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Abstract A simplified second strain gradient Euler–Bernoulli beam theory with two non-classical elastic
coefficients in addition to the classical constants is presented. The governing equation and the associated
classical and non-classical boundary conditions are derivedwith the aid of variational principles. The simplified
second strain gradient theory is governed by an eighth-order differential equation with displacement, slope,
curvature and triple derivative of displacement as degrees of freedom. This theory can be reduced to the first
strain gradient and classical Euler–Bernoulli beam theories. Analytical solutions for static behaviour, free
vibration and stability analyses are presented for different boundary conditions and length scale parameters.
Using the numerical Laplace transform, a spectral element is developed for dynamic analysis of a cantilever
beam subjected to a Gaussian pulse. Further, spectrum and dispersion relations are derived to study wave
propagation characteristics. The gradient effects on the structural response are assessed and compared with
the corresponding first strain gradient and classical beam theories. Observations show that the second strain
gradient theory exhibiting stiffer behaviour in comparison to the first strain gradient and classical theories.
The beam deflection decreases whereas frequencies and buckling load increase for increasing values of the
gradient coefficient in comparison to the first strain gradient and classical theories. The forced response for a
finite beam reveals a decrease in the amplitude and a shift to smaller time values with an increase in the value
of length scale parameter. Additionally, the second strain gradient beam shows a dispersive behaviour, and
for a given frequency the wavenumber decreases and the phase speed increases with an increase in the length
scale parameter as compared to the first strain gradient beam theory.

1 Introduction

In recent years, more efforts have been made to understand the mechanical behaviour of micro- and nanoscale
structural systems due to their outstanding features and wide range of applications, especially in the field of
micro and nano-electromechanical systems [1, 2]. For efficient and optimal design of these structural systems,
a comprehensive understanding of the discrete structural behaviour at micro/nanoscale is very critical. Various
approaches have been proposed in the literature to accurately predict the discrete behaviour of structures at
nanoscale. For example, the experimental approach has been used by many researchers and found to be very
tedious and expensive [3, 4]. As an alternative, atomistic and semi-atomistic approaches such as lattice dynam-
ics and molecular dynamic simulation are developed [5–7]. However, due to high computational cost, these
methods cannot be generalised for practical applications. Considering the computational cost and accuracy
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aspects, continuum-based approaches have been developed, that assure reasonable accuracy with less com-
putational efforts as compared to discrete or atomistic approaches. In particular, the non-classical continuum
theories with micro-structural properties have proved to be very efficient for predicting the micro/nanoscale
structural behaviour.

The classical continuum theories which are based on the concept of homogeneity and locality of stress
are effective for macroscale modelling of structural systems. Nevertheless, they lack efficiency to model the
micro/nanoscale systems due to the absence of micro-structure length scale parameters. For instance, these
theories are incapable of describing size-dependent mechanical behaviour of structures with micro-structure
effects; they introduce singularity in problemswith localised deformations; they are ineffective in treating strain
softening, phase transformation and instability problems; unable to predict the dispersive behaviour in granular
media, etc. To capture these size-dependent phenomena accurately, generalised continuum theories or non-
classical continuum theories with micro-structure effects are developed. These theories are enriched versions
of classical continuum theories incorporating higher-order gradients of stress/strain tensors in conjunction with
the intrinsic length scale parameters which account for scale effects. For example, Cosserat elasticity theory
[8], micropolar theory [9], non-local elasticity theory [10–12], strain gradient theory [13, 14], Mindlin’s strain
gradient theory [15, 16] and couple stress theory [17, 18]. The aforementioned theories are difficult to be used in
practical applications as they contain many non-classical elastic constants in addition to the classical constants.
Subsequently, many simplified and practically feasible versions which contain at least one non-classical elastic
constant of dimension length in addition to the classical Lamé constants, have been developed to investigate the
non-local andmicro-structural effects on the mechanical behaviour of small-scale structures. The non-classical
theories which have become popular in recent decades and have been extensively used in the literature due
to their simplicity are the non-local elasticity theory by Eringen et al. [11, 12], Mindlin’s simplified strain
gradient theory [19–21], modified strain gradient theory by Lam et al. [22] and modified couple stress theory
by Yang et al. [23]. These non-classical theories are governed by higher order differential equations and are
more complicated compared to their classical counterparts. They introduce additional non-classical degrees
of freedom and boundary conditions. Many analytical models are reported in the literature based on these
non-classical theories to study the scale effects on the structural response [24–28].

In the non-classical strain gradient theories, the strain energy density depends on the elastic strain, its
gradients and non-classical parameters that account for scale effects [13, 15, 20]. Mindlin et al. [15] proposed
a first strain gradient theory (form-II) which has five and seven non-classical coefficients for static and dynamic
applications, respectively, for an isotropic elastic material. Considering the complexity in determining the non-
classical parameters and their application to practical problems, a simplified version is developed by altering
the generalised strain gradient theory [15, 16]. This simplified version of first strain gradient theory has one
and two non-classical elastic coefficients for static and dynamic analysis, respectively [29–37]. Employing
this simplified theory, many analytical and numerical models for structural systems have been reported in the
literature to study the gradient effects on the structural behaviour [38–44]. Later, Mindlin et al. [45] proposed
a second strain gradient elastic theory formulated using the strain tensor and its first and second gradients.
This theory is more involved and contains sixteen non-classical elastic coefficients in addition to two Lamé
constants. It has been applied to various engineering problems to study the material and structural behaviour
[46–56]. To develop a practically feasible model, Lazar et al. [57] and Castrenze et al. [58] formulated a
simplified second strain gradient theory. This theory contains two non-classical elastic constants in addition
to the classical constants and is used for dislocation and defect problems [59–62].

