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Extensions to SQL for Historical Databases

NANDLAL L. SARDA

Abstract—A historical database management system (HDBMS) is a
high-level facility which provides timing information and automati-
cally maintains history (i.e., past) data. It also provides facilities for
time-related queries. One such HDBMS is described in this paper. Our
HDBMS uses an extended relational data model with state-oriented,
instead of ‘‘cubic,”” conceptualization. Two types of historical rela-
tions, called state and event relations, are provided for modeling real-
world objects. The popular query langauge SQL has been extended for
definition, retrieval, and update of historical relations. The extended
SQL, called HSQL, is a superset of SQL. We define a few primitive
algebra operations for historical relations, and use them as a basis for
extensions to SQL. By doing so, HSQL retains the elegant structural
and algebraic framework of SQL. HSQL contains a few new clauses,
many operations and built-in functions on time domain, and facilities
for retrospective updates and time-rollback.

Index Terms—Data models, database management, historical data-
base, modeling of time, query languages, relational algebra, relational
model, SQL.

I. INTRODUCTION

HE ubiquitous nature of time requires that a database
management system provide facilities for modeling of
time for the real-world applications. Consequently, con-
siderable research activity is being directed to the study
of time in databases (¢.g., see the project summaries of
these efforts in [13]). Various aspects of time modeling
are being investigated in this research. They include ex-
tensions to data models (mostly the relational), new al-
gebra operations and query languages, and efficient stor-
age structures for the monotonically increasing history.
Snodgrass and Ahn [14] were the first to clearly distin-
guish between two measures of time, called real-world
time, the time at which an event takes place in the real
world, and the system time, the time at which it is regis-
tered with the computer system. They defined four types
of databases depending on which time measures are sup-
ported by a DBMS: snapshot (conventional database
without time), rollback (with only system time), historical
(with only real-world time), and the temporal (with both
time measures) databases.
A “‘cubic view’’ of database is commonly proposed to
capture the time dimension [1], [4], [15]. Here, time is
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added as a third dimension to the two-dimensional (i.e.,
flat) tables of the relational data model. At the represen-
tational level, the relations are extended to include time
attributes. The following four possible approaches emerge
in the literature:

1) instant-stamping of tuplies [1]: each tuple includes a
time value at which the data in the tuple became current;

2) interval-stamping of tuples [7], [9], [14]: each tuple
includes two time values that define a time interval during
which the data were current;

3) instant-stamping of attributes [5]: a time value is as-
sociated with each attribute value, and

4) interval-stamping of attributes [5]: two time values
defining an interval are associated with each attribute
value in a tuple.

The primary reason for advocating attribute stamping is
that values of attributes within a relation vary at different
rates. In the attribute-stamping approaches, each tuple
contains, in effect, a history for each attribute. Conse-
quently, such relations are not even in the first normal
form.

Depending on the representational approach chosen, the
researchers have proposed different types of algebra for
historical/temporal databases. McKenzie and Snodgrass
[17] have carried out a detailed comparison of the various
proposals. Primarily, however, time-slice and joins based
on time emerge as useful additions/extensions to the stan-
dard relational algebra.

The popular query languages SQL and Quel have been
considered for extensions to support time-oriented facili-
ties. Snodgrass [15] has proposed TQuel, which extends
Quel with “‘event’” and ‘‘interval’’ type of relations, and
includes new clauses for specifying predicates on time at-
tributes, for time slicing, and for rollback to an earlier
point in time. A large number of built-in functions have
also been defined for TQuel [16]. TQuel (like Quel itself)
has a rather complex framework for aggregate functions.

Extensions to SQL [6] have been proposed by Ariav [1]
and Navathe and Ahmed [7]. TOSQL of Ariav uses a cu-
bic view of data with instant-stamping of tuples. Such a
model makes definition of otherwise-simple operations
like select and project quite complex. TOSQL has some
complex clauses that do not retain the structural frame-
work of SQL. Moreover, it does not address the question
of how to relate data across two or more relations.

The TSQL of Navathe and Ahmed [7] is based on in-
terval-stamping of tuples. It does not differentiate be-
tween event and state type of objects. TSQL includes a
WHEN clause for specifying predicates on time attri-
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butes, a TIME-SLICE clause, and a number of built-in
functions for ‘‘temporal’’ ordering of data. It also in-
cludes a new operation called MOVING WINDOW,
which may be of interest in some special applications.

At least two important issues are not addressed by these
extensions to the query languages. First, they do not pro-
vide a direct way for relating concurrent data from two
or more relations. We expect this to be a very basic re-
quirement for users of historical databases. Second, the
question of different time granularities within the same
database is not addressed adequately.

In this paper, we present our approach [8]-[11] to his-
torical databases, which is characterized by

1) state-oriented view of historical database: state of a
database object is defined by values of its attributes, and
its state prevails over an interval of time. An ‘‘event’’ is
a special case, where state prevails over one time instant
only,

2) interval stamping of tuples at the representation
level,

3) support for real-world time measure only.

The proposed HDBMS is based on an extended rela-
tional data model. In fact, data are stored as conventional
relations with two added attributes for time-stamping. The
standard relational algebra operations are directly appli-
cable without any change in their meaning. We define two
new primitive operations for manipulating the time do-
main. We show that the more useful operations, such as
time-slicing and time-based joins, can be defined as
“‘high-level’” operations using the new primitives and the
standard operations. The extended algebra, a strict super-
set of the standard relational algebra, is used as a basis
for extending the popular query language SQL.

The remainder of this paper is organized as follows. In
Section II, we give an overview of our historical data
model, outlining the main modeling concepts. The time
domain is defined in Section III. The operations and func-
tions on time defined here are directly incorporated in our
extensions to SQL. In Section IV, we extend the rela-
tional algebra by two new primitive operations. The ex-
tensions to SQL are contained in Section V. It addresses
all aspects of HSQL: data definition, data retrieval, data
update, retrospective updates, use of nonhistorical rela-
tions, and time-rollback facility. Finally, in Section VI,
we make concluding remarks about our historical data
model and extensions to SQL.

