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TABLE II TABLE IV
TyricaL HUFFMAN CODES COMPARISON WITH ENTROPY OF THE IMAGE AND DIFFERENCE IMAGE
High compr. Prefix Huffman Differential
image = EWeek Value Code Entropy Entropy Deficiency
0 000100 IBMad 5.84 6.68 5.44 0.4
1 000101 Derin 3.92 7.47 3.71 0.21
2 00011 EWeek 3.60 7.39 3.46 0.14
3 0011 Andy 3.84 7.13 3.91 0.07
4 0010 Marilyn 4.80 6.27 4.63 0.17
5 0000 Karanne 4.24 7.15 4.16 0.08
6 010 Girl 5.68 6.44 5.04 0.64
7 011 Couple 5.12 6.22 4.83 0.29
8 1 Moon 6.17 6.71 5.51 0.66
Medium compr. Prefix Huffman Cit){ . 6.80 731 6.15 0.65
image = IBMad Value Code Aerial 6.72 7.31 5.97 0.75
Hat 6.08 7.37 5.27 0.31
0 0110
1 111
2 110 TABLE V
3 010 MINIMUM AND MAXIMUM CODEWORD LENGTHS FOR HUFFMAN CODES
4 000
5 001 Image Difference Image
6 101
7 0111 Largest Smallest Largest Smallest
8 100 Codeword Codeword Codeword Codeword
Low compr. Prefix Huffman Length Length Length Length
image = Aerial Value Code [BMad 25 5 27 3
Derin 23 4 27 2
0 011 EWeek 23 4 27 1
1 111 Andy 20 4 27 2
2 001 Marilyn 25 4 27 2
3 10 Karanne 16 4 27 2
: 9% Girl 24 5 25 3
6 0101 Couple 25 4 26 2
7 01001 Moon 20 6 25 4
3 01000 City 21 6 26 4
Aerial 21 7 25 5
Hat 20 4 25 4
TABLE 111 . )
 PERFORMANCE WITH FIXED HUFFMAN CODES variable-rate coding,”’ IEEE Trans. Inform. Theory, vol. 24, no. 5,
pp. 530-536, 1978.
PKARC Indiv EWeek Aerial IBMad [5] T. A. Welch, *‘A technique for high-performance data compression,’’
IEEE Comput. Mag., vol. 17, no. 6, pp. 8-19, 1984.
IBMad 13 27 16 24 27 [6] D. L. Neuhoff and N. Moayeri, ‘‘Tree searched vector quantization
Derin 33 51 50 33 45 with interblock noiseless coding,’” in Proc. Conf. Inform. Sci. Syst.
EWeek 41 55 55 33 47 (Princeton, NJ), 1988, pp. 781-783.
Andy 35 52 52 33 46 [7] R. W. Hamming, Coding and Information Theory. Englewood Cliffs,
Marilyn 30 40 36 30 39 NI: Prentice-Hall, 1986.
Karanne 26 47 46 32 43
Girl 24 29 18 25 28
Couple 27 36 31 28 35 On Two-Dimensional Maximum Entropy Spectral
Moon 13 23 6 21 21 Estimation
City 7 15 -7 15 12
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one dimensional (1-D) autoregressive model, led us to investigate the
maximization of entropy subject to the correlation matching con-
straints in the Radon space. Instead of solving the 2-D maximum en-
tropy spectral estimation problem, we convert it into a problem which
is easier to solve. It is shown that a radial slice of the 2-D ME spectrum
can be obtained by 1-D AR modeling of the projections (Radon trans-
form) of a stationary random field (SRF). The advantages and limita-
tions of using this new duality relation to estimate the complete 2-D
ME spectra on a pelar raster are discussed.

