

μ(M) : M −→ M⊗ C, μ(M)(X)(m) = m0 ⊗m1,

for M ∈ Ob(M (ψ)
C
D) and m ∈ M(X). Suppose that F is separable. Then, by

Theorem 3.2, there exists υ ∈ V such that υ ◦ μ = 1M (ψ)CD
. Therefore, using

Proposition 3.7, corresponding to υ ∈ V we can obtain an element θ ∈ V1 given

by

θX(c⊗ d) = ((idhX ⊗εC)υ(hX ⊗ C))(X)(idX ⊗c⊗ d)
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for each c, d ∈ C. Moreover, we have

(θX ◦ΔC)(c) = ((idhX ⊗εC)υ(hX ⊗ C))(X)(idX ⊗c1 ⊗ c2)

= ((idhX ⊗εC)υ(hX ⊗ C))(X)(μ(hX ⊗ C)(X))(idX ⊗c)
= ((idhX ⊗εC)(idhX⊗C))(X)(idX ⊗c)
= (idhX (X)⊗ εC)(idX ⊗c) = εC(c) idX

for any c ∈ C. Conversely, suppose that θ ∈ V1 is such that

θX ◦ΔC = εC · idX
for every X ∈ Ob(D). Corresponding to θ ∈ V1 there exists υ ∈ V defined by

υ(M) : M⊗ C −→ M, m⊗ c 
→ M(θX(m1 ⊗ c))(m0),

for M ∈ Ob(M (ψ)CD), X ∈ Ob(D), m ∈ M(X) and c ∈ C. Further, we have

(υ ◦ μ)(M)(X)(m) = υ(M)(X)(μ(M)(X)(m))

= υ(M)(X)(m0 ⊗m1)

= M(θX((m0)1 ⊗m1))(m0)0

= M(θX((m1)1 ⊗ (m1)2))(m0)

= M((θX ◦ΔC)(m1))(m0)

= M((idX)εC(m1))(m0) = m.

This shows that υ ◦ μ = 1M (ψ)CD
. Hence, F is separable by Theorem 3.2.

Next we investigate the separability of the functor G : Mod -D −→ M (ψ)
C
D

given by

G (N ) = N ⊗ C

for any N ∈ Mod -D. Since G is a right adjoint of F , it follows from The-

orem 3.2 that the functor G is separable if and only if there exists a natural

transformation ω : 1Mod -D −→ FG such that

ν ◦ ω = 1Mod -D,

where ν is the counit of the adjunction as explained in (3.2). We set

W := Nat(1Mod -D,FG )

and proceed to give another interpretation of W .
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We define h : Dop ⊗D −→ VectK as

h(X,Y ) := HomD(X,Y ), (h(φ))(f) := φ′′fφ′,(3.20)

for any (X,Y ) ∈ Ob(Dop⊗D), φ := (φ′, φ′′) ∈ HomDop⊗D((X,Y ), (X ′, Y ′)) and
f ∈ HomD(X,Y ). Similarly, we define the functor h⊗ C : Dop ⊗ D −→ VectK

as

(3.21)
(h⊗ C)(X,Y ) := HomD(X,Y )⊗ C,

((h⊗ C)(φ))(f ⊗ c) := φ′′fφ′ψ ⊗ cψ

for any (X,Y ) ∈ Ob(Dop ⊗ D), φ := (φ′, φ′′) ∈ HomDop⊗D((X,Y ), (X ′, Y ′)),
f ∈ HomD(X,Y ) and c ∈ C. By slight abuse of notation, we will make no

distinction between functors Dop ⊗ D −→ VectK and functors D −→ Mod -D.

We observe that h⊗C : Dop ⊗D −→ VectK corresponds to F ◦ (h⊗C) when

viewed as a functor from D −→ Mod -D.

Given a natural transformation η : h −→ h⊗ C, it is easy to see that

η(−, Y ) : hY = HomD(−, Y ) −→ hY ⊗ C = HomD(−, Y )⊗ C

is a morphism of right D-modules for each Y ∈ Ob(D). Similarly, for each

X ∈ Ob(D),

η(X,−) : Xh = HomD(X,−) −→ Xh⊗ C = HomD(X,−)⊗ C

is a morphism of left D-modules.

Throughout the rest of this section, we set W1 := Nat(h, h⊗C), the K-space

consisting of all natural transformations between the functors h and h⊗ C.

Lemma 3.9: Let η ∈ W1. We set η(X,X)(idX) =
∑
aX ⊗ cX for each

X ∈ Ob(D) and η(Y, Z)(g) :=
∑
ĝ ⊗ cg for any g ∈ HomD(Y, Z). Then,

η(Y, Z)(g) =
∑

ĝ ⊗ cg =
∑

aZgψ ⊗ cZ
ψ =

∑
gaY ⊗ cY .

Proof. Since η(−, Z) : hZ −→ hZ ⊗ C is a morphism of right D-modules for

each Z ∈ Ob(D), we have the following commutative diagram:

hZ(Z)
η(Z,Z)−−−−→ hZ(Z)⊗ C

hZ(g)

⏐⏐� ⏐⏐�(hZ⊗C)(g)

hZ(Y )
η(Y,Z)−−−−→ hZ(Y )⊗ C.
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This diagram along with Lemma 2.4 gives

(3.22)

η(Y, Z)(g) =
∑

((hZ ⊗ C)(g))(aZ ⊗ cZ)

=
∑

hZ(gψ)(aZ)⊗ cZ
ψ

=
∑

aZgψ ⊗ cZ
ψ .

Since η(Y,−) : Y h −→ Y h ⊗ C is a morphism of left D-modules, we also have

the following commutative diagram:

Y h(Y )
η(Y,Y )−−−−→ Y h(Y )⊗ C

Y h(g)

⏐⏐� ⏐⏐�(Y h⊗C)(g)

Y h(Z)
η(Y,Z)−−−−→ Y h(Z)⊗ C

This gives

(3.23) η(Y, Z)(g) = (Y h⊗ C)(g)
(∑

aY ⊗ cY

)
=

∑
gaY ⊗ cY .

The result now follows from (3.22) and (3.23).

Proposition 3.10: The K-spaces

W = Nat(1Mod -D,FG ) and W1 = Nat(h, h⊗ C)

are isomorphic.

Proof. We define a K-linear map γ :W −→W1 by setting

η = γ(ω) : h −→ h⊗ C, η(X,Y ) := ω(hY )(X),

for any (X,Y ) ∈ Ob(Dop⊗D). We now verify that the map is well-defined. Let

φ := (φ′, φ′′) ∈ HomDop⊗D((X,Y ), (X ′, Y ′)).

Since ω(hY ) : hY −→ hY ⊗ C is a morphism of right D-modules, we have the

following commutative diagram:

(3.24)

hY (X)
ω(hY )(X)−−−−−−→ hY (X)⊗ C

hY (φ′)

⏐⏐�
⏐⏐�(hY ⊗C)(φ′)

hY (X
′)

ω(hY )(X′)−−−−−−−→ hY (X
′)⊗ C.
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The morphism φ′′ : Y −→ Y ′ in D induces a morphism φ′′ : hY −→ hY ′ of

right D-modules. Therefore, using the naturality of ω, we get the following

commutative diagram:

(3.25)

hY (X
′)

ω(hY )(X′)−−−−−−−→ hY (X
′)⊗ C

X′h(φ′′)=hφ′′(X
′)
⏐⏐�

⏐⏐�(X′h(φ′′)⊗idC)=(hφ′′ (X
′)⊗idC)

hY ′(X ′)
ω(hY ′ )(X′)−−−−−−−→ hY ′(X ′)⊗ C.

We now observe that for f ∈ HomD(X,Y ), we have

(h(φ))(f) = φ′′fφ′ =X′ h(φ′′)(hY (φ′)(f)),

((h⊗ C)(φ))(g ⊗ c) = φ′′gφ′ψ ⊗ cψ = (X′h(φ′′)⊗ idC)((hY ⊗ C)(φ′)(g ⊗ c)).

Thus, by combining the diagrams (3.24) and (3.25), we obtain the following

commutative diagram:

h(X,Y )
η(X,Y )−−−−−→ h(X,Y )⊗ C

h(φ)

⏐⏐� ⏐⏐�(h⊗C)(φ)

h(X ′, Y ′)
η(X′,Y ′)−−−−−−→ h(X ′, Y ′)⊗ C.

This shows that η ∈W1.

Conversely, let η ∈ W1 = Nat(h, h⊗ C). For any Y ∈ Ob(D),

(3.26) η(−, Y ) : hY −→ hY ⊗ C

is a morphism of right D-modules. For any f ∈ HomD(X,Y ), the naturality of

η gives us the following commutative diagram:

(3.27)

hX = HomD(−, X)
η(−,X)−−−−−→ HomD(−, X)⊗ C = hX ⊗ C

h(−,f)
⏐⏐� ⏐⏐�h(−,f)⊗idC

hY = HomD(−, Y )
η(−,Y )−−−−−→ HomD(−, Y )⊗ C = hY ⊗ C.

Now, for any M in Mod-D, we know that

M = colim
y∈el(M)

h|y|.

Similarly,

M⊗ C = colim
y∈el(M)

(h|y| ⊗ C)
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where the colimit is taken in Mod -D. Thus, the morphisms as in (3.26) induce

a morphism ω(M) : M −→ M ⊗ C of right D-modules. Moreover, for any

morphism M ζ−→ N in Mod-D, the commutative diagrams as in (3.27) induce

the following equality:

(ζ ⊗ idC) ◦ ω(M) = ω(N ) ◦ ζ.
Therefore, for η ∈ W1 we have obtained a natural transformation

ω : 1Mod -D −→ FG

in W . We will denote this K-linear map by δ : W1 −→ W , i.e., δ(η) = ω

determined by ω(hY ) := η(−, Y ) for each Y ∈ Ob(D). It may be easily verified

that the morphisms γ and δ are inverses of each other.

Theorem 3.11: Let F : M (ψ)
C
D −→ Mod-D be the forgetful functor and

G : Mod-D −→ M (ψ)
C
D, N 
→ N ⊗C be its right adjoint. Then G is separable

if and only if there exists η ∈W1 = Nat(h, h⊗ C) such that

(3.28) (idh⊗εC)η = idh .

Proof. Suppose that G is separable. Then, by Theorem 3.2, there exists

ω ∈W = Nat(1Mod -D,FG ) such that ν ◦ω = 1Mod -D, where ν is the counit of

the adjunction. Using Proposition 3.10, corresponding to ω ∈ W , there exists an

element η ∈ W1 given by η(X,Y ) = ω(hY )(X) for every (X,Y ) ∈ Ob(Dop⊗D).

The condition (3.28) now follows from the definition of the counit in (3.2).

Conversely, let η ∈ W1 be such that (idh⊗εC)η = idh. We consider

ω : 1Mod -D −→ FG given by ω(hY ) := η(−, Y ) for each Y ∈ Ob(D). Then,

(idhY ⊗εC)ω(hY ) = (idhY ⊗εC)η(−, Y ) = idhY .

Since F is a left adjoint and it is clear from the definition that G preserves

colimits, we obtain that (idN ⊗εC)ω(N ) = idN for any N ∈ Mod-D, i.e.,

(id⊗εC)ω = 1Mod -D.

Therefore, G is separable by Theorem 3.2.

3.2. Frobenius conditions. Let F : A −→ B be a functor which has a right

adjoint G : B −→ A. Then, the pair (F,G) is called a Frobenius pair if G is

both a right and a left adjoint of F . We recall the following characterization

for Frobenius pairs (see [8, §1]):
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Theorem 3.12: Let F : A −→ B be a functor which has a right adjoint G.

Then, (F,G) is a Frobenius pair if and only if there exist υ ∈ Nat(GF, 1A) and
ω ∈ Nat(1B, FG) such that

F (υ(M)) ◦ ω(F (M)) = idF (M),(3.29)

υ(G(N)) ◦G(ω(N)) = idG(N),(3.30)

for all M ∈ A and N ∈ B.
Lemma 3.13: For any ω∈W=Nat(1Mod -D,FG ), N∈Comod-C and Y∈Ob(D),

we have

ω(N ⊗ hY ) = idN ⊗ω(hY ).
Proof. For each n ∈ N , we define ζn : hY −→ N ⊗ hY by

ζn(X)(f) := n⊗ f

for any X ∈ Ob(D) and f ∈ HomD(X,Y ). It may be easily verified that ζn is

a morphism of right D-modules. Therefore, using the naturality of ω, we have

the following commutative diagram:

hY (X)
ω(hY )(X)−−−−−−→ hY (X)⊗ C

ζn(X)

⏐⏐�
⏐⏐�ζn(X)⊗idC

N ⊗ hY (X)
ω(N⊗hY )(X)−−−−−−−−−→ N ⊗ hY (X)⊗ C.

Let f ∈ HomD(X,Y ). We set

ω(hY )(X)(f) =
∑

f̂ ⊗ cf .