II. THE HisToriCAL DATA MODEL: AN OVERVIEW

Modeling: In our approach, to model the requirements
of an application, the database designer considers only the
“‘current perspective’” of the requirements. In this per-
spective, the requirements will typically be stated using
the “*current’’ tense, ignoring the need to store history
data and timing information. It is as if the designer were
to design a ‘‘snapshot’” database, much as in the conven-
tional database design. For example, we will consider an
employee to have a rank and a salary rather than explicitly
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considering an employee to have had a history of ranks
and salaries over a period of time.

In the conventional database design, the designer iden-
tifies entities, relationships, their identifiers, and attri-
butes. Alternatively, the designer identifies objects (or,
object types, to be specific) for modeling them as rela-
tions. Each object has a unique identifier and a set of
functionally-dependent attributes. An effort is made to
identify ‘‘minimal’’ objects, often using the theory of
normalization.

The modeling approach in our historical data model es-
sentially remains the same. The values of attributes of an
object define its state. A change of value for any of its
attributes represents a change of state. A state prevails
over an interval of time, during which none of the attri-
butes change their values.

This concept of state defined by a set of attributes might
need an additional step for ‘‘time normalization>’ [7] in
the design process. A database object identified earlier
may need decomposition if its attributes vary at drasti-
cally different rates. This is the classical file segmentation
problem [19], where the designer tries to balance the stor-
age and access costs. For instance, the ‘‘employee’’ ob-
ject has attributes E# (unique), RANK and SALARY.
These attributes may be accessed together most of the
times. Although RANK and SALARY may change at dif-
ferent times and at different rates, the changes are rela-
tively infrequent. Therefore, we let RANK and SALARY
together define srate of an employee object. An alterna-
tive would have been to decompose it into two objects,
one defined by E# and RANK, the other by E# and SAL-
ARY.

In our model, we also provide for a special kind of ob-
Ject, called event. It is an object which prevails for only
one time unit. The designer would identify such objects
during the requirements analysis. Since every object of
event type exists for one instant, the concept of history
does not apply to it. Alternatively, one could say that an
event becomes history as soon as it occurs. The concept
of update does not apply to event-type objects.

Historical Relations and their Representation: The ob-
jects of state and event type are defined as historical re-
lations. For such relations, the HDBMS will maintain
timing and history data automatically. A historical rela-
tion is defined by listing its ‘‘visible>* attributes, which
do not include the timing attributes that will be automat-
ically added by HDBMS. The designer also needs to spec-
ify the required time granulariry. HDBMS provides a hi-
erarchy of time units for this purpose, ranging from very
coarse to very fine.

The granularities should be carefully chosen as they af-
fect relative ordering of events recorded in the database.
For example, if DATE is the granularity for SHIPMENT
object, two shipments received on the same day (but at
different times of the day) will be treated to have occurred
at the same time.

To clearly understand the basic functions of proposed
HDBMS, consider the following definition of a relation
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(given in extended SQL):
CREATE STATE TABLE EMP

(ENO CHAR(10) NOT NULL /* employee
number */

PROJ CHAR(10), /* project */

SAL DECIMAL(S) /[* salary */

UNIQUE (ENO))
WITH TIME GRANULARITY DATE.

Here, EMP is a historical relation of state type.
HDBMS will add two more attributes to this relation,
named FROM and TO, whose values are in TIME do-
main, and which together define a (closed) nonnull inter-
val of time. In the proposed HDBMS, EMP will actually
be stored as two segments defined by the following
schemes:

CURRENT-EMP (ENO, PROJ, SAL, FROM, TO)
HISTORY-EMP (ENO, PROJ, SAL, FROM, TO).

The former contains tuples pertaining to the current states
only, and the latter contains tuples representing history
data. The value of attribute TO in CURRENT-EMP will
always be the current time value, represented by keyword
NOW. Note that the two segments (to be themselves re-
ferred as relations hereafter) are union-compatible.

No such segmentation is defined automatically for event
type of historical relations. Also, for these, the values of
FROM and TO attributes within a tuple will be equal since
an event prevails for only one time unit. The alias AT can
be more meaningfully used instead of FROM for such re-
lations.

Let us next consider some operations on EMP. At time
t1, we wish to insert the following data for a new em-
ployee:

<’SMITH’, "LOTUS’, 30000 >

These data will be added to the current segment as fol-
lows:
<‘SMITH’, "LOTUS’, 30000, r1, NOW > 0))

At time 12, we wish to change SMITH’s salary to 40000.
The tuple (1) above in current segment is replaced by

<’SMITH’, 'LOTUS’, 40000, t2, NOW > 2)
and the following tuple is added to the history segment:
<’SMITH’, "LOTUS’, 30000, 1, r12—1> 3)

where 12 —1 is one instant (on same granularity level) be-
fore ¢2. Finally, at time ¢3, we wish to delete SMITH
from EMP. The tuple (2) above is deleted from current
segment and added to the history segment as follows:

<’SMITH’, "LOTUS’, 40000, 2, t3—-1> “)

It should be noted that generation of history tuples (3)
and (4) is a byproduct of the update and delete operations
on EMP. HDBMS generates them automatically.

Key of a Historical Relation: The concept of key can
now be defined for historical relations. The attribute K of

R is a key iff at any time instant #, we do not have

r, s in R and
r.K =s.K and
intervals in r and s both contain ¢.

This definition of key basically indicates that its values
are ‘‘time-unique’’ (and not tuple-unique as in the rela-
tional model).

Integrity Constraints: HDBMS enforces the following
integrity constraints.