In this paper, anEuler–Bernoulli beammodel based on simplified second strain gradient theory is developed,
which has two non-classical elastic constants in addition to the classical constants. This is an extension of the
earlier work on first strain gradient theory for an Euler–Bernoulli beam to study the static, stability and dynamic
behaviour [38, 39, 42, 43]. The governing equation and the associated classical and non-classical boundary
conditions are derived using the variational principles [63, 64]. Numerical examples on static, free-vibration
and stability analyses of beams are presented to assess the gradient effects on the structural behaviour. Dynamic
response of a cantilever beam subjected to a transverse Gaussian pulse is studied by formulating a spectral
element based on numerical Laplace transform (NLT). Also, the spectrum and dispersion relations are derived
to assess the influence of length scale parameters on the wave propagation characteristics. It is observed that
the second strain gradient Euler–Bernoulli beam theory is governed by an eighth-order differential equation
and has displacement, slope, curvature and triple derivative of displacement as degrees of freedom. Further, the
second strain gradient theory exhibits stiffer behaviour in comparison to the first strain gradient and classical
theories. The beam deflection decreases whereas frequencies and buckling load increase for increasing values
of the gradient coefficient as compared to the first strain gradient theory. The forced response reveals a decrease
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in the amplitude and shift towards smaller time values with increasing length scale parameters. Furthermore,
the second strain gradient beam shows a dispersive behaviour, and for a given frequency, the wavenumber
decreases and phase speed increases with an increase in the gradient coefficient as compared to the first strain
gradient beam theory.

2 Second strain gradient Euler–Bernoulli beam theory

In the present study, a simplified second strain gradientmicro-elasticity theory byLazar et al. [57] is considered,
which contains two classical and two non-classical material constants. The two classical material constants
correspond to Lamé constants and non-classical constants are of dimension length which are introduced to
account for gradient effects. For a second strain gradient Euler–Bernoulli beam, the constitutive relations are
expressed as

τx � Eεx , ςx � g21 E ε′
x , ς̄x � g42 E ε′′

x ,

σx � τx − ς ′
x + ς̄ ′

x � E(εx − g21 ε′′
x + g42 ε′′′

x ),

εx � −z
∂2w(x, t)

∂x2
, (1)

whereσx is the total stress, τx is the classical Cauchy stress, ςx , ς̄x are the higher order double and triple stresses,
respectively, related to the gradient elasticity theory and εx is the axial strain. Furthermore, w is the transverse
displacement of the beam, z is the coordinate in the thickness direction, E is the elastic Young’s modulus, g1,
g2 are the strain gradient constants of dimension length. The primes indicate order of derivative with respect
to x. Based on the above constitutive relations, the strain energy for second strain gradient Euler–Bernoulli
beam considering the effect of axial compressive force P is written as

U � 1

2

∫ L

0
E I
[
(w′′)2 + g21(w

′′′)2 + g42(w
iv)2

]
− 1

2

∫ L

0
P(w′)2dx, (2)

where L is the length of the beam and I is the second moment of area of cross section. The work done by the
external applied load is given by

W � −
∫ L

0
q(x)w dx − [Vw]L0 +

[
Mw′]L

0 +
[
M̄w′′]L

0 +
[ ¯̄Mw′′′]L

0
, (3)

where q is the transverse load, V and M are shear force and bending moment, M̄ and ¯̄M are the double and
triple moments acting on the beam. The kinetic energy is given as

K � 1

2

∫ L

0
m ẇ2dx, (4)

where m � ρA is the mass per unit length, ρ is the density and the over dot indicates the derivative with
respect to time t. Taking the first variation of the strain energy given in Eq. (2) and performing integration by
parts, the following expression is obtained

δU �
∫ L

0

[
E I

[
wiv − g21w

vi + g42w
vi i i

)
+ Pw′′] δw dx

−
[ {

E I
[
w′′′ − g21w

v + g42w
vi i
)
+ Pw′} δw

]L
0
+
[{

E I
[
w′′ − g21w

iv + g42w
vi
) }

δw′]L
0

+
[ {

E I
[
g21w

′′′ − g42w
v
) }

δw′′]L
0 +

[{
E I g42 wiv

}
δw′′′]L

0
. (5)

Similarly, the variation of external work done is given by

δW � −
∫ L

0
q(x) δw dx − [V δw]L0 +

[
Mδw′]L

0 +
[
M̄δw′′]L

0 +
[ ¯̄Mδw′′′]L

0
. (6)
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Now taking the variation of kinetic energy with respect to time and performing integration by parts over the
time interval (t1, t2), we obtain∫ t1

t1
δK dt � −

∫ t2

t1

∫ L

0
mẅ δw dx dt +

∫ L

0
m [ẇδw]t2t1dx . (7)

Substituting Eqs. (5)–(7) in Hamilton’s principle [81]

δ

∫ t2

t1
[K − (U +W )] dt � 0, (8)

we get
∫ t2

t1

∫ L

0

[
E I
[
wiv − g21w

vi + g42w
vi i i

)
− q(x) + mẅ + Pw′′] δw dx dt

−
∫ t2

t1

[{
V − E I

[
w′′′ − g21w

v + g42w
vi i
)

− Pw′} δw
]L
0
dt

−
∫ t2

t1

[ {
M − E I

[
w′′ − g21w

iv + g42w
vi
) }

δw′]L
0
dt

−
∫ t2

t1

[ {
M̄ − E I

[
g21w

′′′ − g42w
v
) }

δw′′]L
0 dt −

∫ t2

t1

[ { ¯̄M −
[
E I g42 wiv

) }
δw′′′]L

0
dt

−
∫ L

0
m [ẇδw]t2t1 dx � 0. (9)

It is to be noted that the integrand of the last term of Eq. (9) vanishes for the beam whose configurations at
initial time t1 and end time t2 are prescribed. Hence

[ẇ(x, t2)δw(x, t2)] − [ẇ(x, t1)δw(x, t1)] � 0. (10)

The variational statement in Eq. (9) implies that each term must be equal to zero, identically. Hence, the
governing equation for a second strain gradient Euler–Bernoulli beam is obtained as:

