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Abstract Convective motions in the deep layers of the solar convection zone are affected by
rotation, making the convective heat transport latitude-dependent, but this is not the case in
the top layers near the surface. We use the thermal wind balance condition in the deeper lay-
ers to estimate the pole–equator temperature difference. Surface observations of this temper-
ature difference can be used for estimating the depth of the near-surface layer within which
convection is not affected by rotation. If we require that the thermal wind balance holds in
this layer also, then we have to conclude that this must be a layer of strong differential ro-
tation and its characteristics which we derive are in broad agreement with the observational
data of the near-surface shear layer.

Keywords Convection zone · Rotation · Velocity fields, interior · Helioseismology,
observations

1. Introduction

Whether the surface temperature of the Sun has any variations with latitude is an interesting
question both from theoretical and observational considerations. We point out that a simple
order of magnitude estimate of the pole–equator temperature variation can be made from
the thermal wind balance equation, which is the key equation in the theory of the meridional
circulation. This equation is well known in the literature (see, for example, Kitchatinov,
2013; Karak et al., 2014, Section 5.2; Choudhuri, 2020) and a plot of this temperature vari-
ation calculated from the thermal wind balance equation is presented in a very recent paper
(Matilsky, Hindman, and Toomre, 2020, Figure 13) without much detailed discussion of
its significance. We show that an order of magnitude analysis of the thermal wind balance
equation gives us a clue to understanding an enigmatic finding of helioseismology. Although
the isorotation contours of solar differential rotation are nearly radial within the body of the
convection zone, they bend towards the equator near the surface, giving rise to a near-surface
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Figure 1 A profile of the
differential rotation inside the
Sun obtained by helioseismology.
We draw the reader’s attention to
the thick straight line parallel to
the rotation axis starting from the
point O at the bottom of the
convection zone in the equatorial
plane and extending to the point
A just below the near-surface
shear layer. This straight line will
be used in Section 2 to estimate
the centrifugal term. Adopted
from Figure 26 of Basu (2016).

shear layer, which can be seen in Figure 1 of Howe (2009). This layer is clearly visible in
the color plot of the differential rotation shown in Figure 1 (this paper).

The origin of this near-surface shear layer is still not properly understood. Well before
this layer was mapped by helioseismology, the possible existence of such a layer was indi-
cated from the observation that the rotation rate of the Sun inferred from the positions of
sunspots differed by about 5% with respect to the rate inferred from Doppler measurements
and it was suggested that this was due to the effect of convection trying to make the specific
angular momentum constant in the outer layers of the Sun (Foukal and Jokipii, 1975; Gilman
and Foukal, 1979). There have been made some recent efforts to explain the near-surface
shear layer on the basis of numerical simulation (Guerrero et al., 2013; Hotta, Rempel, and
Yokoyama, 2015). Matilsky, Hindman, and Toomre (2019) suggested on the basis of their
simulations that a strong gradient of density is essential for creating the near-surface shear
layer. We propose a simple alternative explanation of this layer.

Heat is transported by convection in the outer layers of the Sun from about 0.7 R� to
the solar surface. Convective motions are expected to be affected by the solar rotation if the
convective turnover time τc is more than or comparable to the solar rotation period, i.e. if

τc ≥ 25 days. (1)

Immediately below the solar surface, convection takes place in the form of granules with
turnover times of the order of a few minutes. Since granular convection does not satisfy the
condition given by Equation 1, we believe that convection below the surface till a depth, say
D, will be completely unaffected by rotation. However, below this depth D, convection is
likely to take place in the form of giant cells with much longer turnover times. Numerical
simulations indeed show the existence of banana-shaped giant cells roughly aligned parallel
to the rotation axis—see Figure 1 in Brown et al. (2010) or Figure 3 in Gastine et al. (2014).
Heat transport in such convection cells is clearly affected by rotation. Since the Coriolis
force (which is crucial in producing the banana cells by acting on moving fluid parcels) is
more effective in lower latitudes, we expect the effect of rotation to be more at the lower
latitudes. Heat transport should be more efficient at higher latitudes, giving rise to a higher
temperature at the poles. A hotter pole will tend to drive a meridional circulation equator-
ward at the solar surface (opposite to what is observed). This type of circulation driven by
temperature differences on isochoric surfaces (i.e. surfaces of constant density) is often re-
ferred to as a thermal wind. It was realized nearly half a century ago that the effect of rotation
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on convection may make the heat transport in the Sun latitude-dependent and may produce
a thermal wind (Durney and Roxburgh, 1971; Belvedere and Paterno, 1976).