1) A tuple with null interval is not stored in a relation.

2) A historical relation does not contain tuples with
same visible attribute values but overlapping or consecu-
tive time intervals. Such tuples are automatically ‘‘co-
alesced’’ by merging their time intervals. The coalesce
operation is defined more formally in Section IV.

3) A new tuple can be added only if the current seg-
ment does not contain a tuple with same key value.

4) Only the tuples from current segment can (normally)
be updated or deleted.

Remarks:

1) HDBMS supplies values for attributes FROM and
TO from some internal clock. Thus, they represent what
has been termed as system or transaction time [14]. In a
real-time or on-line environment, we expect the system
time to be generally the same as the actual or effective
time. It is possible that some transactions are not recorded
immediately, or stored data must be corrected retrospec-
tively. In such cases, HDBMS must be supplied with ef-
fective time (to override its internal clock time). HDBMS
provides facilities for this purpose. Thus, effectively, the
time values stored in historical relations are real-world
times.

2) A designer should associate clear application-ori-
ented meaning to the time attributes. For example, if OR-
DER is a state-oriented object, the attribute FROM could
mean the date on which the order was received (as against
date sent by customer) and TO could mean the date on
which it was completely filled and paid (upon which time
the order would be deleted).

3) Additional time attributes may be defined to capture
other time measures (e.g., proposed time). These would
be visible attributes to be defined and maintained explic-
itly. We extend SQL to include TIME as an attribute type.

III. THE TIME DOMAIN: REPRESENTATION AND
OPERATIONS

Time can be imagined to be measured using a clock of
suitable granularity. Every “‘tick’’ of the clock represents
a time instant. The value of an instant is the number of
ticks from the start of the clock. Thus, as in [5], time is
isomorphic to the natural numbers, and the set of all times
is a linear order, i.e., given instants 71 and r2, we either
have t1 =12, o0or¢l < t2,o0rtl > 2.

The current time refers to the latest clock tick, and is
denoted by NOW. Thus, NOW can be thought as a mov-
ing time variable as in [4].
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An interval is a sequence of consecutive time instants.
It is represented as r1. .12, where t1 < = 2. It includes
all time instants from 1 to £2, both inclusive. The interval
tl. .1 contains the single instant t1. The null interval
does not include any time instant. The interval 1. .12,
where 12 < tl, is also considered to be null.

HDBMS provides real-world units for measuring time.
The following units, which form a hierarchy from coarse
to fine granularity, are provided:

YEAR YEAR:MONTH
DATE (or, YEAR:MONTH:DAY)
DATE:HOUR DATE:HOUR:MIN
DATE:HOUR:MIN:SEC

We define many operations and built-in functions on in-
stants and intervals. Many more can be added to this list
(e.g., see [20]). They are described below. In the follow-
ing, #’s represent instants and p’s represent intervals.

A. Instant Comparisons
These are the usual comparison operations:

<, >, =, <=, >=, /= (not equal))

They produce a Boolean result.

B. Interval Comparisons
The following infix operations are included in HSQL:

tin p = true, if 7 is included in interval p.

pl = p2 = true, if both pl and p2 include the same
set of time instants, false otherwise.

ploverlap p2 = true, if p1 and p2 include at least one
common instant, false otherwise.

pl contains p2 = true, if all instants of p2 are also
contained in p1, false otherwise.

pl meets p2 = true, when pl is ¢1..¢2 and p2 is
t2+1..13, false, otherwise.

pl adjacent p2 = (pl meets p2) or (p2 meets pl).

pl precedes p2 = true, when pl is t1..¢2 and p2 is
13..14 and 12 < 13, false otherwise.

C. Interval Operations
The following infix operators are provided:

: make interval, given two time instants.

. concatenate (i.e., merge) two overlapping or
consecutive intervals.
4¥'7 . extract common part of two overlapping inter-
vals.
Note : **..”” is not commutative; ““+’’ is not asso-

ciative, and ‘“*’’ is both commutative and as-
sociative.

D. Functions (built-in)

We will use @ as a wildcard in function names to rep-
resent one of the following time units: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS.
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a) Extracting time/intervals from tuples: if 7 is a tuple
variable, the £, INTERVAL, 1. FROM (or, 1.AT), r.TO can
be used to refer the time instants/interval in tuple 7.

b) Segment selection: Given a historical state relation
R, CURRENT (R) and HISTORY (R) can be used to refer
to current and history tuples, respectively, in R. The ref-
erence R by itself refers to the union of both segments. It
would contain both current and history tuples.

¢) Elapsed time: given two instants t1 and 2 of the
same granularity, the function ELAPSED@(z1, 12) meas-
ures elapsed time in units given by @. The granularity
level of ¢1 and ¢2 must be equal or finer than @. For ex-
ample,

ELAPSEDYEARS (1984, 1987) gives 4 years

ELAPSEDMONTHS (1985:02:15, 1985:08:06) gives
5 months

ELAPSEDMONTHS (1985:02:01, 1985:08:06) gives
6 months

d) Predecessor/successor of instants: given rl,
PRED(¢1) gives instant preceding 1 and SUCC(t1) gives
instant succeeding ¢1 on same granularity level.

E. Comparing Instants of Different Granularities

The issue of comparing instants and intervals of differ-
ent granularity must be resolved with care. There are two
ways to convert a time value of finer granularity to a
coarser granularity (much like truncation and roundoff in
going from real to integer). On the other hand, an instant
represents an interval on a finer granularity level.

HSQL permits direct comparisons of instants of differ-
ent granularities in, what seems to us, a natural way. Con-
sider one example of a comparison:

1985:06 < 1985:07:27.