E I (wiv − g21w
vi + g42w

vi i i ) − q + Pw′′ + mẅ � 0 (11)

and the associated boundary conditions are as: Classical:

V � E I
[
w′′′ − g21w

v + g42w
vi i
)

− Pw′ � 0 or w � 0, at x � (0, L)

M � E I
[
w′′ − g21w

iv + g42w
vi
)

� 0 or w′ � 0, at x � (0, L) (12)

Non-classical:

M̄ � E I
[
g21w

′′′ − g42w
v
) � 0 or w′′ � 0, at x � (0, L)

¯̄M � E I g42 wiv � 0or w′′′ � 0, at x � (0, L) (13)

when g2 � 0, the second strain gradient theory reduces to first strain gradient theory and if g1 � g2 � 0, the
classical Euler–Bernoulli beam theory is obtained. The list of classical and non-classical boundary conditions
employed in the present study for a second strain gradient Euler–Bernoulli beam is as follows:
Simply supported:

classical: w � M � 0 , non-classical: w′′ � w′′′ � 0 at x � (0, L)
Clamped:

classical: w � w′ � 0 , non-classical: w′′ � w′′′ � 0 at x � (0, L)
Cantilever:

classical: w � w′ � 0 at x � 0 ; V � M � 0 at x � L
non-classical : w′′ � w′′′ � 0 at x � 0 ; M̄ � ¯̄M � 0 at x � L



Static, stability and dynamic analyses 1429

3 Analytical solutions for second strain gradient Euler–Bernoulli beam theory

In this section, the analytical solutions for bending, free vibration and stability analyses of second strain
gradient Euler–Bernoulli beam for different support conditions are obtained.

3.1 Static analysis

Consider a beam of length L subjected to a uniformly distributed load (udl) q. To obtain the static deflections
of the second gradient elastic Euler–Bernoulli beam which is governed by the equation

E I
[
wiv − g21w

vi + g42w
vi i i

)
− q � 0, (14)

a solution of the form

w(x) � a1 + a2x + a3x
2 + a4x

3 + a5e
n1x + a6e

n2x + a7e
m1x + a8e

m2x − qx4

24E I
(15)

is assumed, where

n1 �

√√√√g21 +
√
g41 − 4g42

2g42
, n2 � −

√√√√g21 +
√
g41 − 4g42

2g42
,

m1 �

√√√√g21 −
√
g41 − 4g42

2g42
, m2 � −

√√√√g21 −
√
g41 − 4g42

2g42
,

The constants a1 − a8 are determined with the aid of the boundary conditions listed in Eqs. (12) and (13).
After applying the boundary conditions the system of equations are expressed as:

[K ]{δ} � { f }, (16)

where K is the stiffness matrix, f is the force vector and {δ} � {a1, a2, a3, a4, a5, a6, a7, a8}T is the unknown
coefficient vector to be determined using the boundary conditions. The stiffness matrix K is an extension of
the earlier work on first strain gradient Euler–Bernoulli beam theory by Pegios et al. [42]. Once the unknown
coefficients are determined, the displacement solution is obtained from Eq. (15). The slope, curvature and
triple derivative of displacement at any point along the length of the beam can be computed by performing the
first, second and third derivative of Eq. (15), respectively. The shear force, bending moment, double moment
and triple moment are obtained by substituting Eq. (15) in Eqs. (12) and (13). The stiffness matrix and load
vector for different boundary conditions are given in the Appendix.

3.2 Free vibration analysis

To obtain the natural frequencies of the second gradient elastic Euler–Bernoulli beam, a solution is assumed
as

w(x, t) � w̄(x)eiωt . (17)

Substituting the above solution in the following equation of motion:

E I (wiv − g21w
vi + g42w

vi i i ) + mẅ � 0, (18)

gives

g42w̄
vi i i − g21w̄

vi + w̄iv − ω2

β2 w̄ � 0, (19)
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where β2 � E I/m. Equation (19) has the solution of the form

w̄(x) �
8∑
j�1

ci e
αi x , (20)

where ci are the unknown constants which are determined using boundary conditions and αi are the roots of
the characteristic equation

g42 α8 − g21 α6 + α4 − ω2

β2 � 0. (21)

After applying the boundary conditions given in Eqs. (12) and (13), we get

[F(ω)]{c} � {0}. (22)

For a non-trivial solution, the following condition is to be satisfied:

det[F(ω)] � 0. (23)

The natural frequencies for second strain gradient Euler–Bernoulli beam for different support conditions are
obtained by solving Eq. (23) using the procedure given in Kitahara et al. [80]. The respective frequency
equations F(ω) are presented in the Appendix. The numerical procedure involves finding the minimum values
of D(ω) � ln|det[F(ω)]| for a series of frequencies ω. The frequencies which make D(ω) minimum are the
natural frequencies as illustrated in Fig. 4.

3.3 Stability analysis

To obtain the buckling load for a second strain gradient Euler–Bernoulli beam governed by

E I (wiv − g21w
vi + g42w

vi i i ) + Pw′′ � 0, (24)

a solution is assumed as

w(x) � b1 + b2x + b3e
m̄1x + b4e

m̄2x + b5e
m̄3x + b6e

n̄1x + b7e
n̄2x + b8e

n̄3x , (25)

where bi are the unknown constants which are determined through boundary conditions and m̄1,2,3 and n̄1,2,3
are six roots of the following characteristic equation:

g42 y
6 − g21 y

4 + y2 +
P

E I
� 0. (26)

After applying the boundary conditions listed in Eqs. (12) and (13), the following expression is obtained:

[G(P)]{b} � {0}. (27)