The thermal wind is opposed by the centrifugal force term arising out of the differential
rotation. With differential rotation mapped by helioseismology, one can now calculate this
centrifugal force term fairly accurately. Within the main body of the convection zone, the
centrifugal force term is expected to roughly balance the thermal wind term. In fact, the
centrifugal force term must slightly overpower the thermal wind term to drive the meridional
circulation in the correct direction. This balance is, however, thought to be upset in the layers
just below the solar surface. It has been argued that the dissipative term, which is negligible
inside the body of the convection zone compared to the centrifugal force term, becomes
important in the layer near the surface and balances the centrifugal term, the thermal wind
term being negligible there (Hotta, Rempel, and Yokoyama, 2015; Karak et al., 2014). We
present a different point of view. We argue that the thermal wind term becomes even more
important in the layer just below the surface and plays a crucial role in creating the near-
surface shear layer.

On the basis of a mean field model of the differential rotation and the meridional circu-
lation, Kitchatinov and Ruediger (1995) concluded that the pole of the Sun has to be about
4 K hotter than the equator. An input from observations will be very crucial in deciding
between the various alternative viewpoints. Ruediger (1989, p. 79) has provided a summary
of the early efforts made in determining the pole–equator temperature difference. Nearly all
the authors reported an upper limit rather than an actual measurement. Such efforts have
continued to be made (Kuhn, Libbrecht, and Dicke, 1988; Rast, Ortiz, and Meisner, 2008).
In one of the last investigations we are aware of, Rast, Ortiz, and Meisner (2008) reported
an excess temperature of 2.5 K in the polar region at the photospheric level. If this is true,
then it provides strong support to our theoretical conjecture, as we shall point out. We hope
that this important issue will be settled observationally in the near future.

An estimate of the pole–equator temperature difference from the thermal wind balance
condition is presented in the next section (Section 2). Then Section 3 is devoted to determin-
ing the various characteristics of the near-surface shear layer by assuming that this balance
condition holds in this layer also. Our conclusions are summarized in Section 4.

2. An Order of Magnitude Estimate of the Pole-Equator Temperature
Difference

The well-known equation driving the meridional circulation (which is the equation of the
azimuthal component of vorticity) can be derived from basic principles of fluid mechanics.
See, for example, Choudhuri (2020) for a derivation of this equation. The two important
source terms in this equation are the centrifugal term and the thermal wind term. The dissi-
pation term within the convection zone turns out to be negligible compared to the centrifugal
term estimated from helioseismology. This means that the centrifugal term cannot be bal-
anced by the dissipation term in the interior of the convection zone and must be balanced by
the thermal wind term in order to maintain a steady meridional circulation. This leads to the
equation

r sin θ
∂

∂z
�2 = 1

r

g

γ CV

∂S

∂θ
, (2)

where S is the specific entropy (i.e. the entropy per unit mass), z is measured parallel to the
rotation axis starting from the equatorial plane and all the other symbols have their usual



37 Page 4 of 9 A.R. Choudhuri

meanings. We may mention that Balbus et al. (2009) constructed a theoretical model of the
differential rotation by solving this equation to find �(r, θ) by assuming S to be a function
of �2. The validity of this assumption, however, is open to debate. We can use Equation 2
to make an order of magnitude estimate of the pole–equator temperature difference which
we need for balancing the centrifugal term that would arise from the differential rotation
measured by helioseismology.