We first convert coarser instant 1985:06 into interval
1985:06:01 .. 1985:06:30. Next, each instant in that
interval is compared for < with 1985:07:27. The com-
parison should hold for each of them. Effectively, this
comparison reduces to

1985:06:01 < 1985:07:27 and
1985:07:27.

1985:06:30 <

If two intervals involved in an operation have different
granularities, the coarser interval is converted into the
finer one. As an example, the interval 1987:05
1988:02 is same as interval 1987:05:01..1988:02:29 at
the granularity level of DATE.

HSQL also includes functions for conversion of
granularities. The function UPTO@ is used to convert
a time value to a coarser granularity by truncating
components at finer levels. For example, UPTO-
MONTHS(1986:08:25) gives 1986:08. Another function,
called INTERVAL@, could be used to convert an instant
into an interval at finer granularity level given by
@. For example, INTERVALMONTHS(1984) gives
1984:01..1984:12.
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IV. HisTORICAL RELATIONAL ALGEBRA

The algebraic operations form a convenient basis for
defining, understanding, translation, optimization, and
execution of query languages. The standard relational
model [18] defines as primitives the operations: Union
(U), Set difference (—), Cartesian product (X), Projec-
tions (), and Selection (o). Additional, and more useful,
operations, such as join, can be expressed in terms of
these. Moreover, the above primitive operations form a
basis for defining completeness criteria for query lan-
guages [18].

Standard Operations: The underlying data model for
the proposed historical data model is the relational model
itself. A historical relation R with X as a visible set of
attributes is represented by a relation of the standard re-
lational model as

R (X, FROM, TO).

To maintain consistency with the relational model, the
relational operators can be applied to R with their usual
meaning. However, the result of some of these operations
may or may not be a historical relation. Specifically,

1) my(R): result may not be a historical relation. It
would be a historical relation only if Y includes the time
attributes FROM and TO.

2) op(R): result is a historical relation.

3) R X S: (where R, § are historical relations): result
is not a historical relation as each tuple in result contains
two time intervals.

Completeness: Although the five primitive operators
listed earlier are deemed complete, they fall short for the
historical data model. The basic reason for their inade-
quacy is that the tuples in historical relations have been
time-stamped with intervals, while it may be necessary to
retrieve and manipulate data based on instants. We need
new operations for converting data in time intervals to
data at time instants and vice-versa. We extend the set of
primitive operators by two new operators given below.
The new operators cannot be expressed in terms of other
relational operator. Hence, they are deemed primitive, to
be included as basis for defining completeness of query
languages.

New Primitive Operators:

1) Expand (e): R1 = e(R2).

e is a unary operator whose operand and result are his-
torical relations. The interval-stamped tuples in R2 are
converted into instant-stamped tuples by replicating them
for each instant included in their intervals. Specifically,
if R2 contains the tuple

<x,tl,12>
it will produce the following in R1

<x,tl, t1>
<x,tl+1,t1+1>

NO. 2. JUNE 1990

where attribute values are same, but intervals are of sin-
gle-instant duration.

There are two variations of expand when the result re-
lation is to have coarser granularity than the source. The
expand-anytime (el) produces a result tuple for each in-
stant covered partially or fully by the source tuple inter-
val, and expand-alltime (e2) produces result tuples for
only fully covered instants. To illustrate, consider the fol-
lowing source tuple:

< SMITH, LOTUS, 30000, 1985:06:10,
1986:02:18>.

Then, expand-alltime by month will produce the follow-
ing seven tuples (one tuple for each month from July 1985
to Jan. 1986):

< SMITH, LOTUS, 30000, 1985:07, 1985:07 >
< SMITH, LOTUS, 30000, 1985:08, 1985:08 >

<SMITH. LOTUS, 30000, 1986:01, 1986:01>.

Expand-anytime by month will give nine tuples, from June
1985 to Feb. 1986. The specification expand-anytime by
year will give the following 2 tuples:

< SMITH, LOTUS, 30000, 1985, 1985 >
<SMITH, LOTUS, 30000, 1986, 1986> .

However, expand-alltime by year will not produce any
tuple since the interval in source does not cover any full
year.

2) Coalesce (¢): Rl = c(R2).

¢ is also a unary operator whose operand and result are
historical relations. It basically performs the inverse func-
tion of e. It combines those tuples of R2 which have same
(visible) attribute values but consecutive or overlapping
time intervals into a single tuple in R1 with interval that
includes intervals of combined tuples. Thus, if

s, t € R2 and
s.X = t.X and
x.p overlap t.p or s.p adjacent t.p
then, s and ¢ are combined in R1 as
<s.X,sp + tp>.

(Note: s.p refers to interval in s.)

Proposition 1: If Rl is a historical relation satisfying
the integrity constraints (specifically that no two tuples of
R1 have same visible attribute values but adjacent and
overlapping intervals) then

Rl = c(e(R1)).

New Useful Operators: The new primitive operators,
expand and coalesce, along with the standard relational
operators, can be used to define some highly useful op-
erators for historical relations. We mainly define only one
operation here, called concurrent product, using which
the other operations commonly found in literature, such
as concurrent join and time-slice, can be defined easily.
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1) Concurrent Product (Xf): R3 = R1 Xt R2.

Xt is a binary operation whose operands as well as re-
sult are historical relations. It differs from the Cartesian
product in that it pairs only those tuples of R1 and R2
which have overlapping time intervals. The interval in the
result gives the extent of overlap. Thus, if ¥ and Z are
visible attributes of R1 and R2, then

R3 =R1 XtR2
= {< LY, s.Z, tp *sp> lteRl andseRZ}.

Recall the integrity constraint that tuples with null inter-
vals are automatically removed from historical relations.
Proposition 2: Xt is commutative (note that interval
operation * is also commutative).
Proposition 3: If Y and Z are attributes of R1 and R2,
respectively, then

RIXtR2 = C(WA(ap(e(Rl)Xe(RZ))))
where 4 = { ¥, Z, R1_FROM, R1.TO} and
Fis R1.FROM = R2.FROM.