Then, we have

ω(N ⊗ hY )(X)(n⊗ f) = (ζn(X)⊗ idC)ω(hY )(X)(f)

=
∑

(ζn(X)⊗ idC)(f̂ ⊗ cf )

=
∑

n⊗ f̂ ⊗ cf

= (idN ⊗ω(hY ))(X)(n⊗ f).

The result follows.
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Theorem 3.14: Let F : M (ψ)CD −→ Mod-D be the forgetful functor and

G : Mod-D −→ M (ψ)
C
D, N 
→ N ⊗ C be its right adjoint. Then, (F ,G ) is

a Frobenius pair if and only if there exist θ ∈ V1 and η ∈ W1 such that the

following conditions hold:

εC(d)f =
∑

f̂ ◦ θX(cf ⊗ d),(3.31)

εC(d)f =
∑

f̂ψ ◦ θX(dψ ⊗ cf ),(3.32)

for any f ∈ HomD(X,Y ), d ∈ C and η(X,Y )(f) =
∑
f̂ ⊗ cf .

Proof. Suppose there exist θ ∈ V1 and η ∈W1 such that (3.31) and (3.32) hold.

Then, using the isomorphisms V ∼= V1 and W ∼= W1 as in Propositions 3.7

and 3.10, there exist υ ∈ V and ω ∈ W corresponding to θ ∈ V1 and η ∈ W1

respectively. We also know by Proposition 2.9 that the collection

{N ⊗ hY },

where N ranges over all (isomorphisms classes of) finite-dimensional C-co-

modules and Y ranges over all objects in D, forms a generating set for M (ψ)
C
D.

Therefore, we first verify the condition (3.29) for

M = N ⊗hY ∈ M (ψ)
C
D,

where N ∈ Comod -C and Y ∈ Ob(D). For any n⊗ f ∈ N ⊗ HomD(X,Y ), we

have

(3.33)

(F (υ(N ⊗ hY )) ◦ ω(F (N ⊗ hY )))(X)(n⊗ f)

= υ(N ⊗ hY )(X)(idN ⊗ω(hY ))(X)(n⊗ f) (by Lemma 3.13)

= υ(N ⊗ hY )(X)(idN ⊗η(X,Y ))(n ⊗ f)

=
∑

υ(N ⊗ hY )(X)(n⊗ f̂ ⊗ cf )

=
∑

(N ⊗ hY )(θX((n⊗ f̂)1 ⊗ cf ))(n⊗ f̂)0 (by (3.17))

=
∑

(N ⊗ hY )(θX(n1
ψ ⊗ cf ))(n0 ⊗ f̂ψ) (by (2.9))

=
∑

n0 ⊗ f̂ψ ◦ θX(n1
ψ ⊗ cf ) (by (2.8))

= n0 ⊗ εC(n1)f (by (3.32))

= n⊗ f.
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This proves (3.29) for the generators of M (ψ)CD. As explained in the proof of

Proposition 2.9, for any M in M (ψ)
C
D, there is an epimorphism

⊕
m∈el(M)

ηm :
⊕

m∈el(M)

Vm ⊗ h|m| −→ M

in M (ψ)CD. The morphism

η :=
⊕

m∈el(M)

ηm

induces the following commutative diagram:

(3.34)

⊕
F (Vm ⊗ h|m|)

⊕
F(υ(Vm⊗h|m|))ω(F(Vm⊗h|m|))−−−−−−−−−−−−−−−−−−−−−−−→ ⊕

F (Vm ⊗ h|m|)

F(η)

⏐⏐�
⏐⏐�F(η)

F (M)
F(υ(M))ω(F(M))−−−−−−−−−−−−→ F (M).

From (3.33), it follows that

F (υ(Vm ⊗ h|m|))ω(F (Vm ⊗ h|m|)) = idF(Vm⊗h|m|)

for each m ∈ el(M). Thus, by the commutative diagram (3.34), we have

(3.35) (F (υ(M)) ◦ ω(F (M))) ◦ F (η) = F (η).

Since F is a left adjoint, it preserves epimorphisms. Since η is an epimorphism,

so is F (η). Therefore, (3.35) implies that

F (υ(M)) ◦ ω(F (M)) = idF(M) .

This proves (3.29) for any M ∈ Ob(M (ψ)
C
D).

Next, we verify the condition (3.30). From the definition, it is clear that G

preserves colimits. Since any D-module may be expressed as the colimit of rep-

resentable functors, it is enough to verify the condition (3.30) for representable

functors. For any

f ⊗ d ∈ hY (X)⊗ C,
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we have

(υ(G (hY ))(X) ◦ G (ω(hY ))(X))(f ⊗ d)

= (υ(G (hY ))(X) ◦ (ω(hY )⊗ idC)(X))(f ⊗ d)

= (υ(hY ⊗ C)(X) ◦ (η(X,Y )⊗ idC))(f ⊗ d)

=
∑

υ(hY ⊗ C)(X)(f̂ ⊗ cf ⊗ d)

=
∑

(hY ⊗ C)(θX((f̂ ⊗ cf )1 ⊗ d))(f̂ ⊗ cf )0 (by (3.17))

=
∑

(hY ⊗ C)(θX(cf 2 ⊗ d))(f̂ ⊗ cf 1) (by (2.6))

=
∑

hY ((θX(cf 2 ⊗ d))ψ)(f̂)⊗ cf 1
ψ (by (2.4))

=
∑

f̂ ◦ (θX(cf 2 ⊗ d))ψ ⊗ cf
ψ
1

=
∑

f̂ ◦ (θX(cf ⊗ d1))⊗ d2 (by (3.12))

= εC(d1)f ⊗ d2 (by (3.31))

= f ⊗ d.

This proves (3.30). Therefore, (F ,G ) is a Frobenius pair.

Conversely, suppose (F ,G ) is a Frobenius pair. Then, there exist υ ∈ V

and ω ∈W satisfying (3.29) and (3.30). Then, using the isomorphisms V ∼= V1

and W ∼= W1 as in Propositions 3.7 and 3.10, there exist θ ∈ V1 and η ∈ W1

corrresponding to υ ∈ V and ω ∈ W respectively. We will now verify the

conditions (3.31) and (3.32). Taking

M = C ⊗ hY

in (3.29), for any d ∈ C and f ∈ HomD(X,Y ) we have

d⊗ f = (υ(C ⊗ hY )(X) ◦ ω(C ⊗ hY )(X))(d⊗ f)

= (υ(C ⊗ hY )(X) ◦ (idC ⊗ωhY (X)))(d⊗ f) (by Lemma 3.13)

= υ(C ⊗ hY )(X)(d⊗ η(X,Y )(f))

=
∑

υ(C ⊗ hY )(X)(d⊗ f̂ ⊗ cf )

=
∑

(C ⊗ hY )(θX((d⊗ f̂)1 ⊗ cf ))(d ⊗ f̂)0 (by (3.17))

=
∑

(C ⊗ hY )(θX(dψ2 ⊗ cf ))(d1 ⊗ f̂ψ) (by (2.9))

=
∑

d1 ⊗ f̂ψ ◦ θX(dψ2 ⊗ cf ) (by (2.8)).
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Applying εC ⊗ idhY (X) on both sides, we get

εC(d)f =
∑

εC(d1)f̂ψ ◦ θX(d2
ψ ⊗ cf )

=
∑

εC(d1
ψ)f̂ψψ ◦ θX(d2

ψ ⊗ cf ) (by (2.2))

=
∑

εC((d
ψ)1)f̂ψ ◦ θX((dψ)2 ⊗ cf ) (by (2.3))

=
∑

f̂ψ ◦ θX(dψ ⊗ cf )).

This proves (3.32). Now, taking N = hY in (3.30), we have

f ⊗ d = (υ(G (hY ))(X) ◦ G (ω(hY ))(X))(f ⊗ d)

= (υ(hY ⊗ C)(X) ◦ (ω(hY )⊗ idC)(X))(f ⊗ d)

= (υ(hY ⊗ C)(X) ◦ (η(X,Y )⊗ idC))(f ⊗ d)

=
∑

υ(hY ⊗ C)(X)(f̂ ⊗ cf ⊗ d)

=
∑

(hY ⊗ C)(θX((f̂ ⊗ cf )1 ⊗ d))(f̂ ⊗ cf )0 (by (3.17))

=
∑

(hY ⊗ C)(θX(cf 2 ⊗ d))(f̂ ⊗ cf 1) (by (2.6))

=
∑

hY ((θX(cf 2 ⊗ d))ψ)(f̂ )⊗ cf 1
ψ (by (2.4))

=
∑

f̂ ◦ (θX(cf 2 ⊗ d))ψ ⊗ cf 1
ψ

=
∑

f̂ ◦ θX(cf ⊗ d1)⊗ d2 (by (3.12)).

Applying

idhY (X) ⊗εC
on both sides, we get (3.31). This proves the result.

3.3. Frobenius conditions in the case of a finite-dimensional co-

algebra. We continue with (D, C, ψ) being an entwining structure. For each

Y ∈ Ob(D), we obtain an object Hom(C,hY ) in Mod -D by setting

(3.36)

Hom(C,hY )(X) := HomK(C,hY (X)),

Hom(C,hY )(g) : HomK(C,hY (X)) −→ HomK(C,hY (X
′)) given by

Hom(C,hY )(g)(φ)(x) = (φ · g)(x) := φ(x)g,

for any X ∈ Ob(D), g ∈ HomD(X ′, X), φ ∈ HomK(C,hY (X)) and x ∈ C.
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Using (3.36), we now define a functor Hom(C, h) : D −→ Mod -D as follows:

(3.37)

Hom(C, h)(Y ) := Hom(C,hY ),

(Hom(C, h)(f))(Z) : (Hom(C,hY ))(Z) −→ (Hom(C,hX))(Z) given by

(Hom(C, h)(f))(Z)(φ)(x) = (f · φ)(x) := fψ ◦ φ(xψ),
for any f ∈ HomD(Y,X), φ ∈ HomK(C,hY (Z)) and x ∈ C.

For the rest of this section, we assume that C is finite-dimensional. Then, for

each Z ∈ Ob(D), we have an isomorphism

(3.38) HomK(C,hY (Z)) ∼= C∗ ⊗ hY (Z).

Let {di}1≤i≤k be a basis for C and {d∗i }1≤i≤k be its dual basis.

Lemma 3.15: Let C be a finite-dimensional coalgebra. Then, we have a functor

(3.39) C∗ ⊗ h : D −→ Mod -D, Y 
→ C∗ ⊗ hY .

Proof. For each Y ∈ Ob(D), it is clear that C∗ ⊗ hY ∈ Mod -D. We

consider f ∈ HomD(Y,X) and an element c∗⊗g ∈ C∗⊗hY (Z). By the isomor-

phism in (3.38), c∗ ⊗ g corresponds to the element φc∗⊗g ∈ HomK(C,hY (Z))

given by φc∗⊗g(x) = c∗(x)g for each x ∈ C. From the action in (3.37), the

element f · φc∗⊗g ∈ (Hom(C,hX))(Z) is given by

(f · φc∗⊗g)(x) = fψ ◦ φc∗⊗g(xψ) = c∗(xψ)(fψ ◦ g).
Again, using the isomorphism in (3.38), the element in C∗⊗hX(Z) correspond-

ing to f · φc∗⊗g is given by

k∑
i=1

c∗(dψi )d
∗
i ⊗ fψg.

It may be easily verified that

(C∗ ⊗ h)(f) : C∗ ⊗ hY −→ C∗ ⊗ hX

is a morphism of right D-modules. The result now follows.

Since C is a coalgebra, its vector space dual C∗ is an algebra with the con-

volution product

(c∗• d∗)(x) :=
∑

c∗(x1)d∗(x2)

for c∗, d∗ ∈ C∗ and x ∈ C. Let N be any left C∗-module. Then, we have a

K-linear map ρ : N −→ Hom(C∗, N) defined by ρ(n)(c∗) := c∗n for n ∈ N

and c∗ ∈ C∗.



Vol. TBD, 2021 ENTWINED MODULES 35

In general, there is an embedding N ⊗ C ↪→ Hom(C∗, N) given by

(n⊗ x)(c∗) := c∗(x)n

for x ∈ C. Since C is finite-dimensional, this embedding is also a surjection.

This gives us a K-linear map ρ : N −→ N ⊗ C which makes N a right C-

comodule (see, for instance, [17, §2.2]). Then,

ρ(n) =

k∑
i=1

d∗in⊗ di.

In particular, C∗ becomes a right C-comodule with

(3.40) ρC∗(c∗) =
k∑
i=1

d∗i • c∗ ⊗ di

Considering the element εC ∈ C∗, the coassociativity of the coaction ρC∗ may

be used to verify that

(3.41)

k∑
j=1

k∑
i=1

(d∗i • d∗j )⊗ di ⊗ dj =

k∑
j=1

d∗j ⊗Δ(dj).

Proposition 3.16: Let C be a finite-dimensional coalgebra. Then, we have a

functor

C∗ ⊗ h : D −→M (ψ)
C
D

Y 
→C∗ ⊗ hY .