We now try to estimate the magnitude of the centrifugal term, as given by the left hand
side of Equation 2, below the shallow layer near the solar surface. For this purpose, we
consider the straight line OA parallel to the rotation axis in Figure 1. We note that � has the
value �eq/2π ≈ 460 nHz at the point O of this line at the bottom of the convection zone and
the value �mid/2π ≈ 420 nHz at the point A where it reaches the bottom of the near-surface
shear layer. This change in the value of � takes place over the length of the straight line OA,
which is of order ≈ 0.75 R�. Noting that the value of r sin θ corresponding to any point on
this straight line is very close to this, it is easy to argue that the left hand side of Equation 2
in the interior of the convection would approximately be equal to

r sin θ
∂

∂z
�2 ≈ −[�2

eq − �2
mid]. (3)

Substituting the values of �eq and �mid, we get

r sin θ
∂

∂z
�2 ≈ −[(460)2 − (420)2] × (2π10−9)2 s−2 ≈ −1.4 × 10−12 s−2. (4)

Next, we make an estimate of the right hand side of Equation 2. We note that the specific
entropy of an ideal gas is given by

S = CV lnT − (γ − 1)CV lnρ + K,

where K is a constant. The entropy difference between the equator and the pole on any
isochoric surface (i.e. a surface of constant ρ) is

	S = CV ln

(
Teq

Tpole

)
.

Taking 	T to be the temperature excess of the pole with respect to the equator, we have

	S ≈ −CV

	T

TS
, (5)

where TS is the temperature of our isochoric surface and we have made use of the approxi-
mation ln(1 + x) ≈ x for |x| � 1. We point out that our convention is that the direction of
increasing θ is taken as the direction of increasing S so that 	S turns out to be negative.
Since this entropy difference occurs over an angular separation π/2, we have

∂S

∂θ
≈ −2CV

	T

πTS
. (6)

It may be noted that ∂S/∂θ implies differentiation at constant r , whereas the expression on
the right hand is obtained over an isochoric surface. The justification for this is provided in
Appendix A. Substituting Equation 6 in the right hand side of Equation 2, we get

1

r

g

γ CV

∂S

∂θ
≈ − 2

πγ

GM�
(0.85 R�)3

	T

TS
, (7)
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where we have taken r to be given by 0.85 R� corresponding to the middle of the convection
zone and have also used this to calculate g. If we now use the standard values of solar mass
(≈ 2 × 1033 gm) and radius (≈ 7 × 1010 cm), then we get (taking γ = 5/3)

1

r

g

γ CV

∂S

∂θ
≈ −2.4 × 10−7 	T

TS
s−2. (8)

We note that Equation 4 gives the value of the left hand side of Equation 2 only inside the
convection zone underneath the near-surface layer, whereas Equation 8 gives the value of
the right hand side of Equation 2 for any isochoric surface to within an order of magnitude,
provided 	T/T is much smaller than 1. By equating Equation 4 and Equation 8, we arrive
at

	T

TS
≈ 5.8 × 10−6. (9)

If we take TS equal to the temperature 5800 K at the photospheric surface, then we get
a rather low value 	T ≈ 3.4 × 10−2 K. But should we use the photospheric temperature
for TS in Equation 9? As we point out, Equation 4 gives the magnitude of the centrifugal
term underneath the near-surface shear layer. For the sake of consistency, we may expect
Equation 8 would be equal to Equation 4 only if use 	T/T for an isochoric surface below
the near-surface shear layer. At what depth this isochoric surface should be is discussed in
the next Section. We stress the rather non-intuitive fact that a centrifugal force resulting from
a significant variation in � needs a very small pole–equator temperature difference to give
rise to a thermal wind term to balance it.

3. Physics of the Near-Surface Shear Layer

As we move from a region inside the convection zone towards the solar surface, the convec-
tion cells would be of smaller size due to decrease in the pressure scale height and rotation
would have less effect on the convection cells. While this is a gradual transition, we can
make the following simplification. Below a certain depth D, we assume that Equation 1 is
satisfied and convection is significantly affected by rotation. On the other hand, Equation 1
is not satisfied above D and convection is unaffected by rotation. We now make an estimate
of this depth D.