Note that X is the Cartesian product.

Proposition 4: Given a singleton historical relation
{<rl, 12>} with no user-defined attributes, the time-
slice operation 7 suggested in literature [51, [17] can be
defined as

Tu.2(R1) = R Xt { <11, 12>}

V. HSQL: SQL EXTENDED FOR HISTORICAL
DATABASES

HSQL is a superset of the popular query language SQL
[3], [6]. It provides facilities for definition, storage, re-
trieval, and update of historical relations. The extensions
preserve the simple framework of SQL, also retaining its
structural and syntactic simplicity. The extensions have a
sound basis in the historical relational algebra described
in Section IV.

HSQL provides the TIME domain for defining implicit
(viz., FROM and TO) attributes as well as explicit time
attributes. It directly supports the operations and func-
tions on time described in details in Section III. Also,
clauses have been added to support the historical algebra
operations defined in Section IV.

The new facilities in HSQL will be described in the
following sequence:

1) facilities for definition of historical relations and
their time granularities (Section V-A),

2) facilities for retrieval of data (Section V-B)

3) facilities for data updates (Section V-C) and

4) facilities for retroactive updates (Section V-D)

5) other facilities (Sections V-E and V-F).

In defining the syntax of new features, we will refer the
SQL grammar in [6], and give syntax definitions only for
modified or new clauses.
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A. Data Definition

A historical relation may be either of state or event type.
A suitable time granularity is associated with it. A histor-
ical relation is defined by the CREATE TABLE state-
ment, which gives it a suitable name and lists its visible
attributes. The modified and new syntactic definitions are
as follows:

base-table-def
= CREATE [STATE | EVENT] TABLE-name
(base-table-element-commalist)
granularity-def
granularity-def
= YEAR [:MONTH[:DAY[:HOUR[:MIN[:SEC]]]]]
= DATE [:HOUR[:MIN[:SEC]}].
Note that DATE is an abbreviation for
YEAR:MONTH:DAY. HSQL permits user-defined col-
umns to be of type TIME, defined as follows:

column-def = column-name TIME granularity-def.

Fig. 1 gives a schema for a historical database which will
be used for illustration in the rest of the paper.

B. Data Retrieval

In standard SQL [6], a retrieval statement may contain
the SELECT, FROM, WHERE, GROUP BY, and HAV-
ING clauses. In fact, all these may be present together in

a query:

SELECT scaler-exp-commalist
FROM table-ref-commalist
WHERE search-condition

GROUP BY column-ref-commalist
HAVING  search-condition.

SQL has a simple basis (in terms of relational algebra) for
understanding execution of such a query: it consists of the
following steps.

1) Take Cartesian product of tables listed in FROM (let
the result be table 71),

2) Select (o) tuples of 71 which satisfy the search-
condition in WHERE (let the result be T2),

3) Partition T2 into groups where the tuples in each
group have same values for the columns listed in the
GROUP BY clause,

4) Select those groups of T2 which satisfy the search-
condition given in HAVING,

5) Project (w) required attributes (or, functions and
expressions thereof) from the groups of step 4). When
GROUP BY and HAVING clauses are absent, the result
of step 2) is used for this step.

We have attempted to retain this simple framework in
HSQL. In fact, the standard clauses of SQL have identical
meanings in HSQL. New facilities have been added using
additional keywords and through two new clauses. The
important extensions are as follows:

1) The SELECT clause may contain the keyword CO-
ALESCED to coalesce (c) the result before applying the
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CREATE STATE TABLE PROJECT
(PID CHAR(8) NOT NULL
LAB CHAR(10),
LOC CHAR(10),
MGR CHAR(10),
UNIQUE (PID))
WITH TIME GRANULARITY OF YEAR:MONTH;

CREATE EVENT TABLE SHIPMENT
(PID CHAR(8) NOT NULL
ITEM CHAR(10) NOT NULL
QTY DECIMAL(3),
DATESENT TIME DATE,
UNIQUE (PID, ITEM))
WITH TIME GRANULARITY OF DATE;

CREATE STATE TABLE EMP
(ENAME CHAR(10) NOT NULL,
PID CHAR(8)
SAL DECIMAL(S),
UNIQUE (ENAME))
WITH TIME GRANULARITY OF YEAR:MONTH

Fig. 1. A schema for example historical database.

final projection. A preliminary projection on attributes
used in SELECT is performed before applying coalesce.
This facility cannot be used with grouping.

2) The FROM clause may contain the keyword CON-
CURRENT to indicate concurrent product (Xr) instead of
Cartesian product of relations in the FROM clause.

3) A table-ref in FROM may be CURRENT(R) or HIS-
TORY(R) or, simply, R where R is a historical relation.

4) When FROM CONCURRENT is specified, the con-
dition in WHERE clause may refer to time attributes in
the result of concurrent product simply as *. FROM, *.TO
or * INTERVAL.

5) New group-oriented functions have been added for
use in SELECT and HAVING.

6) A new clause FROMTIME ... TOTIME ... for
taking time-slices of historical relations has been in-
cluded.

7) A new clause, called EXPAND BY, has been added,
using which a historical relation (which may be the result
of the concurrent product) can be expanded to convert in-
tervals into instants (as in expand operator ¢) of indicated
granularity.

A general query in HSQL may have all the following
clauses (in that order):

FROMTIME.. . TOTIME. ..
SELECT [COALESCED]...
FROM [CONCURRENT]...
WHERE. ..

EXPAND BY ...

GROUY BY ...

HAVING. ..