Proof. From (3.40), we know that C∗ is a right C-comodule. Applying Lem-

ma 2.5, it follows that each C∗ ⊗ hY is an object in M (ψ)
C
D. Accordingly, the

right C-comodule structure on C∗ ⊗ hY (Z) for any Z ∈ Ob(D) is given by the

following composition:

σrC∗⊗hY (Z) : C
∗ ⊗ hY (Z)

ρC∗⊗id−−−−−→C∗ ⊗ C ⊗ hY (Z)

id⊗ψZY−−−−−→C∗ ⊗ hY (Z)⊗ C.

Explicitly, we have

σrC∗⊗hY (Z)(c
∗ ⊗ g) =

k∑
i=1

d∗i • c∗ ⊗ gψ ⊗ dψi
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for each c∗ ⊗ g ∈ C∗ ⊗ hY (Z). We consider f ∈ HomD(Y,X). By Lemma 3.15,

this induces a morphism C∗ ⊗ hY −→ C∗ ⊗ hX in Mod -D. In order to show

that C∗ ⊗ h : D −→ M (ψ)
C
D is a functor, it therefore suffices to show that each

morphism

(3.42)

C∗ ⊗ hY (Z) −→C∗ ⊗ hX(Z),

(c∗ ⊗ g) 
→
k∑
j=1

c∗(dψj )d
∗
j ⊗ fψg,

is right C-colinear. For any c∗ ⊗ g ∈ C∗ ⊗ hY (Z), we have

σrC∗⊗hX(Z)(f · (c∗ ⊗ g))

=
k∑
j=1

σrC∗⊗hX(Z)(c
∗(dψj )d

∗
j ⊗ fψg)

=

k∑
i=1

k∑
j=1

c∗(dψj )d
∗
i • d∗j ⊗ (fψg)ψ ⊗ dψi

=

k∑
i=1

k∑
j=1

c∗(dψj )d
∗
i • d∗j ⊗ fψψgψ ⊗ dψi

ψ
(by (2.1))

=
k∑
j=1

c∗(dj2
ψ)d∗j ⊗ fψψgψ ⊗ dj1

ψψ (by (3.41))

=

k∑
j=1

c∗(dj2
ψ)d∗j ⊗ fψψgψ ⊗

( k∑
i=1

d∗i (dj1
ψ)dψi

)

=

k∑
j=1

k∑
i=1

d∗i (dj1
ψ)c∗(dj2

ψ)d∗j ⊗ fψψgψ ⊗ dψi

=
k∑
j=1

k∑
i=1

d∗i ((dj
ψ)1)c

∗((djψ)2)d
∗
j ⊗ fψgψ ⊗ dψi (by (2.3))

=

k∑
j=1

k∑
i=1

(d∗i • c∗)(dψj )d
∗
j ⊗ fψgψ ⊗ dψi

= (f ⊗ idC) ·
( k∑
i=1

(d∗i • c∗)⊗ gψ ⊗ dψi

)

= (f ⊗ idC) · (σrC∗⊗hY (Z)(c
∗ ⊗ g)).
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Since C is finite-dimensional, the right C-comodule structure on C∗⊗hY (X)

induces a rightC-comodule structure on Hom(C,hY (X)) for eachX,Y ∈ Ob(D)

which we now explain. Let φ ∈ Hom(C,hY (X)). Then, φ corresponds to the

element ∑
1≤i≤k

d∗i ⊗ φ(di) ∈ C∗ ⊗ hY (X).

We know by Proposition 3.16 that

σrC∗⊗hY (X)

( k∑
i=1

d∗i ⊗ φ(di)

)
=

k∑
j=1

k∑
i=1

d∗j • d∗i ⊗ (φ(di))ψ ⊗ dψj .

The element
∑k
i=1 d

∗
j • d∗i ⊗ (φ(di))ψ⊗ dψj ∈ C∗⊗hY (X)⊗C corresponds to the

element φ0 ⊗ φ1 ∈ Hom(C,hY (X))⊗ C given by

(3.43)

φ0(x)⊗ φ1 =

k∑
j=1

k∑
i=1

(d∗j • d∗i )(x)(φ(di))ψ ⊗ dψj

=

k∑
j=1

k∑
i=1

d∗j (x1)d
∗
i (x2)(φ(di))ψ ⊗ dψj

= ψ(x1 ⊗ φ(x2))

for x ∈ C. It now follows from (3.36), (3.37), (3.43) and Proposition 3.16 that

we have a functor

(3.44) Hom(C, h) : D −→ M (ψ)
C
D, Y 
→ HomK(C,hY ).

We also recall from (3.3) and (3.4), the functor h⊗C : D −→ M (ψ)CD, defined
as follows:

(h⊗ C)(Y ) := hY ⊗ C,

(h⊗ C)(f)(Z)(g ⊗ c) := fg ⊗ c,

for f ∈ HomD(Y,X) and g ⊗ c ∈ hY (Z)⊗ C. We now set

V2 := Nat(h⊗ C,C∗ ⊗ h).

Proposition 3.17: Let C be a finite-dimensional coalgebra. Then,

V = Nat(G F , 1M (ψ)CD
) ∼= V1 ∼= V2 = Nat(h⊗ C,C∗ ⊗ h).

Proof. Since C is finite-dimensional, we know that

C∗ ⊗ hY (X) ∼= HomK(C,hY (X)) for each X,Y ∈ Ob(D).



38 M. BALODI, A. BANERJEE AND S. RAY Isr. J. Math.

We first define a K-linear map ΥXY : hY (X)⊗ C −→ C∗ ⊗ hY (X) given by

(3.45) (ΥXY (f ⊗ c))(d) := fψ ◦ θX(dψ ⊗ c)

for any f ∈ HomD(X,Y ) and c, d ∈ C. In other words, we have

(3.46) ΥXY (f ⊗ c) =

k∑
i=1

d∗i ⊗ (fψ ◦ θX(dψi ⊗ c))

where {di}1≤i≤k is a basis for C and {d∗i }1≤i≤k is its dual basis.

We now define α′ : V1 −→ V2 by setting α′(θ) = Υ with Υ : h⊗C −→ C∗⊗h
defined as follows:

ΥY : hY ⊗ C −→ C∗ ⊗ hY , ΥY (X) := ΥXY ,

for any X,Y ∈ Ob(D). We now verify that α′ is a well-defined map. For this,

we first check that ΥY : hY ⊗C −→ C∗⊗hY is a morphism in M (ψ)
C
D for every

Y ∈ Ob(D). For any g ∈ HomD(X ′, X), we need to show that the following

diagram commutes:

hY (X)⊗ C
ΥY (X)−−−−−→ C∗ ⊗ hY (X)

(hY ⊗C)(g)

⏐⏐�
⏐⏐�(C∗⊗hY )(g)

hY (X
′)⊗ C

ΥY (X′)−−−−−→ C∗ ⊗ hY (X
′)

For any f ⊗ c ∈ hY (X)⊗ C, we have

(C∗ ⊗ hY )(g)ΥY (X)(f ⊗ c)

=

k∑
i=1

(C∗ ⊗ hY )(g)(d
∗
i ⊗ fψ ◦ θX(dψi ⊗ c))

=

k∑
i=1

d∗i ⊗ (fψ ◦ θX(dψi ⊗ c)) ◦ g (by (2.8))

=

k∑
i=1

d∗i ⊗ fψgψψ ◦ θX′(dψi
ψ ⊗ cψ) (by (3.11))

=

k∑
i=1

d∗i ⊗ (fgψ)ψ ◦ θX′(dψi ⊗ cψ) (by (2.1))

= ΥY (X
′)(fgψ ⊗ cψ) = ΥY (X

′)(hY ⊗ C)(g)(f ⊗ c).
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This shows that ΥY is a morphism of right D-modules for every Y ∈ Ob(D).

Next we verify that

ΥY (X) : hY (X)⊗ C −→ C∗ ⊗ hY (X)

is right C-colinear for every X,Y ∈ Ob(D). We have

σrC∗⊗hY (X)(ΥY (X)(f ⊗ c))

=
k∑
i=1

σrC∗⊗hY (X)(d
∗
i ⊗ fψ ◦ θX(dψi ⊗ c))

=
k∑

i,j=1

d∗j • d∗i ⊗ (fψ ◦ θX(dψi ⊗ c))ψ ⊗ dψj (by (3.40))

=

k∑
i=1

d∗i ⊗ (fψ ◦ θX(di2
ψ ⊗ c))ψ ⊗ di1

ψ (by (3.41))

=

k∑
i=1

d∗i ⊗ fψψ ◦ (θX(di2
ψ ⊗ c))ψ ⊗ di1

ψψ (by (2.1))

=

k∑
i=1

d∗i ⊗ fψ ◦ (θX((dψi )2 ⊗ c))ψ ⊗ (dψi )1
ψ

(by (2.3))

=

k∑
i=1

d∗i ⊗ fψ ◦ θX(dψi ⊗ c1)⊗ c2 (by (3.12))

= ΥY (X)(f ⊗ c1)⊗ c2

= (ΥY (X)⊗ idC)(π
r
hY (X)⊗C(f ⊗ c)).

Finally, we verify that Υ is a natural transformation from h⊗C to C∗⊗ h, i.e.,

the following diagram commutes for any g ∈ HomD(Y, Y ′):

hY ⊗ C
ΥY−−−−→ C∗ ⊗ hY

(h⊗C)(g)

⏐⏐�
⏐⏐�(C∗⊗h)(g)

hY ′ ⊗ C
ΥY ′−−−−→ C∗ ⊗ hY ′



40 M. BALODI, A. BANERJEE AND S. RAY Isr. J. Math.

For any f ⊗ c ∈ hY (X)⊗ C, we have

(C∗ ⊗ h)(g)(X)ΥY (X)(f ⊗ c)

=
k∑
i=1

(C∗ ⊗ h)(g)(X)(d∗i ⊗ fψ ◦ θX(dψi ⊗ c)) (by (3.46))

=
k∑

i,j=1

d∗i (d
ψ
j )d
∗
j ⊗ gψfψθX(dψi ⊗ c) (by Lemma 3.15)

=

k∑
j=1

d∗j ⊗ gψfψ ◦ θX
( n∑
i=1

d∗i (dj
ψ)di

ψ ⊗ c

)

=

k∑
j=1

d∗j ⊗ gψfψ ◦ θX(dψj
ψ ⊗ c)

=
k∑
j=1

d∗j ⊗ (gf)ψ ◦ θX(dψj ⊗ c) (by (2.1))

= ΥY ′(X)(gf ⊗ c) = ΥY ′(X)(h⊗ C)(g)(X)(f ⊗ c).

This proves that Υ ∈ V2.

For the converse, we first observe that the functors C∗ ⊗ h and Hom(C, h)

are isomorphic which follows from (3.38). We define β′ : V2 −→ V1 by setting

β′(Υ) = θ

with θX : C ⊗ C −→ EndD(X) defined as follows:

θX(c⊗ d) := (ΥXX(idX ⊗d))(c)

for any X ∈ Ob(D) and c, d ∈ C. We will now verify that θ satisfies (3.11) and

(3.12). For each X ∈ Ob(D), we know that ΥX : hX ⊗ C −→ Hom(C,hX) is

a morphism of right D-modules. Therefore, for any f ∈ HomD(Y,X), we have

the following commutative diagram:

(3.47)

hX(X)⊗ C
ΥX (X)−−−−−→ HomK(C,hX(X))

(hX⊗C)(f)

⏐⏐� ⏐⏐�Hom(C,hX)(f)

hX(Y )⊗ C
ΥX (Y )−−−−→ HomK(C,hX(Y )).
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Since Υ : h ⊗ C −→ Hom(C, h) is a natural transformation, the following

diagram also commutes for any f ∈ HomD(Y,X):

(3.48)

hY ⊗ C
ΥY−−−−→ Hom(C,hY )

(h⊗C)(f)

⏐⏐� ⏐⏐�Hom(C,h)(f)

hX ⊗ C
ΥX−−−−→ Hom(C,hX).

Therefore, we have

θX(c⊗ d) ◦ f = ((ΥXX(idX ⊗d))(c)) ◦ f
= ((ΥXX(idX ⊗d)) · f)(c) (by (3.36))

= (ΥX(Y )(hX ⊗ C)(f)(idX ⊗d))(c) (by (3.47))

= (ΥX(Y )hX(fψ)(idX)⊗ dψ)(c)

= ΥYX(fψ ⊗ dψ)(c)

= ΥYX ◦ ((h⊗ C)(fψ)(Y )(idY ⊗dψ))(c)
= (fψ ·ΥY Y (idY ⊗dψ))(c) (by (3.48))

= fψψ ◦ (ΥY Y (idY ⊗dψ))(cψ) (by (3.37))

= fψψ ◦ (θY (cψ ⊗ dψ)).