For non-trivial solution, the following condition is to be satisfied:

det[G(P)] � 0, (28)

where G(P) is the geometric stiffness matrix. Earlier, the geometric stiffness matrix for first strain gradient
Euler–Bernoulli beam theory is developed by Pegios et al. [42]. The buckling load for second strain gradient
Euler–Bernoulli beam with different boundary conditions is obtained by following the approach given by
Kitahara et al. [80] and the associated geometric stiffness matrices G(P) are presented in the Appendix.
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3.4 Dynamic analysis

In this section, a spectral element for dynamic analysis of second strain gradient Euler–Bernoulli beam using
NLT is developed. The spectral element formulation is based on the Laplace transformation of the governing
differential equation andboundary conditions.NLT is an efficient tool for dynamic analysis andused extensively
in many applications [65–74]. The Laplace transform can be considered as Fourier transform of an exponential
signal analysed in terms of sinusoids and exponentials. The Laplace transform is expressed as [75, 76]

f̄ (η + i ω) �
∫ ∞

0
[ f (t) e−ηt ] e−i ω tdt, (29)

f (t) � eη t

2π

∫ ∞

−∞
[ f̄ (η + i ω)] ei ω tdω, (30)

where i � √−1, ω is the angular frequency, η is the Laplace variable, N is the number of FFT sampling
points and it is taken as an integer power of 2 for efficient computations, and T is the time of observation or
time window. It is to be noted that when η=0 Eqs. (29) and (30) reduce to the continuous Fourier transform
and can be implemented in the discrete framework using Discrete Fourier Transform (DFT). The advantage of
the real part of the Laplace variable η is that it acts like a damping parameter and damps out all the responses
beyond the chosen time window T, thereby eliminating the signal wraparound problem which normally arises
when FFT is used for transforming the variables [77]. The discrete form of the forward and inverse Laplace
transforms of Eqs. (29) and (30) can be expressed as:

f̄ (η + i k� f ) � �t
N−1∑
n�0

[ f (n�t) e(−η)(n�t)] e−i (2πk� f ) (n�t), (31)

f (n�t) � eη (n�t)[� f
N−1∑
k�0

f̄ (η + i k� f )] ei (2πk� f )(n�t)]. (32)

The term inside the square bracket in Eq. (32) allows to use the FFT algorithm [78, 79]. The FFT-based
implementation requires that the real part of the Laplace transform variable η be a function of the time window
T and the number of FFT points N. Two different empirical formulae are suggested in the literature for the
real part of the Laplace variable and given as ηWilcox � 2�ω � 2π/T [73] and ηWedepohl � 2 ln(N )/T
[74], where �ω is the spectrum integration step. In this research the value of the Laplace variable is taken as
ηWedepohl � 2 ln(N )/T . Assuming a spectral solution of the form

w(x, t) � w̃(x, s) e−(ikx−st) (33)

and substituting in the equation of motion (18), we get a characteristic equation in the Laplace domain as

g42k
8 − g21k

6 + k4 − s2

β2 � 0. (34)

The above equation gives 4 pairs of roots ±√
k1, ±√

k2, ±√
k3 and ±√

k4, where k is the wavenumber, s is
Laplace variable defined as s � (η + iω).

Now, the generic displacement vector can be rewritten using Eq. (33) and the above roots as:

w̃(x, s) �
8∑
j�1

d j e
−ik j x . (35)

The second strain gradient Euler–Bernoulli beam has w, w′, w′′ and w′′′ as degrees of freedom per node and
for a 2-noded element it has eight degrees of freedom per element. The displacement field in Eq. (35) in terms
of degrees of freedom can be expressed as

� �

⎧⎪⎨
⎪⎩

w
w′
w′′
w′′′

⎫⎪⎬
⎪⎭ �

⎡
⎢⎣
A11 ... A18
A21 ... A28
A31 ... A38
A41 ... A48

⎤
⎥⎦[�]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d1
.
.
.
d8

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� [K̄1] {δ}, (36)
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where δ � {d1...d8}T are unknown wave coefficients, A4×8 is the amplitude matrix and �8×8 is a diagonal
matrix defined as

A1 j � 1; A2 j � − ik j ; A3 j � −k2j ; A4 j � ik3j ,

� j j � e−ik j x ( j � 1, 8). (37)

Evaluating � at the two boundary nodes of the element x � (0, L), we obtain

�e �
{
K̄1(x�0)

K̄1(x�L)

}
{δ} � [K̄2]{δ}, (38)

where�e � {w1, w
′
1, w

′′
1 , w

′′′
1 , w2, w

′
2, w

′′
2 , w

′′′
2 }T contains all degrees of freedom of the element, K̄2 is a 8×8

non-singular complex matrix and the superscript e indicates the element. Eliminating the unknown coefficient
vector δ using Eqs. (36) and (38), we get the displacement field in terms of element nodal degrees of freedom
as

� � [K̄1][K̄2]
−1�e � [S f ]�

e, (39)

where S f is the element shape function matrix. To obtain the dynamic stiffness matrix, the nodal forces

f̂ � {V, M, M̄, ¯̄M}T given in Eqs. (12) and (13) are expressed in the Laplace domain by using Eq. (35) and
we get

f̂ �

⎧⎪⎪⎨
⎪⎪⎩

V
M
M̄
¯̄M

⎫⎪⎪⎬
⎪⎪⎭

�
⎡
⎢⎣
R11 ... R18
R21 ... R28
R31 ... R38
R41 ... R48

⎤
⎥⎦[�]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d1
.
.
.
d8

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

� [K̄ f ] {δ}, (40)

where R is given by

R1 j � − E I {i k3j + g21 i k
5
j + g42 i k

7
j }; R2 j � −E I {k2j + g21 k

4
j + g42 k

6
j };

R3 j � E I {g21 i k3j + g42 i k
4
j }; R4 j � E I {g42 k4j } ( j � 1, 8). (41)

Evaluating the nodal forces at the element boundaries x � (0, L), we get

f̂ e �
{
K̄ f (x�0)
K̄ f (x�L)

}
{δ} � [K̄3]{δ}. (42)