The execution of such a query can be understood in
terms of the following sequence of operations (parenthe-
ses indicate the corresponding clause):

1) Time-slice the relations in the FROM list (FROM-
TIME)

2) Apply X or X to those relations (FROM)

3) Apply o (selection operation) (WHERE)
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4) Apply e as per indicated granularity (EXPAND BY)
5) perform grouping (GROUP BY)

6) apply selection on groups (HAVING)

7) apply coalesce (¢), if applicable (COALESCED)

8) perform final projections (SELECT).

The neat execution framework of a HSQL query thus
retains the structural simplicity of SQL. When the exten-
sions are not used, an HSQL query is equivalent to a SQL
query, and when a clause or an extension is not used, the
corresponding step in the execution is omitted. This sim-
ple framework is also desirable for formally defining se-
mantics of HSQL (e.g., by using the historical relational
algebra).

We now describe the syntax of new features in HSQL,
again with reference to the SQL grammar in [6], and ex-
plain their action in more details, if necessary.

1) Time-slicing

FROMTIME timel [TOTIME time2].

It is used to take time-slice (rtimel . .time2) of historical
relations listed in the FROM clause. time2 is taken as
NOW by default.

2) Selection (in SELECT)

This specification gives the columns, or expressions or
functions on columns, to be retrieved by the query. The
syntax and facilities of SQL are directly applicable, in-
cluding the built-in functions like SUM, COUNT, etc. In
HSQL, the timing attributes may also be specified for se-
lection using their names (FROM, TO, AT, or INTER-
VAL) with * or range-variable as qualifiers.

3) from-clause

from-clause = FROM [CONCURRENT] table-
ref-commalist
table-ref = table [range-variable]
| segment-ref (table) [range-variable]
segment-ref = CURRENT | HISTORY.

As mentioned earlier, the word CONCURRENT is used
to take concurrent product of tables in FROM. The words
CURRENT and HISTORY allow us to choose a specific
segment of a historical relation.

4) where-clause

The search-condition in where-clause may include con-
ditions on time attributes using operations and functions
defined in Section III.

5) expand-by-clause

expand-by-clause
= EXPAND BY [ALLTIME | ANYTIME]
level-spec
level-spec
= YEAR | MONTH | DAY | HOUR | MIN | SEC.

The level-spec gives granularity upto which source tu-
ples are to be expanded. The granularity of source tuples
must be equal or finer than level-spec. The choice of
ALLTIME (default) and ANYTIME indicates whether
existence throughout an instant (recall that an instant is
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an interval at finer level) or part of an instant is to be

considered for expansion. Note that this clause may

change granularity of the result.

6) group-by-clause

The syntax and meaning of this clause remains the same
as in SQL, except that time attributes may be used for
grouping.

7) having-clause

The syntax and meaning of this clause remains same as
in SQL. However, a few new functions have been defined
for use in the search condition. These functions can also
be used in the SELECT clause. The new built-in func-
tions are as follows:

FIRST or LAST(column-name): The value of specified
attributes is extracted from that tuple of a group which
has the earliest or latest time interval compared to other
tuples in the group.

GROUP-UNION or GROUP-COMMON(* | interval-at-
tribute): gives a time interval which is the concatenated
or common interval (using the ““+* or ***** operation)
of the intervals of all tuples in a group after arranging
those intervals in their chronological sequence, if nec-
essary.

We now consider some examples using the database in

Fig. 1 to illustrate the new features of HSQL.

Examples:
Query I: When did SMITH join LOTUS project and at
what salary:

SELECT FIRST(FROM), FIRST(SAL)

FROM EMP
WHERE ENAME = 'SMITH’ and
PID = "LOTUS".

Query 2: How many projects were in progress during
1985 at New York location (note: some of those may still
be going on!)

FROMTIME 1985:01 TOTIME 1985 : 12
SELECT COUNT(DISTINCT PID)
FROM PROJECT X

WHERE X.LAB = 'NEW YORK'.

Query 3: List projects completed during managership
of ROBERT. A project is assumed completed if it is not
current. For a project to be selected, ROBERT should
have been manager in its last state:

SELECT PID
FROM HISTORY (PROJECT) X
WHERE X.PID NOT IN
(SELECT PID
FROM CURRENT(PROJECT))
GROUP BY PID
HAVING LAST(MGR) = 'ROBERT’.

An alternative way to formulate the query is

SELECT PID
FROM PROJECT
GROUP BY PID
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HAVING LAST(MGR) = 'ROBERT’ and
LAST(TO) /= NOW.

Query 4: Obtain number of shipments in each month
of ROBERT’s managership of projects during 1985.

FROMTIME 1985:01 TOTIME 1985:12
SELECT X.PID, *.FROM, COUNT(*)
FROM CONCURRENT PROJECT X,
SHIPMENT Y

WHERE X.PID = Y.PID AND

X.MGR = 'ROBERT’
EXPAND BY MONTH
GROUP BY X.PID, *.FROM.

Note that granularity of SHIPMENT and PROJECT are
different. The time granularity of their concurrent product
will be DATE, the finer of the two. Moreover, since
SHIPMENT is an event relation, the concurrent product
is also an event relation. * FROM refers to the corre-
sponding time attribute in the result.

Note: A concurrent product of two historical relations
R1 and R2 can also be obtained as follows:

SELECT R1.ALL, R2.ALL, R1.INTERVAL*
R2. INTERVAL
FROM R1, R2.

Thus, using * and +, it is possible to define what have
been called in literature as concurrent and union joins of
two historical relations.

C. Data Manipulation

In this section, we consider updates to historical rela-
tions performed at real-world times. We call these *‘nor-
mal’’ updates; here, the transaction time, supplied auto-
matically by HDBMS, is the same as the real-world time.

The updates include insertion, deletion, and change op-
erations. The data manipulation statements of HSQL are
the same as SQL. Their execution by HDBMS is, how-
ever, different in that HDBMS manipulates time and en-
forces the integrity constraints. The normal update oper-
ations were illustrated by an example in Section II,
indicating how tuples are added to the current segment
and how history tuples are generated.