This proves (3.11). Further, we have

(θX(c2 ⊗ d))ψ ⊗ c1
ψ

= ψ(c1 ⊗ θX(c2 ⊗ d))

= ψ(c1 ⊗ (ΥXX(idX ⊗d))(c2))
= (ΥXX(idX ⊗d))0(c)⊗ (ΥXX(idX ⊗d))1 (by (3.43))

= (ΥXX(idX ⊗d)0)(c)⊗ (idX ⊗d)1 (ΥXX is C-colinear)

= (ΥXX(idX ⊗d1))(c)⊗ d2 (by (2.6))

= θX(c⊗ d1)⊗ d2.

This proves (3.12). It remains to show that α′ and β′ are inverses of each other.

For every θ ∈ V1 and c, d ∈ C, it follows from (3.45) that

((β′ ◦ α′)(θ))X (c⊗ d) = (α′(θ))XX(idX ⊗d)(c) = θX(c⊗ d).
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Finally, for any Υ ∈ V2, f ∈ HomD(X,Y ) and c, d ∈ C, we have

((α′ ◦ β′)(Υ))XY (f ⊗ c)(d) =

k∑
i=1

d∗i (d)fψ ◦ ((β′(Υ))X(dψi ⊗ c))

=

k∑
i=1

d∗i (d)fψ ◦ (ΥXX(idX ⊗c)(dψi ))

= fψ ◦ (ΥXX(idX ⊗c)(dψ))
= (f · (ΥXX(idX ⊗c)))(d) (by (3.37))

= (ΥXY (f ⊗ c))(d) (by (3.48)).

This proves the result.

Proposition 3.18: Let C be a finite-dimensional coalgebra. Then, we have

isomorphisms

W = Nat(1Mod -D,FG ) ∼=W1 = Nat(h, h⊗ C) ∼=W2 := Nat(C∗ ⊗ h, h⊗ C).

Proof. Given an η : h −→ h⊗C, we want to define Φ : C∗⊗h −→ h⊗C. For each
Y ∈ Ob(D), we first define a K-linear map ΦY Y : C∗ ⊗ hY (Y ) −→ hY (Y )⊗ C

by the following composition:

C∗⊗hY (Y )
idC∗ ⊗η(Y,Y )−−−−−−−−−→C∗⊗hY (Y )⊗ C

idC∗⊗hY (Y ) ⊗ΔC−−−−−−−−−−−→ C∗⊗hY (Y )⊗ C ⊗ C

τ⊗idC−−−−→hY (Y )⊗ C ⊗ (C∗ ⊗ C)
ev−→ hY (Y )⊗ C,

i.e.,

ΦY Y (c
∗ ⊗ idY ) =

∑
aY ⊗ c∗(cY2)cY1 ,

where ∑
aY ⊗ cY = η(Y, Y )(idY )

as in the notation of Lemma 3.9. We observe that an element c∗⊗f ∈C∗⊗hY (X)

may be written as

c∗ ⊗ f = (C∗ ⊗ hY )(f)(c
∗ ⊗ idY ).

For each X ∈ Ob(D), we now define ΦXY : C∗ ⊗ hY (X) −→ hY (X) ⊗ C as

follows:

(3.49) ΦXY (c
∗⊗ f) := (hY ⊗C)(f)(ΦY Y (c

∗⊗ idY )) =
∑

aY fψ⊗ c∗(cY2)cY1

ψ

for any c∗ ⊗ f ∈ C∗ ⊗ hY (X).
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We define γ′ : W1 −→ W2 by setting γ′(η) = Φ with Φ : C∗ ⊗ h −→ h ⊗ C

given by

ΦY : C∗ ⊗ hY −→ hY ⊗ C, ΦY (X) := ΦXY ,

for every X,Y ∈ Ob(D). We now verify that γ′ is a well-defined map. For

this, we first check that ΦY : C∗ ⊗ hY −→ hY ⊗ C is a morphism of right

D-modules for every Y ∈ Ob(D), i.e., the following diagram commutes for any

g ∈ HomD(X ′, X):

C∗ ⊗ hY (X)
ΦY (X)−−−−→ hY (X)⊗ C

(C∗⊗hY )(g)

⏐⏐�
⏐⏐�(hY ⊗C)(g)

C∗ ⊗ hY (X
′)

ΦY (X′)−−−−−→ hY (X
′)⊗ C

We have

ΦY (X
′)(C∗ ⊗ hY )(g)(c

∗ ⊗ f) = ΦY (X
′)(c∗ ⊗ fg) =

∑
aY (fg)ψ ⊗ c∗(cY2)cY1

ψ

=
∑

aY fψgψ ⊗ c∗(cY2)cY1

ψψ

= (hY ⊗ C)(g)(ΦY (X)(c∗ ⊗ f)).

Next we verify that ΦY (X) : C∗⊗hY (X) −→ hY (X)⊗C is right C-colinear

for any X,Y ∈ Ob(D):

(ΦY (X)⊗ idC)(σ
r
C∗⊗hY (X)(c

∗ ⊗ f))

=

k∑
i=1

ΦY (X)(d∗i • c∗ ⊗ fψ)⊗ dψi

=
k∑
i=1

∑
aY fψψ ⊗ (d∗i • c∗)(cY2)cY1

ψ ⊗ dψi

=
k∑
i=1

∑
aY fψψ ⊗ d∗i (cY2)c

∗(cY3)cY1

ψ ⊗ dψi

=
∑

aY fψψ ⊗ c∗(cY3)cY1

ψ ⊗ cY2

ψ

=
∑

aY fψψ ⊗ c∗(cY2)(cY1)1
ψ ⊗ (cY1)2

ψ

=
∑

aY fψ ⊗ c∗(cY2)(cY1

ψ)1 ⊗ (cY1

ψ)2

= πrhY (X)⊗C(ΦY (X)(c∗ ⊗ f)).
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It follows that ΦY : C∗ ⊗ hY −→ hY ⊗ C is a morphism in M (ψ)CD. To show

that Φ ∈ Nat(C∗ ⊗ h, h ⊗ C), it remains to verify that the following diagram

commutes:

C∗ ⊗ hY
ΦY−−−−→ hY ⊗ C

(C∗⊗h)(g)
⏐⏐�

⏐⏐�(h⊗C)(g)

C∗ ⊗ hZ
ΦZ−−−−→ hZ ⊗ C

for any g ∈ HomD(Y, Z). For any X ∈ Ob(D) and c∗ ⊗ f ∈ C∗ ⊗ hY (X), we

have

ΦZ(X)(C∗ ⊗ h)(g)(X)(c∗ ⊗ f)

=
k∑
i=1

ΦZ(X)(c∗(dψi )d
∗
i ⊗ gψf)

=
k∑
i=1

∑
c∗(dψi )aZ(gψf)ψ ⊗ d∗i (cZ2)cZ1

ψ

=
k∑
i=1

∑
c∗(dψi )aZgψψfψ ⊗ d∗i (cZ2)cZ1

ψψ

=
∑

c∗(cZ2

ψ)aZgψψfψ ⊗ cZ1

ψψ

=
∑

c∗((cZψ)2)aZgψfψ ⊗ (cZ
ψ)1

ψ

=
∑

c∗(cY2)gaY fψ ⊗ (cY1)
ψ (by Lemma 3.9)

= (h⊗ C)(g)(X)ΦY (X)(c∗ ⊗ f).

Conversely, we define δ′ :W2 −→W1 by setting δ′(Φ) = η with η : h −→ h⊗C
given by

(3.50) η(X,Y )(f) := ΦY (X)(εC ⊗ f)

for any (X,Y )∈Ob(Dop⊗D) and f ∈HomD(X,Y ). We now verify that η ∈ W1.

Let φ : (X,Y ) −→ (X ′, Y ′) be a morphism in Dop ⊗ D given by φ′ : X ′ −→ X

and φ′′ : Y −→ Y ′ in D. Then, using the fact that ΦY : C∗ ⊗ hY −→ hY ⊗ C

is a morphism of right D-modules, we have

(hY ⊗ C)(φ′)η(X,Y )(f) = (hY ⊗ C)(φ′)ΦY (X)(εC ⊗ f)

= ΦY (X
′)(C∗ ⊗ hY )(φ

′)(εC ⊗ f)

= ΦY (X
′)(εC ⊗ fφ′) = η(X ′, Y )(hY (φ

′)(f))
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for any f ∈ HomD(X,Y ). This shows that the following diagram commutes:

(3.51)

hY (X)
η(X,Y )−−−−−→ hY (X)⊗ C

hY (φ′)

⏐⏐�
⏐⏐�(hY ⊗C)(φ′)

hY (X
′)

η(X′,Y )−−−−−→ hY (X
′)⊗ C.

Now using the naturality of Φ : C∗ ⊗ h −→ h⊗ C, we also have

(X′h⊗ C)(φ′′)η(X ′, Y )(g) = (h⊗ C)(φ′′)ΦY (X ′)(εC ⊗ g)

= ΦY ′(X ′)(C∗ ⊗ h)(φ′′)(εC ⊗ g)

= ΦY ′(X ′)
( k∑
i=1

εC(d
ψ
i )d
∗
i ⊗ φ′′ψg

)

= ΦY ′(X ′)
( k∑
i=1

εC(di)d
∗
i ⊗ φ′′g

)

= ΦY ′(X ′)(εC ⊗ φ′′g) = η(X ′, Y ′)(φ′′g)

= η(X ′, Y ′)(X′h(φ′′)(g))

for any g ∈ hY (X
′). Thus, we get the following commutative diagram:

(3.52)

hY (X
′)

η(X′,Y )−−−−−→ hY (X
′)⊗ C

X′h(φ′′)

⏐⏐� ⏐⏐�(X′h⊗C)(φ′′)

hY ′(X ′)
η(X′,Y ′)−−−−−−→ hY ′(X ′)⊗ C.

It now follows from (3.51) and (3.52) that the following diagram commutes:

h(X,Y )
η(X,Y )−−−−−→ h(X,Y )⊗ C

h(φ)

⏐⏐�
⏐⏐�(h⊗C)(φ)

h(X ′, Y ′)
η(X′,Y ′)−−−−−−→ h(X ′, Y ′)⊗ C.

This shows that η ∈ W2. It remains to check that γ′ and δ′ are inverses of each
other. First we verify that

((δ′ ◦ γ′)(η))(X,Y ) = η(X,Y )

for all X,Y ∈ Ob(D). For this, we set

Φ = γ′(η).
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Then, for any f ∈ HomD(X,Y ), we have

((δ′ ◦ γ′)(η))(X,Y )(f) = ΦY (X)(εC ⊗ f)

= (hY ⊗ C)(f)ΦY (Y )(εC ⊗ idY ) (by (3.49))

=
∑

(hY ⊗ C)(f)(aY ⊗ ε(cY2)cY1)

=
∑

(hY ⊗ C)(f)(aY ⊗ cY )

=
∑

aY fψ ⊗ cY
ψ = η(X,Y )(f) (by Lemma 3.9).

Next, we will show that ((γ′ ◦ δ′)(Φ))Y (X) = ΦY (X) for any X,Y ∈ Ob(D).

Since C∗⊗hY (X) and hY (X)⊗C are right C-comodules for anyX,Y ∈ Ob(D),

they are also left C∗-modules. The left actions are respectively given by

d∗(c∗ ⊗ f) :=
k∑
i=1

d∗(dψi )(d
∗
i • c∗)⊗ fψ,(3.53)

d∗(f ⊗ x) :=d∗(x2)(f ⊗ x1),(3.54)

for any d∗, c∗ ∈ C∗, f ∈ hY (X) and x ∈ C. Moreover, since

ΦY (X) : C∗ ⊗ hY (X) −→ hY (X)⊗ C

is right C-colinear, it is also left C∗-linear. We now set η = δ′(Φ). Then, for

any c∗ ⊗ f ∈ C∗ ⊗ hY (X), we have

((γ′ ◦ δ′)(Φ))Y (X)(c∗ ⊗ f)

= (γ′(η))Y (X)(c∗ ⊗ f)

=
∑

aY fψ ⊗ c∗(cY2)cY1

ψ

=
∑

(hY ⊗C)(f)(c∗(cY2)(aY ⊗cY1))

=(hY ⊗ C)(f)(c∗(
∑

aY ⊗ cY )) (by (3.54))

=(hY ⊗C)(f)(c∗(ΦY (Y )(εC⊗idY )))

=(hY ⊗C)(f)(ΦY (Y )(c∗(εC⊗idY ))) (since ΦY (X) is C∗-linear)

=(hY ⊗ C)(f)ΦY (Y )(c∗ ⊗ idY ) (by (3.53))

=ΦY (X)(C∗ ⊗ hY )(f)(c
∗ ⊗ idY ) (ΦY is a morphism of right D-modules)

=ΦY (X)(c∗ ⊗ f)

This proves the result.
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Theorem 3.19: Let (D, C, ψ) be an entwining structure and assume that C

is a finite-dimensional coalgebra. Let F : M (ψ)
C
D −→ Mod-D be the functor

forgetting the C-coaction and G : Mod-D −→ M (ψ)
C
D given by N 
→ N ⊗C be

its right adjoint. Then, the following statements are equivalent:

(i) (F ,G ) is a Frobenius pair.