I. INTRODUCTION

Maximum entropy spectral estimation (MESE) has received con-
siderable interest ever since Burg introduced this new approach of
estimating a power spectral density (PSD) estimate from finite data
set [1]-[3]. The rationale behind general ME methods is very ele-
gantly discussed by Jaynes [4], [5], and in the spectral estimation
context by Ables [6]. In the one-dimensional (1-D) case, the dual-
ity between the ME spectrum and the spectrum obtained by assum-
ing an autoregressive (AR) model for the underlying time series
data has been very well established [3], [7]. The ME spectrum can
be calculated by solving a Toeplitz system of linear equations, when
autocorrelations are available [7]. These equations can be effi-
ciently solved using the Levinson recursion [8]. Alternatively,
Burg’s method [2] can be used to estimate the ME spectrum di-
rectly from the basic time series data without the need for estimat-
ing and extrapolating the autocorrelation function. This procedure
follows truly the ME principle, as it does not make any assump-
tions about the unmeasured data.

Assuming a Gaussian probability density function, the MESE
problem in the two-dimensional (2-D) case can be stated as fol-
lows:

P1: Maximize

H(S) = Sg in <S(o),, w2)> dw, dw, Y]
B
subject to the correlation matching constraints,

rim, n) = SS S(w;, wy) exp™™ ™) duy dw,,  for (m, n) € A
B

@

where B is the region in the frequency domain (w,, w,) over which
the spectrum is assumed to be nonzero. This region can be limited
arbitrarily and is problem dependent, but could be specified through
a condition of band limitedness for a time series or a cutoff wave
number in spatial wave theory. The coarray A is the set of points
(m, n) for which the autocorrelations r(m, n)’s are known. In gen-
eral, this can also be an arbitrary region. However, the available
segment of the autocorrelation function is assumed to be a part of
some positive definite function, so that it ensures positive values
for the 2-D PSD. Under this condition Woods [9] has shown that
a ME spectrum exists.

The 1-D AR model based ME spectral estimation procedure does
not have a natural extension to the 2-D case. This is due to the
differences in 1-D and 2-D discrete systems theory. A key differ-
ence is that the mathematics for describing 2-D systems is less
complete than for 1-D systems. Polynomials encountered in 1-D
rational systems can always be factorized, while 2-D polynomials
in general can not be factorized due to the lack of a fundamental
theorem of algebra in 2-D. The fact that spectral factorization is
not guaranteed in two dimensions has been pointed by Burg (quoted
by Woods [10]). Another difference is that 2-D systems have many
more degrees of freedom than 1-D systems. For instance, para-

metric models characterized by recursive difference equations in
1-D can be extended to 2-D with many possible difference equation
descriptions not all of which are recursively computable [11]. Un-
like in the 1-D case, the 2-D MESE is unwieldy to compute and
hence there is a continuing interest in developing efficient algo-
rithms for estimating the 2-D ME spectrum. Some of them utilize
an optimization framework using iterative procedures [12], [13],
the correspondence between the 2-D ME spectrum and the 2-D
noncausal Gauss-Markov random field (GMRF) model [9], [14],
[15], or Fourier transform the extrapolated autocorrelation function
[16]-[18]. The reader is referred to [19], [20] for a review of var-
ious methods of 2-D MESE methods.

Srinivasa [20] has recently studied some applications of LP mod-
eling and filtering in the Radon space. In particular, a novel method
of 2-D spectral estimation utilizing 1-D AR model in the Radon
space was proposed [21]. This approach, outlined briefly in Section
11, led us to investigate the maximization of entropy subject to the
correlation matching constraints in the Radon space. In this cor-
respondence, we introduce a modification to the 2-D autocorrela-
tion matching constraint. Instead of solving P1, we modify it to a
problem which is much easier to solve. This finds application es-
pecially in tomography and radar, and may be of interest in other
areas. A new closed form expression for a radial slice of the 2-D
ME spectrum is derived in Section III. The advantages and limi-
tations of using this new duality relation for estimating the 2-D ME

" spectrum are discussed in comparison with other approaches.