D. Retrospective Updates

It may occastonally be necessary to update data in a
historical relation with retrospective effect. We expect that
this need would be rare, because real-world implications
of such updates are complex. For instance, if the price of
an item is changed retrospectively, we have to decide the
course of action for orders already completed.

In general, a retrospective update for state-oriented his-
torical relation may affect only the current state of an ob-
ject, one or more history states of an object, or current as
well as one or more history states of an object. For event-
oriented relations, there is one tuple per event. These may
also be changed retrospectively. We provide different
syntax for these two types of historical relations.
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State-Oriented Relations: The syntax for retroactive
update of a state relation is

FROMTIME 1 [TOTIME 2]
Update-statement | insert-statement | delete-state-
ment

By default, time-2 is taken as NOW.

To explain the semantics of retrospective manipulation,
we first define two interval operations. Let pl and p2 be
two overlapping intervals. Then,

p3 = pl before p2
is that portion of p1 which precedes p2, and

p4 = pl after p2
is that portion of pl which follows p2. Both p3 and p4
would be null if pl and p2 do not overlap.

The retrospective update statement may affect tuples in
both current and history segments. Let <s, 13, 14> be a
tuple (in current if 14 = NOW, else in history) whose
visible attributes are to be changed to s’. HDBMS re-
places the tuple by the following if 13 . . t4 overlaps with
t1 .. t2 (given in FROMTIME):

<s, (t3. .t4) before (11 ..12)>
<s, (t3. .t4) after (11 ..12)>
<s'\tl. . 2>,

Recall the integrity constraint that tuples with null inter-
vals are not stored at all. All tuples modified in this fash-
ion are coalesced and stored in appropriate segments.

The retrospective delete statement may affect zero or
more tuples in either segment. If <s, 3, 4> is one such
tuple, HDBMS replaces it by the following if 3. .74
overlaps with ¢1. .¢2:

<s, (t3..t4) before (t1. . t2)>
<s, (t3..t4) after (t1..12)> .

The retrospective insert statement may add zero or more
tuples in either segment. Let s be a tuple to be added.
HDBMS then considers <s, t1, 12> for insertion. It first
checks the integrity requirement that no states in this in-
terval already exist for the involved key; i.e., if k is the
key value in s, then the historical relation (in either seg-
ment) must not contain a tuple with k and interval that
overlaps f1..12.

Event-Oriented Relations: For retrospective updates to
event-oriented historical relations, the data manipulation
statement could be

delete-statement
with same syntax as in SQL, or

AT time
insert-statement | update-statement.

The delete statement may delete zero or more tuples. The
time given in the AT clause is used as event time for tu-
ples being inserted or existing tuples being updated.

Updates without Time Change: It may be necessary at
times (e.g., for error correction) to change visible attri-
bute values while keeping values of time attributes the
same as before. To facilitate this, the time specification
in the FROMTIME, TOTIME, and AT clauses could be
simply given as ‘?.”” For instance, the specification

FROMTIME ? TOTIME ?
update-statement

would only change visible attributes (indicated by SET
clause of the UPDATE statement) of the selected tuple.
Examples: The following retrospective data manipula-
tion examples are with respect to the historical database
defined in Fig. 1.
1) All the laboratories in Boston were moved to Cam-
bridge from Jan. 1986:

FROMTIME 1986:01

UPDATE PROJECT
SET LOC = "CAMBRIDGE’
WHERE LOC = 'BOSTON’

2) Jane was manager of the project OS5 from March
1984 to August 1984:

FROMTIME 1984 :03 TOTIME 1984 :08
UPDATE PROJECT

SET MGR = "JANFE’

WHERE PID = *OS%’

Assume that PROJECT contains the following two tuples
for OS5 with intervals overlapping the intervals in the
above UPDATE:

< 0S5, SOFTWARE, BOSTON, DICK, 1983:04,
1984:05>

< 0S5, SOFTWARE, BOSTON, HARRY, 1984:06,
1985:09>

From the first, HDBMS produces

< 0S5, SOFTWARE, BOSTON, DICK, 1983:04,
1984:02 >

< OS5, SOFTWARE, BOSTON, JANE, 1984:03,
1984:05 >

and the following from the second:

< 0S5, SOFTWARE, BOSTON, JANE, 1984:06,
1984:08 >

< 0S5, SOFTWARE, BOSTON, HARRY, 1984:09,
1985:09> .

Coalescing these four produces

< 0S5, SOFTWARE, BOSTON, DICK, 1983:04,
1984:02 >

< 0S5, SOFTWARE, BOSTON, JANE, 1984:03,
1984:08 >

< 0S5, SOFTWARE, BOSTON, HARRY, 1984:09,
1984:05> .

These three tuples will replace the original two tuples af-
fected by this statement.
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3) There was a shipment for project ADA involving
part HW125 in quantity 3 on Dec. 3, 1984-

AT 1984:12:03
INSERT INTO SHIPMENT
VALUES (CADA’, "HW125’, 3, NULL).

This statement adds the following tuple to SHIPMENT:

<ADA, HW125, 3, NULL, 1984:12:03,
1984:12:03> .

E. Using Nonhistorical Relations in HSQL

A nonhistorical relation R is the conventional relation
of the standard relational data model. It has neither his-
tory nor timing information in its tuples. However, it may
be used together with historical relations in a database. It
then becomes important to define its meaning in the con-
text of time. There are two possible interpretations for a
nonhistorical relation:

1) as a snapshot relation: a nonhistorical relation may
be interpreted as containing data that are valid only at
NOW. Taking a time-slice of such a relation at t < NOW
produces an empty relation. Also, taking concurrent prod-
uct of the snapshot relation R with a historical relation §
(having history and current segments Sk and Sc) gives us

RXtS =R Xt Sc

= R X (7now..now (8¢c))

Note that the resuit tuples will contain intervals of one
instant NOW, Thus, timing data contained in the histor-
ical relation hardly play any role when used together with
a snapshot relation.

