
1.  Introduction
Diapycnal mixing in the density-stratified ocean controls the mixing of heat, salt, momentum and passive 
tracers (e.g., Wunsch & Ferrari, 2004). While there are many models of diapycnal ocean mixing (e.g., Bur-
chard & Petersen, 1999; Large et al., 1994; Mater & Venayagamoorthy, 2014a; Warner et al., 2005; Zaron & 
Moum, 2009), considerable uncertainty still exists in regard to the accuracy of these models when used in 
ocean circulation models. Measurements of ocean turbulence in the field thus remain important in test-
ing and developing these mixing models. The key turbulence quantities measured in ocean observations 
are the rate of dissipation of turbulent kinetic energy ϵ and the rate of dissipation of thermal variance χ. 
While free-falling turbulence profilers have historically provided the bulk of these measurements (Lueck 
et al., 2002), more recently moored microstructure timeseries measurements have also been used (Bluteau 
et al., 2013; Holleman et al., 2016; Ivey et al., 2018; Moum & Nash, 2009). The models proposed by either 
Osborn (1980) or Osborn and Cox (1972) are then typically used to convert these turbulence measurements 
into diapycnal mixing rates or diffusivities Kρ.

The Osborn (1980) model, based on the turbulent kinetic energy equation, assumes that ϵ is produced by 
the interaction of the vertical turbulent momentum flux with the vertical gradient or shear of the mean 
horizontal velocity u . The Osborn and Cox (1972) model, based on the thermal variance equation, assumes 
that χ is produced by the interaction of the vertical turbulent heat flux with the vertical gradient of the mean 
temperature  . Turbulence can also be produced in the interior of a stratified fluid by a local convective 
instability when heavy fluid is locally displaced over lighter fluid, or vice-versa. Thorpe (2018), for example, 
suggested that small scale internal waves in a continuously stratified fluid can steepen until isopcynals 
eventually fold over to produce regions of local static instability, subsequently generating local patches of 
convective instability. Large scale nonlinear internal waves traveling in the thermocline can also generate 
patches of convective instability within the wave's core when the local fluid velocity in the direction of wave 
propagation exceeds the wave phase velocity (e.g., Gayen & Sarkar, 2014; Jones et al., 2020; Lamb, 2014; 
Rayson et al., 2019; Zhang & Alford, 2015). In all these examples, however, there is always some background 
mean flow shear  d / dS u z associated with the internal waves that can also contribute to mixing. Thus, 
none of these internal wave examples are cases of ”pure” convective instability.
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While preceding work has demonstrated that both shear and convection mechanisms can drive diapyc-
nal mixing in the interior of the ocean, a number of questions remain unresolved: (i) when does either 
mechanism dominate; (ii) what is the efficiency of mixing; (iii) what is the diapycnal diffusivity for each 
mechanism; (iv) can the two different mechanisms operate together; and (v) what are the implications for 
parameterizing ocean mixing? These questions are the focus of the present study.

2.  Mixing Mechanisms
To quantify mixing in a density-stratified fluid, Winters et al. (1995) argued one must distinguish between 
the reversible and irreversible components of mixing. Using this framework, Salehipour and Peltier (2015) 
generalized a model for the (true) diapycnal diffusivity 

*K  (here * refers to irreversible quantities) given by
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where the (true) flux Richardson number   * /fRi     (Caulfield & Peltier, 2000) is the local mixing 
efficiency based on the re-sorted background density and, as seen from the last term in Equation 1, ℳ rep-
resents the irreversible diffusive flux.

While the model in Equation 1 is mechanism agnostic—there is no assumption about the mechanism causing 
mixing—it requires the ability to obtain a reference state of minimum potential energy by re-sorting the 3D 
density field. This can be accomplished either by re-sorting the 3D density field at a particular time step (as in a 
mumerical model), or by using a laboratory experiment with a closed control volume where (after mixing has 
occurred) the fluid adiabatically re-sorts itself as it comes to rest. As all ocean turbulence measurements are 
obtained from either a microstructure vertical profile or from moored time series at one location, the model in 
Equation 1 cannot be used with these turbulence measurements to compute the diffusivity.

2.1. Shear Mixing

The most commonly studied turbulent mixing mechanism in the stratified ocean is that driven by a ver-
tically sheared mean flow. Miles  (1961) and Howard  (1961) showed that in an inviscid, stably stratified 
fluid with buoyancy frequency       / /N g z  subjected to a steady vertical shear  d / dS u z, the 

flow becomes unstable when the gradient Richardson number  2 2/ 0.25Ri N S . Numerous studies have 
since extended this analysis and shown that, as long as Ri is not too large, shear flows are unstable when 
there is a viscous-diffusive fluid (Howland et al., 2018), when there is preexisting ambient turbulence in the 
fluid (Kaminski & Smyth, 2019), or when the shear is unsteady (Radko, 2019).