(ii) There exist η ∈W1 and θ ∈ V1 such that the corresponding morphisms

γ′(η) = Φ : C∗⊗h −→ h⊗C and α′(θ) = Υ : h⊗C −→ C∗⊗h given by

ΦXY (c
∗ ⊗ f) =

∑
aY fψ ⊗ c∗(cY2)cY1

ψ,

ΥXY (f ⊗ d) =

k∑
i=1

d∗i ⊗ fψ ◦ θX(dψi ⊗ d),

where f ∈ hY (X), c∗ ∈ C∗ and d ∈ C, are inverses of each other.

(iii) C∗ ⊗ h and h⊗ C are isomorphic as objects of the category DM (ψ)CD
of functors from D to M (ψ)

C
D.

Proof. (i)⇒(ii). By assumption, there exist η ∈ W1 and θ ∈ V1 satisfy-

ing (3.31) and (3.32). Then, α′(θ) = Υ and γ′(η) = Φ are morphisms in

DM (ψ)
C
D in the notation of Proposition 3.17 and Proposition 3.18. Since

ΥXY :hY (X)⊗C−→C∗⊗hY (X) and ΦXY :C∗⊗hY (X)−→hY (X)⊗C are right

C-colinear, they are also left C∗-linear. Using this fact and (3.53), we have

ΥXY (ΦXY (c
∗ ⊗ f))

= ΥXY (ΦXY ((C
∗ ⊗ hY )(f)(c

∗ ⊗ idY )))

= ΥXY ((hY ⊗ C)(f)(ΦY Y (c
∗ ⊗ idY )))

= (C∗ ⊗ hY )(f)(ΥY Y (ΦY Y (c
∗ ⊗ idY )))

= (C∗ ⊗ hY )(f)(ΥY Y (ΦY Y (c
∗• εC ⊗ idY )))

= (C∗ ⊗ hY )(f)(c
∗ · (ΥY Y (ΦY Y (εC ⊗ idY ))))

= (C∗ ⊗ hY )(f)(c
∗ · (ΥY Y (η(Y, Y )(idY ))))

= (C∗ ⊗ hY )(f)

(
c∗ ·

( k∑
i=1

∑
d∗i ⊗ (aY )ψ ◦ θX(dψi ⊗ cY )

))
(by (3.46))

= (C∗ ⊗ hY )(f)

(
c∗ ·

( k∑
i=1

εC(di)d
∗
i ⊗ idY

))
(by (3.32))

= (C∗ ⊗ hY )(f)(c
∗• εC ⊗ idY ) = c∗ ⊗ f

for any c∗ ⊗ f ∈ C∗ ⊗ hY (X). Thus, Υ ◦Φ = idC∗⊗h.
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Using the naturality of Υ and Φ, we have

ΦXY (ΥXY (f ⊗ c))

= ΦXY (ΥXY ((h⊗ C)(f)(X)(idX ⊗c)))
= (h⊗ C)(f)(X)(ΦXX(ΥXX(idX ⊗c)))

= (h⊗ C)(f)(X)

(
ΦXX

( k∑
i=1

d∗i ⊗ θX(di ⊗ c)

))

= (h⊗ C)(f)(X)

( k∑
i=1

∑
aX(θX(di ⊗ c))ψ ⊗ d∗i (cX2)cX1

ψ

)

= (h⊗ C)(f)(X)
∑

aX(θX(cX2 ⊗ c))ψ ⊗ cX1

ψ

= (h⊗ C)(f)(X)
∑

aX ◦ θX(cX ⊗ c1)⊗ c2 (by (3.12))

= (h⊗ C)(f)(X)(εC(c1) idX ⊗c2) (by (3.31))

= f ⊗ c

for any f ⊗ c ∈ hY (X)⊗ C. Thus, Φ ◦Υ = idh⊗C . This proves (ii).
(ii)⇒(iii) is obvious since both Φ and Υ are morphisms in DM (ψ)CD.
(iii)⇒(i). Let Φ : C∗⊗h −→ h⊗C denote the isomorphism in DM (ψ)

C
D. We

consider the following morphism of (Dop ⊗D)-modules:

Λ : h −→ C∗ ⊗ h, ΛY (X)(f) := εC ⊗ f,

for any f ∈ HomD(X,Y ). We now set

η = Φ ◦ Λ ∈W1 and θ = β′(Φ−1) ∈ V1

where β′ is as in Proposition 3.17. If

η(X,Y )(f) =
∑

f̂ ⊗ cf ,

then

(3.55)

εC ⊗ f = Φ−1XY (ΦXY (εC ⊗ f))

= Φ−1XY (η(X,Y )(f))

=
∑

Φ−1XY (f̂ ⊗ cf )

=
∑

(α′(θ))XY (f̂ ⊗ cf )

=
∑ k∑

i=1

d∗i ⊗ f̂ψ ◦ θX(dψi ⊗ cf ) (by (3.46)).
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Using the isomorphism as in (3.38) and evaluating the equality in (3.55) at

d ∈ C, we get (3.32). We also have

idX ⊗ d

= ΦXX(Φ−1XX(idX ⊗d))
= ΦXX((α′(θ))XX(idX ⊗d))

=

k∑
i=1

ΦXX(d∗i ⊗ θX(di ⊗ d)) (by (3.46))

=
k∑
i=1

ΦXX((C∗ ⊗ hX)(θX(di ⊗ d))(d∗i ⊗ idX))

=
k∑
i=1

(hX ⊗ C)(θX(di ⊗ d))(ΦXX(d∗i ⊗ idX))

=
k∑
i=1

(hX ⊗ C)(θX(di ⊗ d))(ΦXX(d∗i · (εC ⊗ idX))) (by (3.53))

=
k∑
i=1

(hX ⊗ C)(θX(di ⊗ d))(d∗i · ΦXX(εC ⊗ idX))

(since ΦXX is C∗-linear)

=

k∑
i=1

(hX ⊗ C)(θX(di ⊗ d))(d∗i · (η(X,X)(idX)))

=

k∑
i=1

∑
(hX ⊗ C)(θX(di ⊗ d))(d∗i · (aX ⊗ cX))

=

k∑
i=1

∑
(hX ⊗ C)(θX(di ⊗ d))(d∗i (cX2)(aX ⊗ cX1))

=
∑

(hX ⊗ C)(θX(cX2 ⊗ d))(aX ⊗ cX1)

=
∑

aX ◦ (θX(cX2 ⊗ d))ψ ⊗ cX1

ψ

=
∑

aX ◦ θX(cX ⊗ d1)⊗ d2 (by (3.12)).

By applying the map idhX (X)⊗εC , we obtain

(3.56) εC(d) · idX =
∑

aX(θX(cX ⊗ d)).
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Now using Lemma 3.9 and (3.56), we obtain∑
f̂ ⊗ (θX(cf ⊗ d)) =

∑
(idhY (X) ⊗θX)(f̂ ⊗ cf ⊗ d)

= (idhY (X) ⊗θX)(η(X,Y )(f)⊗ d)

=
∑

(idhY (X) ⊗θX)(faX ⊗ cX ⊗ d)

for any f ∈ HomD(X,Y ) and d ∈ C. Applying to both sides the composition

HomD(X,Y )⊗HomD(X,X) −→ HomD(X,Y ), we obtain∑
f̂ ◦ (θX(cf ⊗ d)) =

∑
faX ◦ θX(cX ⊗ d) = εC(d)f.

This proves (3.31). Therefore, (F ,G ) is a Frobenius pair by Theorem 3.14.

This completes the proof.

4. Categorical Galois extensions and entwining structures

Let D be a small K-linear category. Let (D, C, ψ) be a right-right entwining

structure. We denote by DMD the category of D-D bimodules, i.e., the cate-

gory whose objects are functors from Dop ⊗D to VectK and whose morphisms

are natural transformations between these functors. We recall the functors h

and h⊗ C in DMD from (3.20) and (3.21) respectively:

h(X,Y )=HomD(X,Y ), (h(φ))(f) = φ′′fφ′,(4.1)

(h⊗C)(X,Y )=HomD(X,Y )⊗ C, ((h⊗ C)(φ))(f ⊗ c) = φ′′fφ′ψ ⊗ cψ,(4.2)

for any (X,Y ) ∈ Ob(Dop ⊗ D), φ := (φ′, φ′′) ∈ HomDop⊗D((X,Y ), (X ′, Y ′))
and f ∈ HomD(X,Y ), c ∈ C. We refer, for instance, to [19, §2.2] for the tensor

product which makes DMD a monoidal category with h ∈ DMD as the unit

object.

Definition 4.1: A D-coring C is a coalgebra object in the monoidal category

DMD. Explicitly, a D-coring is a functor C : Dop ⊗ D −→ VectK with two

morphisms

ΔC : C −→ C ⊗D C , εC : C −→ h,

satisfying the coassociativity and counit axioms in DMD. A right C -comodule

consists of a rightD-moduleM equipped with a morphism ρM :M−→M⊗D C

of right D-modules satisfying

(4.3) (idM⊗DΔC ) ◦ ρM = (ρM ⊗D idC ) ◦ ρM, (idM⊗DεC ) ◦ ρM = idM .
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A morphism η : (M, ρM) −→ (N , ρN ) of right C -comodules is a morphism

η : M −→ N of right D-modules satisfying

ρN ◦ η = (η ⊗D idC ) ◦ ρM.

The category of right C -comodules will be denoted by Comod-C .

Lemma 4.2: Let (D, C, ψ) be a right-right entwining structure. Then, the

functor h⊗ C is a D-coring.

Proof. It may be verified that (h⊗ C)⊗D (h⊗ C) ∼= h⊗ C ⊗C. This gives us

morphisms

(4.4)
idh⊗ΔC : h⊗ C −→h⊗ C ⊗ C ∼= (h⊗ C)⊗D (h⊗ C),

idh⊗εC : h⊗ C −→h,

in DMD. Using the coassociativity and counitality of the K-coalgebra C, it

may be verified that idh⊗ΔC and idh⊗εC satisfy the coassociativity and counit

axioms in the category DMD. Thus, h⊗C is a coalgebra object in DMD.

Proposition 4.3: Let (D, C, ψ) be a right-right entwining structure. Then, the
categoryM (ψ)CDof entwined modules is identical to the categoryComod-(h⊗C).
Proof. Let M ∈ M (ψ)CD. It may be verified that M⊗ C ∼= M⊗D (h⊗ C) as

right D-modules. Then, by Lemma 2.4, M⊗ C ∈ M (ψ)CD and we have

ρM(X)(M(f)(m)) = M(fψ)(m0)⊗m1
ψ = (M⊗ C)(f)(m0 ⊗m1)

for any f ∈ HomD(X,Y ) and m ∈ M(Y ). We thus obtain a morphism

ρM : M −→ M⊗ C ∼= M⊗D (h⊗ C)

of right D-modules given by

ρM(X) := ρM(X)

for each X ∈ Ob(D).

Applying (4.4), we have

(4.5)

M⊗D(h⊗ C)
idM ⊗DΔ(h⊗C)=idM⊗ idh ⊗ΔC−−−−−−−−−−−−−−−−−−−−−→ M⊗D (h⊗ C)⊗D (h⊗ C)

∼=
⏐⏐� ∼=

⏐⏐�
M⊗ C

idM⊗ΔC−−−−−−→ M⊗ C ⊗ C
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and

(4.6)

M⊗D (h⊗ C)
idM⊗ε(h⊗C)=idM⊗ idh ⊗εC−−−−−−−−−−−−−−−−−−−→ M⊗D h

∼=
⏐⏐� ∼=

⏐⏐�
M⊗ C

idM⊗εC−−−−−−→ M.

The conditions in (4.3) now follow from the fact that ρM(X) is a C-coaction for

each X ∈ Ob(D). Therefore, M is a right (h⊗ C)-comodule.

Conversely, let N ∈ Comod-(h ⊗ C). Then, N is a right D-module with a

given morphism ρN : N −→ N ⊗D (h⊗ C) ∼= N ⊗ C of right D-modules satis-

fying the conditions in (4.3). Thus, for each Y ∈ Ob(D), we have a morphism

ρN (Y ) : N (Y ) −→ N (Y )⊗ C which satisfies

(4.7)
(idN (Y ) ⊗ΔC) ◦ ρN (Y ) =(ρN (Y )⊗ idC) ◦ ρN (Y ),

(idN (Y )⊗ εC) ◦ ρN (Y ) = idN (Y ) .

In (4.7), we have identified idN ⊗ΔC=idN ⊗Δh⊗C and idN ⊗εC = idN ⊗ε(h⊗C)

as in (4.5) and (4.6) respectively. Therefore, ρN (Y ) defines a right C-comodule

structure on N (Y ) for every Y ∈ Ob(D). Since ρN is a morphism of right

D-modules, we also have

(4.8) ρN (X)(N (f)(n)) = (N ⊗ C)(f)(n0 ⊗ n1) = N (fψ)(n0)⊗ n1
ψ

for any f ∈ HomD(X,Y ) and n ∈ N (Y ). Therefore, N ∈ M (ψ)CD.