II. 2-D SpecTRAL ESTIMATION UTILIZING AR MODELING IN
THE RADON SPACE

The Radon transform is utilized to convert the 2-D spectral es-
timation problem into a set of independent 1-D spectral estimation
problems. Let py(r) denote the projection of a SRF f(x, y) at an
angle §. Using R to denote the Radon transform

R [f&x W] = S fx, y) ds

AB

Pe(D

I

S S fx,y)8(xcos 6 + ysin —ndxdy (3)

where ds is the elemental distance on the line AB represented by
the equation

xcosf + ysin@ = 1. @)

Let us denote the 1-D PSD of py(f) by Py(w). Let the 2-D PSD of
the SRF in polar coordinates be denoted by S(w, 6) while Sy(w)
represent a radial slice (§ being a parameter which indicates the
angle at which the slice is taken). Note that

S(w;, wy) = S(w cos 0, w sin 6). (5)

Jain and Ansari [22] have reintroduced the modification of ® for
SRF’s, which is originally due to Ludwig (23], and have shown
that the 1-D PSD of the projection of the SRF is related to the 2-D
PSD by the following relation:

S(w cos 6, w sin 0) = |w| Pyw). (6)

Thus, the 2-D PSD estimate can be built up slice by slice on a polar
raster from the 1-D PSD of the projections.

Srinivasa et al. [21] have proposed the use of 1-D AR modeling
for the projection data. A slice of the 2-D PSD estimated using 1-D



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 40, NO. 1, JANUARY 1992 243

AR model is then given by

w| Py
ey -

1 - k‘_Z,l ay(k) exp ik

Sp(w) =

where ag(k), for 1 = k < K represents the coeflicients of a Kth
order AR model and vy ¢ is the variance of the residual sequence
for the projection angle 8. The details of the procedure for 2-D PSD
estimation from the observation of a SRF and the advantages of the
Radon transform approach are not described here as they are read-
ily available in [20], [21].

Starting from the mathematical expression for the entropy and
using the ME principle we next establish the correspondence be-
tween (7) and the radial slice of the 2-D ME spectrum. The key
point here is to convert P1 into an equivalent set of 1-D problems
by using the Radon transform.

III. A New DuALITY RELATION FOR 2-D ME SPECTRUM

In the following, the region B in (1) is assumed to be a circular
region with the origin as the center and radius C, while 4 is taken
to be a regular lattice of points on a square grid. As described ear-
lier, in the Radon transform approach of 2-D PSD estimation the
spectrum is obtained on a polar raster. The polar coordinates (w,
6) were thus found necessary. It has been pointed out by Shannon
and Weaver [24] that the entropy H of a continuous function S is
relative to the coordinate system. A change in coordinate system
will change the entropy in general and is related to the Jacobian of
the coordinate transformation. Hence, changing from Cartesian to
polar coordinates, the integral in (1) is written as

4 T oC
H(S) = SO S . In (@, O] do do. ®)

It is to be noted that 6 lies only in the range [0, w) when both
positive and negative values of w are considered, and the property

S(w, § + 7 = S(—w, 0) (&)

is used. The set of constraints in problem P1 are now transformed
into constraints in the Radon space by defining the Radon transform
of r(m, n). Defining ry(z;) as

rty) = Rlr(m, n)] 10

and assuming r,4(%;) is available for K discrete values of k, the
equivalent set of constraints to be met by the slice of 2-D PSD at
the particular angle 6 are

C
ra(ty) = S ng(w) exp™ dw, for |k| = K. an

It is important to note that the ® transform is a whitening transform
in 6 for stationary random fields [22]. A projection at a particular
angle 0 does not contribute to any other slice of the 2-D PSD other
than the considered angle 6. Hence, the entropy maximization
problem can now be carried out by maximizing the inner integral
in (8) for all 6. Thus, the equivalent set of problems P2 that are to
be considered are

P2: Maximize

C
H'(S) = S_C In (Sy(w))|w| dw (12)

subject to the constraints

c
ro(ty) = SAC Se(w) exp™® dw,  for k| = K (13)

for all 6.