When Ri < 0.15 Venayagamoorthy and Koseff (2016) demonstrated that
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where B is the buoyancy flux. For Ri > 0.15 the estimates on the left and right hand sides of Equation 2 
progressively diverge (see Venayagamoorthy & Koseff, 2016 their Figures 1 and 3 for details). However if 
Ri < 0.15, then the true diffusivity can be estimated from the buoyancy flux B, and hence Equation 1 can be 
simplified to the expression first proposed by Osborn (1980)
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where the flux Richardson number Rif = B/(B + ϵ). The challenge in using Equation 3 is that Rif must be in-
dependently known, and in practice Rif is not constant (e.g., Bluteau et al., 2013; Davis & Monismith, 2011; 

ℳ

ℳ ℳ

ℳ
ℳ

IVEY ET AL.

10.1029/2020GL089455

2 of 12

� (1)

where the (true) flux Richardson number 

Geophysical Research Letters

While preceding work has demonstrated that both shear and convection mechanisms can drive diapyc-
nal mixing in the interior of the ocean, a number of questions remain unresolved: (i) when does either 
mechanism dominate; (ii) what is the efficiency of mixing; (iii) what is the diapycnal diffusivity for each 
mechanism; (iv) can the two different mechanisms operate together; and (v) what are the implications for 
parameterizing ocean mixing? These questions are the focus of the present study.

2. Mixing Mechanisms
To quantify mixing in a density-stratified fluid, Winters et al. (1995) argued one must distinguish between 
the reversible and irreversible components of mixing. Using this framework, Salehipour and Peltier (2015) 
generalized a model for the (true) diapycnal diffusivity 

*K  (here * refers to irreversible quantities) given by

K
Ri

Ri N N
f

f
�
*

*

*
* *

�
�

�

�
�
�

�

�
�
�

�
1 2 2

ε M
 (1)

where the (true) flux Richardson number   * /fRi     (Caulfield & Peltier, 2000) is the local mixing 
efficiency based on the re-sorted background density and, as seen from the last term in Equation 1, ℳ rep-
resents the irreversible diffusive flux.

While the model in Equation 1 is mechanism agnostic—there is no assumption about the mechanism causing 
mixing—it requires the ability to obtain a reference state of minimum potential energy by re-sorting the 3D 
density field. This can be accomplished either by re-sorting the 3D density field at a particular time step (as in a 
mumerical model), or by using a laboratory experiment with a closed control volume where (after mixing has 
occurred) the fluid adiabatically re-sorts itself as it comes to rest. As all ocean turbulence measurements are 
obtained from either a microstructure vertical profile or from moored time series at one location, the model in 
Equation 1 cannot be used with these turbulence measurements to compute the diffusivity.

2.1. Shear Mixing

The most commonly studied turbulent mixing mechanism in the stratified ocean is that driven by a ver-
tically sheared mean flow. Miles  (1961) and Howard  (1961) showed that in an inviscid, stably stratified 
fluid with buoyancy frequency       / /N g z  subjected to a steady vertical shear  d / dS u z, the 

flow becomes unstable when the gradient Richardson number  2 2/ 0.25Ri N S . Numerous studies have 
since extended this analysis and shown that, as long as Ri is not too large, shear flows are unstable when 
there is a viscous-diffusive fluid (Howland et al., 2018), when there is preexisting ambient turbulence in the 
fluid (Kaminski & Smyth, 2019), or when the shear is unsteady (Radko, 2019).

When Ri < 0.15 Venayagamoorthy and Koseff (2016) demonstrated that


 

B
B


  

 (2)

where B is the buoyancy flux. For Ri > 0.15 the estimates on the left and right hand sides of Equation 2 
progressively diverge (see Venayagamoorthy & Koseff, 2016 their Figures 1 and 3 for details). However if 
Ri < 0.15, then the true diffusivity can be estimated from the buoyancy flux B, and hence Equation 1 can be 
simplified to the expression first proposed by Osborn (1980)


 

    
2 21

f

f

Ri BK
Ri N N


 (3)

where the flux Richardson number Rif = B/(B + ϵ). The challenge in using Equation 3 is that Rif must be in-
dependently known, and in practice Rif is not constant (e.g., Bluteau et al., 2013; Davis & Monismith, 2011; 

ℳ

ℳ ℳ

ℳ
ℳ

IVEY ET AL.