Lemma 4.4: Let i : E −→ D be an inclusion of small K-linear categories.

Then, the functor h ⊗E h : Eop ⊗ E −→ VectK is a D-coring, where h is the

D-D-bimodule as in (4.1).

Proof. It is immediate that the functor h⊗E h is a D-D-bimodule. We need to

show that h⊗E h is a coalgebra object in DMD. We now define

Δ : h⊗E h −→ (h⊗E h)⊗D (h⊗E h) ∼= (h⊗E h)⊗E h
as follows: for (X,Y ) ∈ Ob(Dop ⊗D), we set

(4.9)
Δ(X,Y ) : hY ⊗E Xh −→(h⊗E h)(−, Y )⊗E h(X,−) ∼= hY ⊗E h⊗E Xh,

f ⊗ f ′ 
→f ⊗ idZ ⊗f ′,
for any f⊗f ′ ∈ hY (Z)⊗Xh(Z) and Z ∈ Ob(E). It is easy to check that Δ(X,Y )

is well-defined. Also, it can be verified that for any morphism

(φ′, φ′′) : (X,Y ) −→ (X ′, Y ′)
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in Dop ⊗D, the following diagram commutes:

hY ⊗E Xh
Δ(X,Y )−−−−−→ hY ⊗E h⊗E Xh

hφ′′⊗Eφ′h
⏐⏐� ⏐⏐�hφ′′⊗E idh ⊗Eφ′h

hY ′ ⊗E X′h
Δ(X′,Y ′)−−−−−−→ hY ′ ⊗E h⊗E X′h.

Thus, Δ is a morphism of D-D-bimodules. The map ε : h⊗E h −→ h is defined

by composition. It may be verified that Δ and ε satisfy the coassociativity and

counit axioms respectively.

Let D be a small K-linear category and let C be a K-coalgebra. We consider

the category DMC of left-right Doi–Hopf modules (compare Example 2.3).

Explicitly, an object in DMC consists of a left D-module M with a given right

C-comodule structure on M(X) for each X ∈ Ob(D) such that the following

compatibility condition holds:

(M(f)(m))0 ⊗ (M(f)(m))1 = M(f)(m0)⊗m1

for each f ∈ HomD(X,Y ) and m ∈ M(X). A morphism η : M −→ N
in DMC is a left D-module morphism such that each η(X) : M(X) −→ N (X)

is right C-colinear. By definition, (h⊗C)(X,−) = Xh⊗C is a left D-module for

eachX ∈ Ob(D). The map id⊗ΔC : HomD(X,Y )⊗C −→ HomD(X,Y )⊗C⊗C
gives a right C-comodule structure on (Xh⊗C)(Y ) for each Y ∈ Ob(D). Clearly,

Xh⊗ C ∈ DMC .

From this point onwards, we suppose additionally that each HomD(X,Y ) has

a given right C-comodule structure denoted by

ρXY : HomD(X,Y ) −→ HomD(X,Y )⊗ C.

Definition 4.5: Let E ⊆ D be the subcategory with Ob(E) = Ob(D) and

HomE(X,Y ) = HomC
Mod -D(hX ,hY )

= {η ∈ HomMod -D(hX ,hY ) | η is objectwise C-colinear}
= {g ∈ HomD(X,Y ) | ρZY (gf) = (Zh⊗ C)(g)(ρZX(f))

∀f ∈ HomD(Z,X)}.

We will say that E is the subcategory of C-coinvariants of D.
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Example 4.6: Let H be a Hopf algebra over K and let D be a right co-H-

category. In this case, the subcategory E of H-coinvariants of D is given by

setting

Ob(E) = Ob(D) and HomE(X,Y ) = HomD(X,Y )coH .

It follows that the right C-comodule structures

ρXY : HomD(X,Y ) −→ HomD(X,Y )⊗ C

induce a morphism Xh −→ Xh ⊗ C of left E-modules for each X ∈ Ob(D).

Further, for every Y ∈ Ob(D), this induces a morphism

(4.10)
(h⊗E Xh)(Y ) = hY ⊗E Xh −→hY ⊗E Xh⊗ C = (h⊗E Xh)(Y )⊗ C,

f ⊗ f ′ 
→f ⊗ ρXZ(f
′),

where f ∈ HomD(Z, Y ), f ′ ∈ HomD(X,Z) and Z ∈ Ob(E). It may be easily

verified that the coaction in (4.10) makes h⊗E Xh an object of DMC .

We obtain therefore canonical morphisms of K-vector spaces given by the

following composition:

{canXY : hY ⊗E Xh −→hY ⊗E (Xh⊗ C)

−→hY ⊗D (Xh⊗ C) ∼= HomD(X,Y )⊗ C}(X,Y )∈Ob(D)2 .

For each X ∈ Ob(D), this induces a morphism in DMC as follows:

canX : h⊗E Xh −→ Xh⊗ C, canX(Y ) := canXY .

Definition 4.7: Let C be a K-coalgebra and D be a smallK-linear category such

that HomD(X,Y ) has a right C-comodule structure for every X,Y ∈ Ob(D).

Let E be a K-linear subcategory of D. Then, D is called a C-Galois extension

of E if:

(i) Ob(E) = Ob(D) and HomE(X,Y ) = HomC
Mod -D(hX ,hY ).

(ii) The induced canonical morphism canX : h ⊗E Xh −→ Xh ⊗ C is an

isomorphism in DMC for each X ∈ Ob(D).

Let D be a C-Galois extension of E . For each X ∈ Ob(D), we define

(4.11) τX : C −→ hX ⊗E Xh, τX(c) := can−1XX(idX ⊗c).

We refer to these as the translation maps of the Galois extension.
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Lemma 4.8: Let D be a C-Galois extension of E . Let

{τX : C −→ hX ⊗E Xh}X∈Ob(D)

be the associated translation maps. We use the notation τX(c) = c(1) ⊗ c(2)

(summation omitted). Then,

(i) τX is right C-colinear i.e., c(1) ⊗ c(2)0 ⊗ c(2)1 = (c1)
(1) ⊗ (c1)

(2) ⊗ c2.

(ii) For any f ∈ HomD(X,Y ), we have

f0(f1)
(1) ⊗ (f1)

(2) = idY ⊗f ∈ hY ⊗E Xh.

(iii) c(1)c(2) = εC(c) · idX .

Proof. The C-colinearity of τX follows from the C-colinearity of can−1XX . Ex-

plicitly, for any c ∈ C, we have

c(1) ⊗ c(2)0 ⊗ c(2)1 = (id⊗ρ)τX(c) = (id⊗ρ) can−1XX(idX ⊗c)
= (can−1XX ⊗ idC)(id⊗ΔC)(idX ⊗c)
= (can−1XX ⊗ idC)(idX ⊗c1 ⊗ c2)

= can−1XX(idX ⊗c1)⊗ c2 = τX(c1)⊗ c2

= (c1)
(1) ⊗ (c1)

(2) ⊗ c2.

This proves (i). Since can−1X : Xh ⊗ C −→ h ⊗E Xh is a morphism of left

D-modules for each X ∈ Ob(D), we also have

f0(f1)
(1) ⊗ (f1)

(2) = (h⊗E Xh)(f0)(τX(f1))

= (h⊗E Xh)(f0)(can
−1
XX(idX ⊗f1))

= can−1XY ((Xh⊗ C)(f0)(idX ⊗f1))
= can−1XY (f0 ⊗ f1) = idY ⊗f.

This proves (ii). Again using the definition of canXX and τX , we have

(canXX ◦τX)(c) = idX ⊗c.

Thus,

canXX(c(1) ⊗ c(2)) = c(1)c(2)0 ⊗ c(2)1 = idX ⊗c
Now, by applying the map id⊗ εC to both sides, we get (iii).
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Theorem 4.9: Let D be a C-Galois extension of E . We denote by

ρXY : HomD(X,Y ) −→ HomD(X,Y )⊗ C

the rightC-comodule structure maps. Then, there exists a unique right-right en-

twining structure (D, C, ψ) which makes hY an object in M (ψ)
C
D for

every Y ∈ Ob(D) with its canonical D-module structure and right C-coactions

{ρXY }X∈Ob(D).

This entwining structure (D, C, ψ) is given by

ψXY : C ⊗HomD(X,Y )
τY⊗id−−−−→hY ⊗E Y h⊗HomD(X,Y )

−→hY ⊗E Xh
canXY−−−−→ HomD(X,Y )⊗ C.

Proof. Using Lemma 4.8, the proof will follow essentially in the same way as

that of [6, Theorem 2.7].

Lemma 4.10: Let D be a C-Galois extension of E . Then,

h⊗E h ∼= h⊗ C

as D-corings.

Proof. We define can : h ⊗E h −→ h ⊗ C by setting can(X,Y ) := canXY for

each (X,Y ) ∈ Ob(Dop ⊗ D). We first verify that can is a morphism of D-D-

bimodules. Clearly, can(X,−) = canX which, by definition, is a morphism of

left D-modules. Therefore, it suffices to show that can(−, Y ) is a morphism of

rightD-modules, i.e., the following diagram commutes for any g ∈ HomD(Z,Z ′):

(hY ⊗E h)(Z ′) can(Z′,Y )−−−−−−→ (hY ⊗ C)(Z ′)

(hY⊗Eh)(g)
⏐⏐�

⏐⏐�(hY⊗C)(g)

(hY ⊗E h)(Z) can(Z,Y )−−−−−−→ (hY ⊗ C)(Z).

By Theorem 4.9, we know that hW is an object in M (ψ)
C
D for eachW ∈ Ob(D).

Thus, for any f ∈ hW (Z ′), we have

(fg)0 ⊗ (fg)1 = ρZW (fg) = ρZW (hW (g)(f))

= (hW ⊗ C)(g)(f0 ⊗ f1)

= f0gψ ⊗ f1
ψ.
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Therefore, for any f ′ ⊗ f ∈ hY (W )⊗E Z′h(W ), we obtain

can(Z, Y )((hY ⊗E h)(g)(f ′ ⊗ f)) = can(Z, Y )(f ′ ⊗ fg)

= f ′ ◦ (fg)0 ⊗ (fg)1

= f ′f0gψ ⊗ f1
ψ

= (hY ⊗ C)(g)(can(Z ′, Y )(f ′ ⊗ f)).

It remains to verify that can is also a coalgebra morphism. First, we show

that the following diagram commutes:

h⊗E h can−−−−→ h⊗ C

Δh⊗Eh

⏐⏐�
⏐⏐�Δh⊗C

(h⊗E h)⊗D (h⊗E h) can⊗D can−−−−−−−→ (h⊗ C)⊗D (h⊗ C).

For any (X,Y ) ∈ Ob(Dop ⊗D) and w ⊗ w′ ∈ hY (W )⊗ Xh(W ), we have

Δh⊗C(X,Y )(canXY (w ⊗ w′))

= Δh⊗C(X,Y )(ww′0 ⊗ w′1) = (ww′0 ⊗ w′11)⊗D (idX ⊗w′12)
= (ww′00 ⊗ w′01)⊗D (idX ⊗w′1)
= (Xh⊗ C)(w)(ρXW (w′0))⊗D (idX ⊗w′1)
= (Xh⊗ C)(w)(hW ⊗ C)(w′0)(ρWW (idW )))⊗D (idX ⊗w′1)
= (hY ⊗ C)(w′0)((Wh⊗ C)(w)(ρWW (idW ))) ⊗D (idX ⊗w′1)
= ((Wh⊗ C)(w)(ρWW (idW ))) · w′0 ⊗D (idX ⊗w′1)
= ((Wh⊗ C)(w)(ρWW (idW ))) ⊗D (w′0 ⊗ w′1)

= (w ◦ idW 0 ⊗ idW 1)⊗D (w′0 ⊗ w′1)

= canWY (w ⊗ idW )⊗D canXW (idW ⊗w′).

It may be verified easily that can is compatible with counits. Since can is a

morphism in the category of D-D-bimodules and can(X,Y ) = canXY is an iso-

morphism for each (X,Y ) ∈ Ob(Dop⊗D), it follows that can is an isomorphism

with inverse given by

can−1(X,Y ) := can−1XY .

This proves the result.
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Definition 4.11: Let D be a small K-linear category such that HomD(X,Y ) is a

right C-comodule for every X,Y ∈ Ob(D). Let ΦXY : C −→ HomD(X,Y ) and

ΦY Z : C −→ HomD(Y, Z) be two C-comodule maps. Then, their convolution

product is given by

ΦY Z ∗ ΦXY : C −→ HomD(X,Z), c 
→ ΦY Z(c1) ◦ ΦXY (c2).
A collection of right C-comodule maps

Φ = {ΦXY : C −→ HomD(X,Y )}X,Y ∈Ob(D)

is said to be convolution invertible if there exists a collection

Φ′ = {Φ′XY : C −→ HomD(X,Y )}X,Y ∈Ob(D)

of C-comodule maps such that

(ΦXY ∗ Φ′YX)(c) = εC(c) · idY = (Φ′XY ∗ ΦYX)(c)

for every c ∈ C.