Now consider P2 for any angle 6. The ME principle requires the
entropy to be stationary with respect to the unknown autocorrela-
tions, i.e., rg(t,) for |k| > K. Hence the partial derivatives of H'(S)
with respect to ry(#;) for |k| > K can be set to zero

BH'(S)
Org(t)

c
S |w|[Sp(w)) ™" exp * dw =0, for [k| > K.
-C

(14)

Equation (14) implies that lwl[Sg(w)]’l can be expressed as a finite
Fourier series. Hence,

K
loliSi@)] ™ = 2 ¥k exp ™™

or

Syw) = —————— Lol . (15)

2 ¥yk) exp ik
k=-kK

Following the argument for the equivalence of the ME spectrum
with AR spectrum in the 1-D case [3], the 1-D polynomial in the
denominator of (15) can be factorized and thus a radial slice of the
2-D ME spectrum can be written as

|| ps.x
K 2"

‘1 - El (k) exp ~*e

Smes(w) = (16)

Comparing (7) and (16) the following theorem can be stated.
Theorem: A radial slice of the 2-D maximum entropy spectrum
Smee(w) of a stationary random field is obtained by multiplying the
1-D AR spectrum of the projection of the stationary random field
by a |w| function.
We next discuss the advantages and limitations in-using this new
result for estimating the 2-D ME spectrum.

Remarks:

1) The Radon transform essentially reduces the 2-D MESE
problem P1 into a set of 1-D MESE problems which is in turn
handled by AR modeling procedures. Hence in this method of 2-D
spectral estimation the problem of 2-D spectral factorization does
not arise. The 2-D ME spectrum obtained here turns out to be a
function of the prediction error of a set of 1-D LP filter for the
projections of SRF. Smylie er al. [25] have expressed the entropy
rate as a function of a set of 2-D row and column filters. The prob-
lems encountered while using such 2-D corner filters, or with filters
of other shapes, (e.g., loss of stability and distortion of spectra
[26]-28]), are not encountered while using the new approach.

2) By using the Burg method, or its modifications, for estimat-
ing the AR parameters of the projection data the spectrum can be
estimated directly from the observations of a SRF. The Radon
transform approach of 2-D spectral estimation is thus a stochastic
approach of spectral estimation.

3) From the computational point of view as well, this new ap-
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proach is very advantageous as it requires solving a set of a system
of linear equations. Further, this method is amenable for parallel
processing. Procedures which estimate the 2-D ME spectrum by
solving linear equations are applicable only in special cases, e.g.,
isotropic random field [29], and GMRF when the model order is
exactly known [15].

4) The only approximation required in using the Radon trans-
form approach is in computing the line integrals of the 2-D obser-
vation set. The evaluation of the Radon transform involves inte-
gration from —oo to o along a line. Given the autocorrelation
function on a finite domain, we cannot compute its true Radon
transform. On the other hand, if we compute the projections of the
given lags-and then apply the above method, we would have to
change the value of the given lags if we have to match the Radon
transform values. Hence in using this approach for ME spectral
estimation, we are not solving exactly the problem P1, but solving
an easier problem P3. The details of using a Riemann sum approx-
imation for estimating the line integrals of the available finite data
is given in [21].

5) Regarding the nature of the 2-D spectrum that is obtained, it
is discrete in the angular variable 6, while along each slice a con-
tinuous spectrum is indeed obtained. The number of slices can be
increased indefinitely by computing the necessary projections at
each angle. However, from many computer simulations that have
been carried out it has been observed that for a data array of size
(32 x 32) an increment of 1° is sufficient to get a good estimate of
the 2-D spectrum [20], [21]. The other features of the RT approach
of 2-D spectral estimation have been discussed in [20], [21].

IV. ConcLusiOoN

This correspondence has established and discussed an interesting
theoretical result that is obtained when an LP model is used in the
Radon space for the 2-D spectral estimation problem. It is shown
that 1-D autoregressive spectrum of the projections of a stationary
random field when multiplied by a |w| function results in a radial
slice of the 2-D ME spectrum. The elegance of this new approach
along with the advantages and its limitations is brought out by com-
paring it with other methods that have been proposed earlier for
2-D MESE. The approximation made in estimating the Radon
transform has been mentioned. The effect of enforcing the match-
ing constraints in the Radon space given finite lags, and the statis-
tical properties of the resulting ME spectral estimate have to be
investigated further. Lastly, the extension of the new duality rela-
tion derived for the 2-D case, to the m-D case is an interesting
problem.
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