2) as a constant relation: a nonhistorical relation may
be interpreted as a state type relation whose tuples are
effective from —oo to NOW. Such a relation might con-
tain data which are truly time-invariant (e.g., the constant
data about books containing ISBN, title, authors, and
publisher). Alternatively, such a relation might represent
objects whose history is of no interest (e.g., data about
suppliers containing name and address, with no need to
maintain past addresses). If R is such a relation (and S, as
before, is a historical relation), then

7, (R) =R
RXrs =RXS.

Note that Cartesian product and concurrent product give
the same result in this interpretation. In fact, the result
retains the time data of the historical relation.

HSQL, by default, treats a nonhistorical relation R as a
constant relation. It can be directly used in FROM [CON-
CURRENT] with this interpretation. To obtain the first
interpretation, one can take a time-slice of historical re-
lations at NOW and use them with R in an HSQL query.
Thus, both interpretations are possible in HSQL.

F. Facilities for Time Rollback

As seen earlier, HDBMS provides facilities both for
normal and retrospective updates. We refer to retrospec-
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tive updates as ‘‘correction’’ transactions. These trans-
actions may modify both current and history segments.
Once processed, their effect is permanent on the database.
Thus, if we wish to take a time-slice after a correction has
been applied, the time-slicing is performed on the modi-
fied database.

A time-rollback (simply, rollback) differs from time-
slice in a very important way. A rollback to time ¢ refers
to the state of database as it was known at time . Thus,
here, we must disregard (i.e., undo) updates and correc-
tion transactions processed after time . The time rollback
was proposed by Snodgrass [14], [15]. It may, however,
be observed that its use would probably be very rare in
real-world applications.

To be able to apply time-rollback on a historical rela-
tion R, we must include the clause

WITH ROLLBACK FACILITY

in the DEFINE TABLE statement for relation R. HDBMS
then sets up a “‘correction log™* for R to store all relevant
data about corrections applied to R. These data include
not only the time at which the correction takes effect, but
also the time when the correction was made. The latter is
used for deciding whether the correction needs to be un-
done during rollback. Algorithms for time-rollback using
logs are given in [11].
The HSQL statement for performing rollback is

ROLLBACK table-name
AS OF time-instant.

The result of a rollback is a historical relation, which may
be saved and used in further operations.

VI. CoNCLUSIONS

Modeling time and reasoning about it has been of con-
cern to philosophers, logicians, linguists, and, recently,
t0 computer scientists working in the areas of artificial
intelligence [12] and information processing [2]. Logi-
cians have proposed *‘temporal logic’’ as a tool to capture
the meaning of temporal statements. Alternative consid-
erations for the following issues have led to many differ-
ent solutions [12]:

® discrete or continuous, linear or branching time,

® interpretation over time points or time intervals,

® transport of truth over an interval to its subinterval,
and

* logical form of associating time with an assertion.

Shoham [12] has proposed interval-based temporal logic
and has defined propositional and first-order versions of
it. It is based on discrete time, assertions over intervals
defined by an ordered pair of points, and *“ <’ (i.e., be-
fore) relationship between points. Shoham shows that his
model can capture objects proposed by others, such as
properties, events, and processes by categorizing tem-
poral propositions.

The historical data model of this paper uses the same
foundation as Shoham’s temporal logic. Hence, an HSQL
query can be interpreted as a formula in the first-order
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interval predicate calculus. Also, the proposed HDBMS
and HSQL have many unique and innovative features. In
the following, we emphasize these features and compare
them to other proposals in the literature.

1) We consider our state- and event-oriented view of
the real world more natural than the “‘cubic’’ view (of [1],
{41, [15]), as the cubic view is too ‘‘regular’’ to model
different database objects that are added, updated, and de-
leted at different times.

2) The state-oriented view naturally leads to interval-
stamping of tuples. The database designer can use the the-
ory of normalization [18] and also apply time-normal-
ization [7] to arrive at ‘‘minimal objects’’ that do not
exhibit any anomalies.

3) Since HDBMS maintains time and history data, the
database designer can use the current perspective of user
requirements during logical schema design. Conse-
quently, the database schema is simpler than when history
is explicitly included in schema design.

4) HDBMS supports only the real-world time. In a real-
time environment, on most occasions, the transaction time
would be equal to real-world time. HDBMS provides fa-
cilities for (occasional) retrospective updates. There are
two advantages to our approach: storage-efficiency, since
system times are not stored in every tuple, and efficient
query processing as we do not need a default operation
(‘‘As of NOW’’ as in [15]).

5) HSQL retains the simple structural and algebraic
framework of SQL. The extensions are well-defined in
that they relate directly to specific algebra operations,
which makes HSQL queries amenable to efficient trans-
lation, optimization, and execution [10]. HSQL provides
a facility for directly joining concurrent data from differ-
ent relations. It also adequately addresses the issue of time
granularities.

We have made some progress with an experimental im-
plementation of the proposed HDBMS and HSQL. The
HSQL run-time system, which can interpret a query pro-
gram consisting of historical and relational algebra oper-
ations (as also arithmetic and logical operations involved
in predicates), has been designed and implemented. The
HSQL query processor, consisting of query-tree genera-
tor, optimizer, and query-program generator as its major
components, is under implementation. We have studied
the algebraic properties of new operators for their use as
query optimizing transformations [10]. A practical
HDBMS will have to address the efficiency issue more
thoroughly than our experimental implementation. For
example, the issue of efficient storage structures for han-
dling monotonically increasing history needs further re-
search.
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