Within the convection zone, the temperature gradient dT /dr is very nearly equal to the
adiabatic gradient, the small difference between the two depending on the mixing length
l (Kippenhahn and Weigert, 1990, Section 7). Since the mixing length l would be latitude-
dependent below D due to the effect of rotation, the gradient dT /dr would vary with latitude
beneath D. On the other hand, the mixing length l would be independent of latitude above
D, leading us to conclude the dT /dr would be the same at all latitudes in this layer near the
surface. This means that the temperature would fall radially at the same rate at all latitudes
in this layer. Suppose 	T is the pole–equator temperature difference at the depth D. As we
move from this depth D towards the surface, the overall temperature would keep falling, but
	T would still be the pole–equator temperature difference at the photospheric surface due
to the temperature falling at the same rate at all latitudes. In other words, a pole–equator
temperature difference at depth D gets directly mapped to the photospheric surface, even
though the overall temperature keeps falling. If 	T is really 2.5 at the photospheric surface
as claimed by Rast, Ortiz, and Meisner (2008), then we have to conclude that 	T at the
depth D also should be 2.5 K.
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Presumably, the depth D would be in a region where the centrifugal term is given by
Equation 4 and consequently Equation 9 holds. Taking 	T ≈ 2.5 K, we conclude that the
temperature of the isochoric surface at this depth would be of order

TS ≈ 4.3 × 105 K. (10)

From the standard model of the convection zone (Spruit, 1974; Bahcall and Ulrich, 1988),
we note that the temperature would have such a value at a radial distance of about 0.93 R�
from the solar center, which gives a depth of

D ≈ 4.9 × 104 km (11)

below the photospheric surface. Our contention is that, if the pole–equator temperature dif-
ference at the solar surface is really 2.5 K, then the pole–equator temperature would continue
to remain approximately 2.5 K till this depth 4.9 × 104 km, in spite of the overall temper-
ature changing by 2 orders of magnitude between the solar surface and this layer at depth
4.9 × 104 km. If the temperature variation at the depth D has to be imprinted to the surface,
then dT /dr has to be independent of latitude to a very high degree of precision. Can we
expect this? We point out that the temperature difference even at the depth D below which
dT /dr is latitude-dependent, as given by Equation 9, is extremely small. This suggests that
the variation of dT /dr with latitude has to be minuscule even in the deeper layers of the
convection zone where convection is affected by rotation. For our ideas to work, the varia-
tion of dT /dr with latitude has to be even much smaller than this in the top layer. Now that
helioseismology is providing information about the amplitude of convective motions within
the convection zone (Hanasoge, Duvall, and Sreenivasan, 2012; Greer et al., 2015), it will
be important to address the question whether the mixing length theory with such convec-
tive amplitudes is consistent with such small values of dT /dr variation with latitude caused
by the solar rotation. It is beyond the scope of the present paper to analyze this extremely
difficult problem. We merely point out these issues.

If 	T remains the same but T keeps falling as we move radially outward in this layer,
certainly 	T/T would keep increasing, making the thermal wind term given by Equation 8
stronger and stronger. To have an estimate of this term, we may take the temperature of an
intermediate layer to calculate the thermal wind term. Taking TS ≈ 5 × 104 K, the thermal
wind term given by Equation 8 turns out to be

1

r

g

γ CV

∂S

∂θ
≈ −1.2 × 10−11 s−2. (12)

The value of the thermal wind term in this top layer given by Equation 12 is clearly larger
than the centrifugal term in the interior of the convection zone as given by Equation 4. If we
want the centrifugal term and the thermal wind term to balance each other even in this thin
layer, then clearly d�2/dz has to be larger in this layer, showing the necessity of a near-
surface shear layer. We again refer to the thick solid line OA parallel to the rotation axis in
Figure 1. We have already pointed out that the value of �/2π is ≈ 420 nHz at the point
A below the near-surface layer we are considering. If �top/2π is the value of the angular
frequency at the point where this vertical straight line OA extended further would meet the
solar surface, then the centrifugal term in this near-surface layer is easily seen to be of order

r sin θ
∂

∂z
�2 ≈ −R�

D

[
(420)2 −

(
�top

2π

)2
]

× (2π10−9)2 s−2. (13)
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If we require that the centrifugal term and thermal wind term should be comparable even
within this near-surface layer, then we have to equate Equation 12 and Equation 13. On
using the value of D given by Equation 11, this gives

�top

2π
≈ 390 nHz. (14)

Looking at Figure 1, we note that the observational value is about 400 nHz. In other words,
the jump in the value of �/2π according to our theoretical estimates is ≈ 30 nHz, whereas
the observational jump is ≈ 20 nHz.