Theorem 4.12: Let C be a K-coalgebra and D be a small K-linear cate-

gory such that HomD(X,Y ) has a right C-comodule structure ρXY for every

X,Y ∈ Ob(D). Let E be the subcategory of C-coinvariants of D. If there exists

a convolution invertible collection Φ = {ΦXY : C −→ HomD(X,Y )}X,Y ∈Ob(D)

of right C-comodule maps, then the following are equivalent:

(i) D is a C-Galois extension of E .
(ii) There exists a right-right entwining structure (D, C, ψ) such that hY is

an object in M (ψ)
C
D for every Y ∈ Ob(D) with its canonical D-module

structure and right C-coactions {ρXY }X∈Ob(D).

(iii) For any f ∈ HomD(X,Y ), the morphism f0 ◦ Φ′ZX(f1) ∈ HomE(Z, Y )

for every Z ∈ Ob(D), where Φ′ is the convolution inverse of Φ.

Proof. By Theorem 4.9, we have (i)⇒(ii). To prove (ii)⇒(iii), we will use the

equality

(4.12) (Xh⊗ C)(Φ′XY (c))(ρXX (idX)) = ψXY (c1 ⊗ Φ′XY (c2))

for any c ∈ C. We first give a proof of this. Since hY ∈ M (ψ)
C
D, we have

(4.13)

ρXY (f) = ρXY (hY (f)(idY ))

= hY (fψ)(idY 0)⊗ idY 1
ψ

= idY 0fψ ⊗ idY 1
ψ = (Xh⊗ C)(idY 0)(ψXY (idY 1 ⊗ f))
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for any f ∈ HomD(X,Y ). Also, for any c ∈ C, we have

(4.14)

(Xh⊗ C)(idX0)(ψXX(idX1 ⊗ ΦYX(c1)Φ
′
XY (c2)))

= (Xh⊗ C)(idX0)(ψXX(idX1 ⊗ εC(c) idX))

= εC(c)idX0 ⊗ idX1.

Now, using (4.14), we have

(Xh⊗ C)(Φ′XY (c))(ρXX(idX))

= (Xh⊗ C)(Φ′XY (c1))(εC(c2)idX0 ⊗ idX1)

= (Xh⊗ C)(Φ′XY (c1))((Xh⊗ C)(idX0)(ψXX(idX1 ⊗ ΦY X(c2)Φ
′
XY (c3))))

(using (4.14))

= (Xh⊗ C)(Φ′XY (c1))((Xh⊗ C)(idX0)((ΦY X(c2))ψ(Φ
′
XY (c3))ψ ⊗ idX1

ψψ))

(using (2.1))

= (Xh⊗ C)(Φ′XY (c1))(idX0 ◦ (ΦY X(c2))ψ(Φ
′
XY (c3))ψ ⊗ idX1

ψψ)

= (Xh⊗ C)(Φ′XY (c1))((hX ⊗ C)(Φ′XY (c3))(idX0 ◦ (ΦY X(c2))ψ ⊗ idX1
ψ))

= (Xh⊗ C)(Φ′XY (c1))

× ((hX ⊗ C)(Φ′XY (c3))((Y h⊗ C)(idX0)(ψY X(idX1 ⊗ ΦYX(c2)))))

= (Xh⊗ C)(Φ′XY (c1))((hX ⊗ C)(Φ′XY (c3))(ρY X(ΦYX(c2))))

(using (4.13))

= (Xh⊗ C)(Φ′XY (c1))((hX ⊗ C)(Φ′XY (c4))(ΦY X(c2)⊗ c3))

(since ΦY X is C-colinear)

= Φ′XY (c1)ΦY X(c2)(Φ
′
XY (c4))ψ ⊗ c3

ψ

= εC(c1) idY (Φ′XY (c3))ψ ⊗ c2
ψ

= (hY ⊗ C)(Φ′XY (c3))(εC(c1) idY ⊗c2)
= (hY ⊗ C)(Φ′XY (c2))(idY ⊗c1)
= (Φ′XY (c2))ψ ⊗ c1

ψ = ψXY (c1 ⊗ Φ′XY (c2))

This proves the equality (4.12).

For any f ∈ HomD(X,Y ), consider the morphism f0 ◦ Φ′ZX(f1) : Z −→ Y

in D. Then f0 ◦ Φ′ZX(f1) induces a morphism of right D-modules hZ −→ hY

which we denote by f̃ . We now verify that the map f̃(X ′) : hZ(X ′) −→ hY (X
′)
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is right C-colinear for each X ′ ∈ Ob(D). Since hY is an object in M (ψ)CD for

every Y ∈ Ob(D), the following diagram commutes for any g ∈ HomD(X ′, Z):

(4.15)

hY (Z)
ρXY−−−−→ hY (Z)⊗ C

hY (g)

⏐⏐� ⏐⏐�(hY⊗C)(g)

hY (X
′)

ρX′Y−−−−→ hY (X
′)⊗ C.

Thus, we have

ρX′Y (f̃(X
′)(g))

=ρX′Y (f0 ◦ Φ′ZX(f1) ◦ g)
=ρX′Y (hY (Φ

′
ZX(f1) ◦ g)(f0))

=(hY ⊗ C)(Φ′ZX (f1) ◦ g)(ρXY (f0)) (using (4.15))

=(hY ⊗ C)(g)((hY ⊗ C)(Φ′ZX(f1))(f00 ⊗ f01))

=(hY ⊗ C)(g)(f0(Φ
′
ZX(f12))ψ ⊗ f11

ψ)

=(hY ⊗ C)(g)((Zh⊗ C)(f0)(ψZX (f11 ⊗ Φ′ZX(f12))))

=(hY ⊗ C)(g)((Zh⊗C)(f0)(Zh⊗C)((Φ′ZX)(f1))(ρZZ(idZ)))(using (4.12))

=(hY ⊗ C)(g)((Zh⊗ C)(f0 ◦ Φ′ZX(f1))(ρZZ (idZ)))

=(h⊗ C)(g, f0 ◦ Φ′ZX(f1))(ρZZ (idZ))

=(X′h⊗ C)(f0 ◦ Φ′ZX(f1))((hZ ⊗ C)(g)(ρZZ (idZ)))

=(f̃(X ′)⊗ idC)((hZ ⊗ C)(g)(ρZZ(idZ)))

=(f̃(X ′)⊗ idC)(ρX′Z(g)).

Therefore, f̃ ∈ HomC
Mod -D(hZ ,hY ) = HomE(Z, Y ).

For (iii)⇒(i), we start by showing that

canXY : hY ⊗E Xh −→ HomD(X,Y )⊗ C

is an isomorphism for each X,Y ∈ Ob(D). We define

can−1XY : HomD(X,Y )⊗ C −→ hY ⊗E Xh

by

(4.16) can−1XY (f ⊗ c) := f ◦ Φ′YX(c1)⊗E ΦXY (c2) ∈ hY ⊗E Xh
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for any f ∈ HomD(X,Y ) and c ∈ C. Then, using the C-colinearity of ΦXY , we

have

(canXY ◦ can−1XY )(f ⊗ c) =f ◦ Φ′YX(c1) ◦ (ΦXY (c2))0 ⊗ (ΦXY (c2))1

=f ◦ Φ′YX(c1) ◦ ΦXY (c2)⊗ c3 = f ⊗ c.

On the other hand, by assumption, we obtain

(can−1XY ◦ canXY )(g ⊗E g′) =gg′0Φ′YX(g′11)⊗E ΦXY (g′12)
=g ⊗E g′0Φ′YX(g′11)ΦXY (g

′
12) = g ⊗E g′

for any g⊗E g′ ∈ hY ⊗E Xh. From the definition in (4.16), it is clear that setting

can−1X (Y ) := can−1XY for each Y ∈ Ob(D) determines a morphism in DMC which

is inverse to canX . This completes the proof.

Example 4.13: LetH be a Hopf algebra overK. If C is a leftH-module category,

then the smash product category C#H (see [16]) is a right co-H-category with

the right H-coaction determined by

f#h 
→ f#h1 ⊗ h2

on each HomC#H(X,Y ) = HomC(X,Y )⊗H . By definition, we know that

Ob(C) = Ob(C#H).

It is easy to see that

HomC(X,Y ) = HomC#H(X,Y )coH .

We claim that C#H is an H-Galois extension of C. We first observe that for

any f#h ∈ HomC#H(Z, Y ) and f ′#h′ ∈ HomC#H(X,Z), we have

(f#h)⊗C (f ′#h′) = (f#h)(f ′#1H)⊗C (idX #h′).

Thus, canXY : hY ⊗C Xh −→ HomC#H(X,Y )⊗H has the following form:

canXY ((f#h)⊗C (f ′#h′)) = (f#h)(f ′#1H)(idX #h′1)⊗ h′2

for eachX,Y∈Ob(C#H). Then, it may be verified that for eachX,Y∈Ob(C#H),

canXY is an isomorphism with inverse can−1XY :HomC#H(X,Y )⊗H−→hY ⊗CXh

determined by

can−1XY ((g#k)⊗ k′) := (g#k)(idX #S(k′1))⊗C (idX #k′2).
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Proposition 4.14: Let D be a C-Galois extension of E . If there exists a

convolution invertible collection

Φ = {ΦXY : C −→ HomD(X,Y )}X,Y ∈Ob(D)

of right C-comodule maps, then

HomD(X,−) ∼= HomE(X,−)⊗ C ∈ EMC

for each X ∈ Ob(E) = Ob(D).

Proof. Let Φ′ be the convolution inverse of Φ. Given f ∈ HomD(X,Y ), it fol-

lows from Theorem 4.12 that f0 ◦Φ′ZX(f1) ∈ HomE(Z, Y ) for every Z ∈ Ob(D).

We define

η : HomD(X,−) −→ HomE(X,−)⊗ C, η(Y )(f) := f0 ◦ Φ′XX(f1)⊗ f2.

Using Definition 4.5, we see that ρXY ′(gf) = gf0⊗f1 for any g ∈ HomE(Y, Y ′).
Hence, we have

(4.17)

(gf)0 ⊗ (gf)1 ⊗ (gf)2 =(id⊗ΔC)((gf)0 ⊗ (gf)1)

=(ρXY ′ ⊗ idC)(gf0 ⊗ f1)

=gf0 ⊗ f1 ⊗ f2.

Using (4.17), it may be easily seen that η is a morphism of left E-modules.

Using the coassociativity of the C-coactions {ρXY }X,Y ∈Ob(D), it is also clear

that η is objectwise C-colinear. Therefore, η is a morphism in EMC .

Conversely, we define ζ : HomE(X,−)⊗ C −→ HomD(X,−) given by

ζ(Y )(f ′ ⊗ c) := f ′ ◦ ΦXX(c) for Y ∈ Ob(E).

It is immediate that ζ is a morphism of left E-modules. Moreover,

ρXY (f
′ ◦ ΦXX(c)) =(f ′ ◦ ΦXX(c))0 ⊗ (f ′ ◦ ΦXX(c))1

=f ′ ◦ (ΦXX(c))0 ⊗ (ΦXX(c))1

=f ′ ◦ ΦXX(c1)⊗ c2

where the last equality follows from the fact that ΦXX is C-colinear. It follows

that ζ(Y ) is C-colinear for each Y ∈ Ob(E) and hence ζ is a morphism in EMC .

It may be verified that ζ is the inverse of η.
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Definition 4.15: Let D be a small K-linear category and E be a K-subcategory.

Let (C ,ΔC , εC ) be a D-coring. Then, a collection

G(C , E) = {sX ∈ C (X,X)}X∈Ob(E)

is said to be group-like for C with respect to E if:

(i) ΔC (X,X)(sX) = sX ⊗ sX and εC (sX) = idX for any X ∈ Ob(E),
(ii) For any f ∈ HomE(X,Y ), we have

(4.18) f · sX = C (−, f)(X)(sX) = C (f,−)(Y )(sY ) = sY · f.
Example 4.16: (i) If E is a subcategory of D, then the collection

{idX ⊗ idX ∈ hX ⊗E Xh}X∈Ob(E)

is group-like for h⊗E h with respect to E .
(ii) Let D be a C-Galois extension of E . Then h ⊗ C is a D-coring (by

Theorem 4.9 and Lemma 4.2) and the collection

{idX0 ⊗ idX1 ∈ HomD(X,X)⊗ C}X∈Ob(E)

is group-like for h ⊗ C with respect to E . Since hY ∈ M (ψ)
C
D for each

Y ∈ Ob(D), we have

ρXY (f) =ρXY (hY (f)(idY )) = hY (fψ)(idY 0)⊗ idY 1
ψ

=idY 0fψ ⊗ idY 1
ψ

=(idY 0 ⊗ idY 1) · f

for any f ∈ HomD(X,Y ). But, if f ∈ HomE(X,Y ), then we also have

ρXY (f) = ρXY (f ◦ idX) = f · ρXX(idX) = f ◦ idX0 ⊗ idX1 = f · (idX0 ⊗ idX1).