Combining Eqs. (38) and (42), the relationship between the element nodal forces and displacements is obtained
as

f̂ e � [K̄3][K̄2]
−1�e � [Kds]�

e, (43)

where [Kds]8×8 is the dynamic stiffness matrix in the Laplace domain computed at each frequency. Using Eqs.
(45) and (44), the dynamic response w(x, t) from the Laplace domain to the time domain is obtained as:

w(x, t) � eη (n�t)

[
� f̂ e

N−1∑
n�0

[Kds(η + i k� f̂ e)]−1 f̂ e(η + i k� f̂ e) ei (2πk� f̂ e)(n� f̂ e)

]
, (44)

where f̂ e(η + i k� f̂ e) is obtained using the forward FFT as:

f̂ e(η + i k� f̂ e) � �t
N−1∑
n�0

[ f̂ e(n�t) e−ηn�t ] e−i (2πk� f̂ e) (n�t). (45)
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3.5 Wave propagation analysis

For harmonic wave propagation in a second strain gradient Euler–Bernoulli beam, a solution of the following
form is assumed:

w(x, t) � woe
−i(kx−ωt), (46)

where wo, k and ω are amplitude, wave number and angular frequency of the wave motion, respectively. The
imaginary number is defined as i � √−1. Substituting the above solution into the homogeneous differential
equation given by Eq. (18), the following characteristic equation is obtained

g42E Ik8 + g21E Ik6 + E Ik4 − ρAω2 � 0. (47)

The spectrum relation can be obtained from the above equation as [71]

ω �
√
g42E Ik8 + g21E Ik6 + E Ik4

ρA
. (48)

the phase speed is given by [71]

ω

k
�
√
g42E Ik6 + g21E Ik4 + E Ik2

ρA
, (49)

and the group speed is [71]

dω

dk
� 4g42E Ik5 + 3g21E Ik3 + 2E Ik√

ρA (g42E Ik4 + g21E Ik2 + E I )
. (50)

4 Numerical results and discussion

In this section, numerical examples on bending, free vibration, stability, transient andwave propagation analysis
are presented to assess the influence of length scale parameters on the response of a second strain gradient
Euler–Bernoulli beam. The results are compared with those of classical and first strain gradient theories
for different boundary conditions and length scale parameters g1/L and g2/L . For ease of comparison, we
designate the first strain gradient model as Sg-I and the second strain gradient model as Sg-II. The numerical
data used for the analysis of beams is as follows: Length L � 1μm, depth d � 0.1μm, width b � 0.1μm,
Young’s modulus E � 30 × 106 GPa, Poisson’s ratio ν � 0.3, density ρ � 2700 kg/m3 and load q � 1μN.

4.1 Static analysis of gradient elastic beams

The static analysis of gradient elastic beams subjected to udl is presented herein. Three support conditions are
considered, simply supported, clamped and cantilever. The non-dimensional deflection w̄ � 100 E Iw/qL4

is compared for three different combinations of length scale values, g1/L � 0.1, g2/L � 0.1, g1/L �
0.15, g2/L � 0.1 and g1/L � 0.1, g2/L � 0.15. In Fig.1, the non-dimensional deflection obtained using the
Sg-II model is compared with the Sg-I (g1/L � 0.1, g2/L � 0) and the classical (g1/L � g2/L � 0) model
for a simply supported beam. It is observed that the Sg-II model shows lesser deflection than that of the Sg-I
and the classical model. For a given value of g1/L � 0.1, the Sg-II model deflection decreases with increasing
g2/L . Similarly, for a given value of g2/L � 0.1, the Sg-II model deflection decreases with increasing g1/L .
However, the influence of g2/L is more significant on the deflection as compared to g1/L . In Figs. 2 and 3,
a similar stiffer behaviour is exhibited by the Sg-II model for clamped and cantilever beams as compared to
the Sg-I and classical model. Based on the above observations, it can be stated that the Sg-II model shows a
stiffer behaviour in comparison to the classical and the Sg-I model. Further, the classical and the Sg-II model
form the upper and lower bounds, respectively, for the Sg-I model for a given value of g1/L . The parameter
g2 introduced into the second strain gradient theory has the effect of stiffening the behaviour.
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Fig. 1 Non-dimensional deflection variation for a simply supported beam under a udl
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Fig. 2 Non-dimensional deflection variation for a clamped beam under a udl

4.2 Free vibration analysis of gradient elastic beams

The effect of length scale parameters on the natural frequencies obtained for a second strain gradient
Euler–Bernoulli beam is studied. Three different boundary conditions are considered in this analysis:
simply supported, clamped and cantilever. The frequencies are non-dimensional as: ω̄ � ωL2√ρA/E I
and are compared for two different combinations of length scale values, g1/L � 0.1, g2/L � 0.1 and
g1/L � 0.1, g2/L � 0.15. In Fig. 4, a plot of log|F(ω)| versus ω is shown for a simply supported beam
and the first three frequencies are identified, which are obtained using the procedure described in Kitahara
et al. [80]. In Table 1, first six frequencies for a simply supported beam obtained using the classical, Sg-I and
Sg-II beam models are tabulated. It can be observed that the Sg-II model shows higher frequencies than the
classical (g1/L � g2/L � 0) and the Sg-I (g1/L � 0.1, g2/L � 0) models. For a given value of g1/L � 0.1,
the frequencies obtained using the Sg-II model increases with an increase in g2/L . As behaviour in frequencies
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Fig. 4 First three non-dimensional frequencies for a second strain gradient simply supported beam (g1/L � g2/L � 0.1)

is seen in Tables 2 and 3, for clamped and cantilever beams, respectively. Hence, the frequencies obtained
using the Sg-II model are higher than the Sg-I model for a given value of g1/L .