We thus find that our simple considerations give various important characteristics of the
near-surface layer—such as its depth D and the jump in �/2π within this layer—within a
factor about 2 of the observational values. Since we use average values of various quantities
in the top layer as in Equation 12 and Equation 13, one genuine concern is whether we are
justified in doing this when quantities like the temperature vary by 2 orders of magnitude
within this layer. We are right now carrying on a detailed quantitative analysis without such
averaging and are looking at the question of how various things change on using other values
of D rather what is given in Equation 11. Results of this quantitative study will be presented
in a paper currently under preparation.

4. Conclusion

It is generally believed that the centrifugal force term and thermal wind term approximately
balance each other within the interior of the convection zone. From this balance condition,
we estimate the pole–equator temperature difference. We argue that this temperature differ-
ence is appropriate for a layer at some depth below the surface and that this temperature
difference remains the same as we move though the near-surface layer towards the surface,
although the overall temperature keeps falling. Whether the thermal wind balance should
hold within the near-surface layer as well is not a settled question. Hotta, Rempel, and
Yokoyama (2015) argued that the centrifugal force term in this layer should be balanced by
the turbulent dissipation term. We point out that the thermal wind term will become larger
in this layer and propose the alternative viewpoint that this term will have to be balanced
by the centrifugal force term. This suggests that the near-surface layer has to be a layer of
strong differential rotation. The various characteristics of this layer which we infer agree
with the properties of the near-surface shear layer measured by helioseismology.

We point out that we have not considered magnetic forces in our discussion. Although
the magnetic forces are believed to drive the torsional oscillations (Chakraborty, Choudhuri,
and Chatterjee, 2009) and the variations of the meridional circulation with the solar cycle
(Hazra and Choudhuri, 2017), they presumably are not important in determining the mean
characteristics of the large-scale flows.

We have argued that the explanation of the near-surface shear layer involves heat transfer
and fluid dynamics in the top layers of the solar convection zone. This layer is responsible
for the difference between the rotation speeds of sunspots and the gas at the solar surface.
Whether this layer also plays a role in the dynamo process for generating solar magnetic
fields remains unclear. We know that the differential rotation of the Sun is responsible for
the generation of the toroidal field of the Sun (Choudhuri, 2011; Karak et al., 2014). Since
the strong superadiabatic temperature gradient in the top layers of the convection zone would
make magnetic buoyancy particularly effective there (Moreno-Insertis, 1983), it is generally
believed that any magnetic fields produced in the top layers would rise up quickly without
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leaving much time for field amplification. Numerical simulations based on the assumption
that the toroidal field is generated in the tachocline and remains partially anchored there
match observational data such as Joy’s law quite well (D’Silva and Choudhuri, 1993).

The value of the pole–equator temperature difference at the surface is crucial in estimat-
ing the characteristics of the near-surface shear layer. On using the value 2.5 K, as reported
by Rast, Ortiz, and Meisner (2008), we find that the characteristics of this layer which we
obtain are in reasonable agreement with measurements from helioseismology. In case there
is no pole–equator temperature difference at the surface, then our idea will clearly not work.
Due to the difficulties in treating the near-surface layer realistically in numerical simulations,
it is not possible to draw any firm conclusion about this temperature difference from simula-
tions (Bidya Karak, private communication). We hope that the temperature difference at the
solar surface will be firmly established by independent measurements of different groups in
the near future.
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Appendix A: On Differentiating Entropy Along an Ioschore

The difference of specific entropy 	S given by Equation 5 refers to an isochore over which
ρ does not vary. If l is the length measured along an isochore, then the entropy difference
between two points on an isochore should be given be

	S = dS

dl
	l. (A.1)

From the chain rule of partial differentiation, it follows that

dS

dl
=

(
∂S

∂r

)
θ

dr

dl
+

(
∂S

∂θ

)
r

dθ

dl
.

It is easy to argue that the first term in this equation is going to be negligible. Efficient
convection tends to homogenize S in the radial direction so that (∂S/∂r)θ ≈ 0. Since the
rotational flattening of the Sun is very small, we expect the isochoric surfaces to be very
nearly spherical so that dr/dl is also expected to be very small. Since the first term is a
product of two small terms, we can write

dS

dl
≈

(
∂S

∂θ

)
r

dθ

dl
.

Substituting this in Equation A.1, we get

	S ≈
(

∂S

∂θ

)
r

	θ. (A.2)

If we take 	θ = π/2 for the pole–equator difference, then Equation A.2 leads to Equation 6.
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