Proposition 4.17: Let E ⊆ D be a subcategory and C be a D-coring. Let

{sX}X∈Ob(E) be a group-like collection for C with respect to E . For a right

C -comodule (N , ρN ), the E-submodule N coC : Eop −→ VectK of coinvariants

of N is given by

N coC (X) := {n ∈ N (X) | ρN (X)(n) = n⊗ sX},
N coC (f)(n′) := N (f)(n′)

for any X ∈ Ob(E), f ∈ HomE(X,Y ) and n′ ∈ N coC (Y ).
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Proof. We will show that for any f ∈ HomE(X,Y ), the morphism

N coC (f) : N coC (Y ) −→ N coC (X)

is well-defined. Since ρN : N −→ N ⊗D C is a morphism of right D-modules,

we have the following commutative diagram:

N (Y )
ρN (Y )−−−−→ N ⊗D C (Y,−)

N (f)

⏐⏐�
⏐⏐�(N⊗DC )(f)=idN ⊗C (f,−)

N (X)
ρN (X)−−−−→ N ⊗D C (X,−).

Let n′ ∈ N coC (Y ) so that ρN (Y )(n′) = n′ ⊗ sY . Since f ∈ HomE(X,Y ),

using (4.18) we have

ρN (X)(N (f)(n′)) =(idN ⊗C (f,−))(n′ ⊗D sY )
=n′ ⊗D sY · f = n′ ⊗D f · sX = N (f)(n′)⊗D sX .

This shows that N (f)(n′) = N coC (f)(n′) ∈ N coC (X). The result follows.

The next result shows that in the case of a C-Galois extension E ⊆ D, we

recover the notion of coinvariants as in Definition 4.5.

Lemma 4.18: Let D be a C-Galois extension of E . Consider the collection

{idX0 ⊗ idX1 ∈ HomD(X,X)⊗ C}X∈Ob(D)

which is group-like for h⊗ C with respect to E . Then,
(HomD(−, Y ))co(h⊗C)(X) = HomE(X,Y )

for any X,Y ∈ Ob(D) = Ob(E).
Proof. Since D is a C-Galois extension of E , we know that there is a canonical

entwining (D, C, ψ) such that hY ∈ M (ψ)
C
D. Using Proposition 4.3, hY may

be treated as an object of Comod -(h⊗ C). Let g ∈ (HomD(−, Y ))co(h⊗C)(X).

Then, ρXY (g) = g ◦ idX0 ⊗ idX1. Using the fact that hY ∈ M (ψ)
C
D we have

ρZY (gf) = (hY ⊗ C)(f)(ρXY (g)) = (hY ⊗ C)(f)(g ◦ idX0 ⊗ idX1)

= g ◦ idX0 ◦ fψ ⊗ idX1
ψ = (Zh⊗ C)(g)(idX0 ◦ fψ ⊗ idX1

ψ)

= (Zh⊗ C)(g)ρZX(f)

for any f ∈ HomD(Z,X). Therefore, g ∈ HomE(X,Y ). The converse follows

directly using the Definition 4.5.
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Lemma 4.19: Let D be a C-Galois extension of E and let (D, C, ψ) be the

canonical entwining structure associated to it. We denote by

ρXY : HomD(X,Y ) −→ HomD(X,Y )⊗ C

the right C-comodule structure maps. Then, for any M ∈ Mod -E , we may

obtain an object M⊗E h ∈ M (ψ)
C
D by setting

(M⊗E h)(Y ) := M⊗E Y h, (M⊗E h)(f)(m⊗ g) := m⊗ gf,

for f ∈ HomD(X,Y ) and m ⊗ g ∈ M(Z) ⊗ Y h(Z). In fact, this determines a

functor from Mod -E to M (ψ)
C
D.

Proof. Clearly, M ⊗E h ∈ Mod -D. For each Y ∈ Ob(D), it may be verified

that M⊗E Y h has a right C-comodule structure given by

M⊗E Y h id⊗ρ−−−→ M⊗E Y h⊗ C, m⊗ g 
→ m⊗ ρY Z(g),

for any g ∈ HomD(Y, Z) and m ∈ M(Z). By Theorem 4.9, hZ is an object

in M (ψ)
C
D for every Z ∈ Ob(D) with its canonical D-module structure and

right C-coactions {ρXZ}X∈Ob(D). Therefore, we have

ρXZ(hZ(f)(g))) = (gf)0 ⊗ (gf)1 = g0fψ ⊗ gψ1

for any f ∈ HomD(X,Y ). Consequently, we have

(4.19) (id⊗ρXZ)((M⊗E h)(f)(m⊗ g)) = m⊗ (gf)0⊗ (gf)1 = m⊗ g0fψ⊗ gψ1 .

This shows that M⊗E h ∈ M (ψ)
C
D.

Lemma 4.20: Let D be a C-Galois extension of E . If there exists a convolution

invertible collection Φ = {ΦXY : C −→ HomD(X,Y )}X,Y ∈Ob(D) of right C-

comodule maps, then:

(i) HomD(X,−) is flat as a left E-module.

(ii)
⊕

X∈Ob(D)HomD(X,−) is faithfully flat as a left E-module.

(iii) For any M ∈ Mod -E , there is a monomorphism M ↪→ M ⊗E h in

Mod -E given by m 
→ m⊗ idX for any m ∈ M(X).

Proof. (i) Let i : M1 ↪→ M2 be a monomorphism of right E-modules. By

Proposition 4.14, it follows that the induced map

M1 ⊗E HomD(X,−) −→ M2 ⊗E HomD(X,−)
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coincides with the map

M1(X)⊗ C
i(X)⊗idC−−−−−−→ M2(X)⊗ C

for each X ∈ Ob(E) = Ob(D). Since i(X)⊗ idC is clearly a monomorphism, it

follows that HomD(X,−) is flat as a left E-module.

(ii) This is clear from the fact that

M(X)⊗ C = M⊗E HomD(X,−) = 0 ⇒ M(X) = 0.

(iii) Since
⊕

Y ∈Ob(D) HomD(Y,−) is faithfully flat as a left E-module, it is

enough to prove that for each Y ∈ Ob(D), we have a monomorphism

(4.20)
M⊗E HomD(Y,−) −→M⊗E h⊗E HomD(Y,−),

M(X)⊗ Y h(X)  m⊗ f 
→m⊗ idX ⊗f.
This is true because the morphism in (4.20) has a section

(4.21)
M⊗E h⊗E HomD(Y,−) −→M⊗E HomD(Y,−),

m′ ⊗ g′ ⊗ f ′ 
→m⊗ g′f ′,

for any m′ ∈ M(Z) and g′ ⊗ f ′ ∈ Xh(Z)⊗ Y h(X).

Theorem 4.21: Let D be a C-Galois extension of E and let (D, C, ψ) be the

canonical entwining structure associated to it. Suppose there exists a convolu-

tion invertible collection Φ = {ΦXY : C −→ HomD(X,Y )}X,Y ∈Ob(D) of right

C-comodule maps. Then, the categories M (ψ)CD and Mod-E are equivalent.

Proof. We consider the collection {idX0 ⊗ idX1 ∈ HomD(X,X) ⊗ C}X∈Ob(E)
which is group-like for the coring h⊗ C with respect to E . We define

F : Mod -E −→M (ψ)
C
D, M 
→ M⊗E h,

G : M (ψ)
C
D −→Mod -E , N 
→ N co(h⊗C).

Using Lemma 4.19 and Proposition 4.17, we see that the functors F and G are

well-defined. We now verify that G ◦ F ∼= idMod -E i.e., (M⊗E h)co(h⊗C) ∼= M
for any M ∈ Mod -E .
From Lemma 4.10, we know that h ⊗ C ∼= h ⊗E h as D-corings. Under this

isomorphism, the collection {idX0⊗ idX1 ∈ HomD(X,X)⊗C}X∈Ob(E) maps to

the collection {idX ⊗ idX ∈ hX ⊗ Xh}X∈Ob(E) which is group-like for h ⊗E h
with respect to E . Therefore, it suffices to show that M ∼= (M⊗E h)co(h⊗Eh).
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By Lemma (4.20)(iii), we have an inclusion i : M −→ M ⊗E h of right

E-modules. It is clear that

i(M) ⊆ (M⊗E h)co(h⊗Eh).

By definition, ρ̃ = ρM⊗Eh : M⊗E h −→ (M⊗E h) ⊗D (h ⊗E h) is determined

by

ρ̃(X)(m⊗ f) = m⊗E idY ⊗Ef ∀ m⊗ f ∈ M(Y )⊗ Xh(Y )

for each X ∈ Ob(D). The coinvariants (M⊗E h)co(h⊗Eh) : Eop −→ VectK are

given by

(M⊗E h)co(h⊗Eh)(X)

=

{ ∑
Y ∈Ob(E)

mY ⊗fY ∈M⊗Xh | ρ̃(X)
(∑

mY ⊗fY
)
=
∑

mY ⊗E fY ⊗E idX
}
.

For
∑
mY ⊗ fY ∈ (M⊗E h)co(h⊗Eh)(X), we now have

(4.22)
ρ̃(X)

(∑
mY ⊗ fY

)
=

∑
mY ⊗E fY ⊗E idX

=
∑

mY ⊗E idY ⊗EfY ∈ (M⊗E h)⊗E Xh.

We set P := (M ⊗E h)/M ∈ Mod -E and consider the following short exact

sequence:

0 −→ M i−→ M⊗E h η−→ P −→ 0.

Then η induces the morphism η ⊗ idh : (M ⊗E h) ⊗E h −→ P ⊗E h of right

E-modules which, for each X ∈ Ob(D), is given by

(η ⊗ idh)(X) : (M⊗E h)⊗E Xh −→P ⊗E Xh,

m′ ⊗ f ′ ⊗ g′ 
→ η(Y )(m′ ⊗ f ′)⊗ g′,

where m′ ∈ M(Z), f ′ ∈ HomD(Y, Z), g′ ∈ HomD(X,Y ) and Y, Z ∈ Ob(E).
Applying (η ⊗ idh)(X) to (4.22), we obtain

(4.23)

∑
η(X)(mY ⊗E fY )⊗E idX =

∑
η(Y )(mY ⊗E idY )⊗E fY

=
∑

η(Y )(i(Y )(mY )) ⊗E fY = 0.

Applying Lemma (4.20)(iii) to the inclusion P ↪→ P⊗E h, it follows from (4.23)

that
∑
η(X)(mY ⊗E fY ) = 0 for every X ∈ Ob(E). Therefore,∑

mY ⊗ fY ∈ i(M)(X).

This proves that M ∼= (M⊗E h)co(h⊗Eh).
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It remains to show that F ◦G ∼= idM (ψ)CD
. LetN ∈ M (ψ)CD∼=Comod -(h⊗C).

Then, N is a right D-module with a given morphism

ρN : N −→ N ⊗D (h⊗ C) ∼= N ⊗D (h⊗E h) ∼= N ⊗E h
in M (ψ)

C
D. By definition, N co(h⊗C) is the equalizer of the following morphisms:

(4.24) 0 −→ N co(h⊗C) −→ N
j

��

ρN
�� N ⊗E h

where j is given by

j(X) : N (X) −→ N ⊗E Xh, n 
→ n⊗ idX ,

for every X ∈ Ob(D). By Lemma 4.20(i), it follows that N co(h⊗C)⊗E Xh is the

equalizer of the following morphisms:

(4.25) 0 −→ N co(h⊗C) ⊗E Xh −→ N ⊗E Xh
j⊗id

��

ρN⊗id
�� N ⊗E h⊗E Xh .

Comparing with (4.9), we observe that j ⊗ id = idN ⊗EΔh⊗Eh(X,−). Using

the coassociativity of ρN : N −→ N ⊗E h, it follows from (4.25) that ρN (X)

factorises through N co(h⊗C) ⊗E Xh, which is denoted by

ρ′N (X) : N (X) −→ N co(h⊗C) ⊗E Xh ⊆ N ⊗E Xh.

We claim that ρ′N : N −→ N co(h⊗C)⊗Eh is an isomorphism in M (ψ)
C
D. From

the counit property, we know that (idN ⊗Dεh⊗Eh) ◦ ρN = idN . Hence, ρN is a

monomorphism and so is ρ′N . It remains to show that ρ′N (X) is an epimorphism

for each X ∈ Ob(D). For each X ∈ Ob(D), we define

ζ(X) : N co(h⊗C) ⊗E Xh −→N (X),∑
Y ∈Ob(D)

nY ⊗ fY 
→
∑

Y ∈Ob(D)

N (fY )(nY ).

Since ρ′N is a morphism of right D-modules, we now have

ρ′N (X)(ζ(X)(nY ⊗ fY )) = ρ′N (X)(N (fY )(nY ))

= (N co(h⊗C) ⊗E h)(fY )(ρ′N (Y )(nY ))

= (N co(h⊗C) ⊗E h)(fY )(nY ⊗ idY ) = nY ⊗ fY .

This shows that F ◦ G ∼= idM (ψ)CD
.
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