4.3 Stability analysis of gradient elastic beams

In Table 4, the non-dimensional buckling load P̄cr � Pcr L2/E I obtained for simply supported, clamped and
cantilever beams is presented. It can be observed that the Sg-II model shows higher buckling load than the
classical (g1/L � g2/L � 0) and the Sg-I (g1/L � 0.1, g2/L � 0) models for all the boundary conditions.
The buckling load obtained using the Sg-II model increases with an increase in g2/L for a fixed g1/L value.
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Table 1 Comparison of first six non-dimensional natural frequencies for a simply supported beam

Freq. Classical Sg-I Sg-II Sg-II
ω̄ ( g1L � g2

L � 0) ( g1L � 0.1, g2
L � 0) ( g1L � g2

L � 0.1) ( g1L � 0.1, g2
L � 0.15)

ω̄1 9.8696 10.3452 10.7267 11.6947
ω̄2 39.4784 46.6243 54.1347 73.9808
ω̄3 88.8264 122.0601 167.0198 275.7272
ω̄4 157.9137 253.6045 412.9814 762.4188
ω̄5 246.7401 459.4536 880.3240 1732.1901
ω̄6 355.3057 758.1478 1680.7079 3435.2844

Table 2 Comparison of first six non-dimensional natural frequencies for a clamped beam

Freq. Classical Sg-I Sg-II Sg-II
ω̄ ( g1L � g2

L � 0) ( g1L � 0.1, g2
L � 0) ( g1L � g2

L � 0.1) ( g1L � 0.1, g2
L � 0.15)

ω̄1 22.0266 35.8934 57.2239 95.1074
ω̄2 61.6850 108.9316 194.1768 353.5243
ω̄3 120.9026 239.1782 484.3670 940.2738
ω̄4 199.88595 444.2282 1021.5128 2067.2318
ω̄5 298.5555 742.4006 1923.0803 3998.0907
ω̄6 416.9908 1152.2065 3329.6826 7048.6249

Table 3 Comparison of first six non-dimensional natural frequencies for a cantilever beam

Freq. Classical Sg-I Sg-II Sg-II
ω̄ ( g1L � g2

L � 0) ( g1L � 0.1, g2
L � 0) ( g1L � g2

L � 0.1) ( g1L � 0.1, g2
L � 0.15)

ω̄1 3.5156 4.0373 5.1059 5.9669
ω̄2 22.0336 28.4554 34.8492 43.4446
ω̄3 61.7010 38.4899 115.6445 158.8339
ω̄4 120.9026 87.8028 285.8348 437.4657
ω̄5 199.8595 194.5272 610.9849 1037.4652
ω̄6 298.5555 365.5267 1182.5574 2175.0149

Table 4 Comparison of non-dimensional buckling load for different support conditions

Support Classical Sg-I Sg-II Sg-II
condition ( g1L � g2

L � 0) ( g1L � 0.1, g2
L � 0) ( g1L � g2

L � 0.1) ( g1L � 0.1, g2
L � 0.15)

Cantilever 2.4674 3.1013 3.7043 4.4148
Pinned 9.8696 10.8436 11.6498 13.8331
Clamped 39.4784 83.2918 172.7872 460.3418

4.4 Dynamic analysis of gradient elastic beam

The gradient effects on the dynamic response of the Sg-II model is studied for a cantilever beam subjected
to a transverse tip Gaussian force as shown in Fig. 5. The response is obtained at the tip for two different
combinations of length scale values, g1/L � 0.1, g2/L � 0.1 and g1/L � 0.1, g2/L � 0.15. In Fig. 6, the
velocity response is plotted for classical, Sg-I (g1/L � 0.1, g2/L � 0) and Sg-II models. It is observed that
the response obtained for Sg-II model shows higher dispersion behaviour as compared to the classical and Sg-I
models and it increases with increasing the g2/L value for a given g1/L . Furthermore, the Sg-II response shifts
towards the lower time scale values and also the amplitude decreases with increasing length scale parameter
as compared to the classical and the Sg-I model.

4.5 Wave propagation analysis of gradient elastic beams

The wave propagation characteristics of the Sg-II model is studied for three sets of length scale parameters
g1/L � 0.05, g2/L � 0.05; g1/L � 0.05, g2/L � 0.075 and g1/L � 0.05, g2/L � 0.1. In Fig. 7 the
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Fig. 6 Comparison of transverse velocity response at the tip of a cantilever beam subjected to a Gaussian pulse

spectrum relation for classical, Sg-I (g1/L � 0.05, g2/L � 0) and Sg-II models is plotted. The Sg-II model
shows a lower wave number as compared to classical and the Sg-I models forω ≥ 0.5 kHz. As g2/L increases,
the wave number decreases for the Sg-II model for a chosen g1/L value. In Fig. 8 the dispersion relation is
plotted and compared for all the three beammodels. The Sg-II model exhibits a dispersive behaviour similar to
the Sg-I model. The non-dimensional phase speed is higher for the Sg-II model in comparison to the classical
and Sg-I models for a given g1/L and ω ≥ 0.5 kHz.

5 Conclusion

An Euler–Bernoulli beam model is developed based on the simplified second strain gradient theory which
contains two non-classical elastic constants in-addition to the classical constants. The governing equation and
associated classical and non-classical boundary conditions are derived with the aid of variational principles.
The simplified second strain gradient theory can be reduced to first strain gradient and classical theories and
is governed by eighth-order differential equation with displacement, slope, curvature and triple derivative of
displacement as degrees of freedom. Analytical solutions for static, free vibration and stability analysis are
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Fig. 8 Comparison of dispersion relation

presented for different boundary conditions to ascertain the gradient effect on the structural behaviour. Using
the numerical Laplace transform a spectral element is formulated to study the scale effects on the dynamic
response. Further, the influence of gradient effects on wave propagation characteristics is also examined based
on the derived spectrum and dispersion relations. The gradient effects on the structural response are assessed
and compared with the first strain gradient and classical beam theories. It is concluded that the second strain
gradient theory exhibits stiffer behaviour in comparison to the first strain gradient and classical theories. The
beam deflections decrease whereas frequencies and buckling load increase with higher gradient coefficients
in comparison to first strain gradient theory. The amplitude of the forced response decreases and a shift is
noticed to smaller time values as the gradient coefficient increases. Furthermore, the second strain gradient
theory shows a dispersive behaviour, and for a given frequency, the wavenumber decreases and phase speed
increases for increasing length scale parameters as compared to the first strain gradient beam theory.
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Appendix

A. Stiffness matrix and force vector for static analysis of second strain gradient Euler–Bernoulli beam

The following is the list of stiffness matrices and load vectors for different boundary conditions:
(a) Simply supported beam:

[K ] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1

1 L L2 L3 em1L em2L en1L en2L

0 0 2 0 a11 a12 a13 a14

0 0 2 6L b11 b12 b13 b14

0 0 2 0 m2
1 m2

2 n21 n22

0 0 2 6L m2
1e

m1L m2
2e

m2L n21e
n1L n22e

n2L

0 0 0 6 m3
1 m3

2 n31 n32

0 0 0 6 m3
1e

m1L m3
2e

m2L n31e
n1L n32e

n2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, { f } �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

−qL4/24E I

g21q/E I

g21q/E I − qL2/2E I

0

−qL2/2E I

0

−qL/E I

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (A.1)

where

a11 � m2
1 − g21m

4
1 + g42m

6
1, a12 � m2

2 − g21m
4
2 + g42m

6
2,

a13 � n21 − g21n
4
1 + g42n

6
1 , a14 � n22 − g21n

4
2 + g42n

6
2,

b11 � (m2
1 − g21m

4
1 + g42m

6
1)e

m1L , b12 � (m2
2 − g21m

4
2 + g42m

6
2)e

m2L ,

b13 � (n21 − g21n
4
1 + g42n

6
1)e

n1L , b14 � (n22 − g21n
4
2 + g42n

6
2)e

n2L .

(b) Cantilever beam:

[K ] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1

0 0 0 6 a21 a22 a23 a24

0 1 0 0 m1 m2 n1 n2

0 0 2 6L b11 b12 b13 b14

0 0 2 0 m2
1 m2

2 n21 n22

0 0 0 6g21 b21 b22 b23 b24

0 0 0 6 m3
1 m3

2 n31 n32

0 0 0 0 c11 c12 c13 c14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, { f } �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

−qL/E I

0

g21q/E I − qL2/2E I

0

−g21Lq/E I

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (A.2)

where

a21 � (m3
1 − g21m

5
1 + g42m

7
1)e

m1L , a22 � (m3
2 − g21m

5
2 + g42m

7
2)e

m2L ,

a23 � (n31 − g21n
5
1 + g42n

7
1)e

n1L , a24 � (n32 − g21n
5
2 + g42n

7
2)e

n2L ,

b21 � (g21m
3
1 − g42m

5
1)e

m1L , b22 � (g21m
3
2 − g42m

5
2)e

m2L ,

b23 � (g21n
3
1 − g42n

5
1)e

n1L , b24 � (g21n
3
2 − g42n

5
2)e

n2L

c11 � g42m
4
1e

m1L , c12 � g42m
4
2e

m2L , c13 � g42n
4
1e

n1L , c14 � g42n
4
2e

n2L ,

h21 � (m2
1 − g21m

4
1 + g42m

6
1)e

m1L , h22 � (m2
2 − g21m

4
2 + g42m

6
2)e

m2L ,

h23 � (n21 − g21n
4
1 + g42n

6
1)e

n1L , h24 � (n22 − g21n
4
2 + g42n

6
2)e

n2L .
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(c) Clamped beam:

[K ] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1

1 L L2 L3 em1L em2L en1L en2L

0 1 0 0 m1 m2 n1 n2

0 1 2L 3L2 m1em1L m2em2L n1en1L n2en2L

0 0 2 0 m2
1 m2

2 n21 n22

0 0 2 6L m2
1e

m1L m2
2e

m2L n21e
n1L n22e

n2L

0 0 0 6 m3
1 m3

2 n31 n32

0 0 0 6 m3
1e

m1L m2
3e

m2L n31e
n1L n32e

n2L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, { f } �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

−qL4/24E I

0

−qL3/6E I

0

−qL2/2E I

0

−qL/E I

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.3)

B. Frequency equations for free vibration analysis of second strain gradient Euler–Bernoulli beam

The following are the frequency equations for different boundary conditions:
(a) Simply supported beam:

[F(ω)] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

e(α1L) e(α2L) e(α3L) e(α4L) e(α5L) e(α6L) e(α7L) e(α8L)

α1
2 α2

2 α3
2 α4

2 α5
2 α6

2 α7
2 α8

2

t1 t2 t3 t4 t5 t6 t7 t8

t1e(α1L) t2e(α2L) t3e(α3L) t4e(α4L) t5e(α5L) t6e(α6L) t7e(α7L) t8e(α8L)

α3
1 α3

2 α3
3 α3

4 α3
5 α3

6 α3
7 α3

8

α3
1e

(α1L) α3
2e

(α2L) α3
3e

(α3L) α3
4e

(α4L) α3
5e

(α5L) α3
6e

(α6L) α3
7e

(α7L) α3
8e

(α8L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.1)

(b) Cantilever beam:

[F(ω)] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

α1 α2 α3 α4 α5 α6 α7 α8

α1
2 α2

2 α3
2 α4

2 α5
2 α6

2 α7
2 α8

2

α1
3 α2

3 α3
3 α4

3 α5
3 α6

3 α7
3 α8

3

p1e(α1L) p2e(α2L) p3e(α3L) p4e(α4L) p5e(α5L) p6e(α6L) p7e(α7L) p8e(α8L)

r1e(α1L) r2e(α2L) r3e(α3L) r4e(α4L) r5e(α5L) r6e(α6L) r7e(α7L) r8e(α8L)

q1e(α1L) q2e(α2L) q3e(α3L) q4e(α4L) q5e(α5L) q6e(α6L) q7e(α7L) q8e(α8L)

α4
1e

(α1L) α4
2e

(α2L) α4
3e

(α3L) α4
4e

(α4L) α4
5e

(α5L) α4
6e

(α6L) α4
7e

(α7L) α4
8e

(α8L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.2)
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(c) Clamped beam:

[F(ω)] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1

e(α1L) e(α2L) e(α3L) e(α4L) e(α5L) e(α6L) e(α7L) e(α8L)

α1 α2 α3 α4 α5 α6 α7 α8

α1e(α1L) α2e(α2L) α3e(α3L) α4e(α4L) α5e(α5L) α6e(α6L) α7e(α7L) α8e(α8L)

α1
2 α2

2 α3
2 α4

2 α5
2 α6

2 α7
2 α8

2

α2
1e

(α1L) α2
2e

(α2L) α2
3e

(α3L) α2
4e

(α4L) α2
5e

(α5L) α2
6e

(α6L) α2
7e

(α7L) α2
8e

(α8L)

α1
3 α2

3 α3
3 α4

3 α5
3 α6

3 α7
3 α8

3

α3
1e

(α1L) α3
2e

(α2L) α3
3e

(α3L) α3
4e

(α4L) α3
5e

(α5L) α3
6e

(α6L) α3
7e

(α7L) α3
8e

(α8L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.3)

where

t1 � (−g21α
4
1 + g42α

6
1), t2 � (−g21α

4
2 + g42α

6
2), t3 � (−g21α

4
3 + g42α

6
3),

t4 � (−g21α
4
4 + g42α

6
4), t5 � (−g21α

4
5 + g42α

6
5), t6 � (−g21α

4
6 + g42α

6
6),

t7 � (−g21α
4
7 + g42α

6
7), t8 � (−g21α

4
8 + g42α

6
8),

p1 � (α3
1 − g21α1

5 + g42α1
7), p2 � (α3

2 − g21α2
5 + g42α2

7),

p3 � (α3
3 − g21α3

5 + g42α3
7), p4 � (α3

4 − g21α4
5 + g42α4

7),

p5 � (α3
5 − g21α5

5 + g42α5
7), p6 � (α3

6 − g21α6
5 + g42α6

7),

p7 � (α3
7 − g21α7

5 + g42α7
7), p8 � (α3

8 − g21α8
5 + g42α8

7).

r1 � (α2
1 − g21α1

4 + g42α1
6), r2 � (α2

2 − g21α2
4 + g42α2

6),

r3 � (α2
3 − g21α3

4 + g42α3
6), r4 � (α2

4 − g21α4
4 + g42α4

6),

r5 � (α2
5 − g21α5

4 + g42α5
6), r6 � (k26 − g21α6

4 + g42α6
6),

r7 � (α2
7 − g21α7

4 + g42α7
6), r8 � (α2

8 − g21α8
4 + g42α8

6),

q1 � (g21α1
3 − g42α1

5), q2 � (g21α2
3 − g42α2

5),

q3 � (g21α3
3 − g42α3

5), q4 � (g21α4
3 − g42α4

5),

q5 � (g21α5
3 − g42α5

5), q6 � (g21α6
3 − g42α6

5),

q7 � (g21α7
3 − g42α7

5), q8 � (g21α8
3 − g42α8

5),

C. Geometric stiffness matrix for buckling analysis of second strain gradient Euler–Bernoulli beam

The following are the geometric stiffness matrices for different boundary conditions:
(a) Simply supported beam:

[G(P)] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 1 1 1

1 L e(m1L) e(m2L) e(m3L) e(n1L) e(n2L) e(n3L)

0 0 m1
2 m2

2 m3
2 n12 n22 n32

0 0 t3 t4 t5 t6 t7 t8

0 0 t3e(m1L) t4e(m2L) t5e(m3L) t6e(n1L) t7e(n2L) t8e(n3L)

0 0 m3
1 m3

2 m3
3 n31 n32 n33

0 0 m3
1e

(m1L) m3
2e

(m2L) n31e
(n1L) n32e

(n2L) n33e
(n3L) n34e

(n4L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.1)
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(b) Cantilever beam:

[G(P)] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 1 1 1

0 1 m1 m2 m3 n1 n2 n3

0 0 m1
2 m2

2 m3
2 n12 n22 n32

0 0 m1
3 m2

3 m3
3 n13 n23 n33

0 0 p3e(m1L) p4e(m2L) p5e(m3L) p6e(n1L) p7e(n2L) p8e(n3L)

0 0 r3e(m1L) r4e(m2L) r5e(m3L) r6e(n1L) r7e(n2L) r8e(n3L)

0 0 q3e(m1L) q4e(m2L) q5e(m3L) q6e(n1L) q7e(n2L) q8e(n3L)

0 0 m4
1e

(m1L) m4
2e

(2L) m4
3e

(m3L) n41e
(n1L) n42e

(n2L) n43e
(n3L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.2)

(c) Clamped beam:

[G(P)] �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 1 1 1 1 1

1 L e(m1L) e(m2L) e(m3L) e(n1L) e(n2L) e(n3L)

0 1 m1 m2 m3 n1 n2 n3

0 1 m1e(m1L) m2e(m2L) m3e(m3L) n1e(n1L) n2e(n2L) n3e(n3L)

0 0 m1
2 m2

2 m3
2 n12 n22 n32

0 0 m2
1e

(m1L) m2
2e

(m2L) m2
3e

(m3L) n21e
(n1L) n22e

(n2L) n23e
(n3L)

0 0 m1
3 m2

3 m3
3 n13 n23 n33

0 0 m3
1e

(m1L) m3
2e

(m2L) m3
3e

(m3L) n31e
(n1L) n32e

(n2L) n33e
(n3L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C.3)
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