10.1029/2020GL089455

2 of 12

 (Caulfield & Peltier, 2000) is the local mixing 
efficiency based on the re-sorted background density and, as seen from the last term in Equation 1, ℳ rep-
resents the irreversible diffusive flux.

While the model in Equation 1 is mechanism agnostic—there is no assumption about the mechanism causing 
mixing—it requires the ability to obtain a reference state of minimum potential energy by re-sorting the 3D 
density field. This can be accomplished either by re-sorting the 3D density field at a particular time step (as in a 
mumerical model), or by using a laboratory experiment with a closed control volume where (after mixing has 
occurred) the fluid adiabatically re-sorts itself as it comes to rest. As all ocean turbulence measurements are 
obtained from either a microstructure vertical profile or from moored time series at one location, the model in 
Equation 1 cannot be used with these turbulence measurements to compute the diffusivity.

2.1.  Shear Mixing

The most commonly studied turbulent mixing mechanism in the stratified ocean is that driven by a ver-
tically sheared mean flow. Miles  (1961) and Howard  (1961) showed that in an inviscid, stably stratified 
fluid with buoyancy frequency       / /N g z  subjected to a steady vertical shear  d / dS u z, the 

flow becomes unstable when the gradient Richardson number  2 2/ 0.25Ri N S . Numerous studies have 
since extended this analysis and shown that, as long as Ri is not too large, shear flows are unstable when 
there is a viscous-diffusive fluid (Howland et al., 2018), when there is preexisting ambient turbulence in the 
fluid (Kaminski & Smyth, 2019), or when the shear is unsteady (Radko, 2019).

When Ri < 0.15 Venayagamoorthy and Koseff (2016) demonstrated that

Geophysical Research Letters

While preceding work has demonstrated that both shear and convection mechanisms can drive diapyc-
nal mixing in the interior of the ocean, a number of questions remain unresolved: (i) when does either 
mechanism dominate; (ii) what is the efficiency of mixing; (iii) what is the diapycnal diffusivity for each 
mechanism; (iv) can the two different mechanisms operate together; and (v) what are the implications for 
parameterizing ocean mixing? These questions are the focus of the present study.

2. Mixing Mechanisms
To quantify mixing in a density-stratified fluid, Winters et al. (1995) argued one must distinguish between 
the reversible and irreversible components of mixing. Using this framework, Salehipour and Peltier (2015) 
generalized a model for the (true) diapycnal diffusivity 

*K  (here * refers to irreversible quantities) given by

K
Ri

Ri N N
f

f
�
*

*

*
* *

�
�

�

�
�
�

�

�
�
�

�
1 2 2

ε M
 (1)

where the (true) flux Richardson number   * /fRi     (Caulfield & Peltier, 2000) is the local mixing 
efficiency based on the re-sorted background density and, as seen from the last term in Equation 1, ℳ rep-
resents the irreversible diffusive flux.

While the model in Equation 1 is mechanism agnostic—there is no assumption about the mechanism causing 
mixing—it requires the ability to obtain a reference state of minimum potential energy by re-sorting the 3D 
density field. This can be accomplished either by re-sorting the 3D density field at a particular time step (as in a 
mumerical model), or by using a laboratory experiment with a closed control volume where (after mixing has 
occurred) the fluid adiabatically re-sorts itself as it comes to rest. As all ocean turbulence measurements are 
obtained from either a microstructure vertical profile or from moored time series at one location, the model in 
Equation 1 cannot be used with these turbulence measurements to compute the diffusivity.

2.1. Shear Mixing

The most commonly studied turbulent mixing mechanism in the stratified ocean is that driven by a ver-
tically sheared mean flow. Miles  (1961) and Howard  (1961) showed that in an inviscid, stably stratified 
fluid with buoyancy frequency       / /N g z  subjected to a steady vertical shear  d / dS u z, the 

flow becomes unstable when the gradient Richardson number  2 2/ 0.25Ri N S . Numerous studies have 
since extended this analysis and shown that, as long as Ri is not too large, shear flows are unstable when 
there is a viscous-diffusive fluid (Howland et al., 2018), when there is preexisting ambient turbulence in the 
fluid (Kaminski & Smyth, 2019), or when the shear is unsteady (Radko, 2019).

When Ri < 0.15 Venayagamoorthy and Koseff (2016) demonstrated that


 

B
B


  

 (2)

where B is the buoyancy flux. For Ri > 0.15 the estimates on the left and right hand sides of Equation 2 
progressively diverge (see Venayagamoorthy & Koseff, 2016 their Figures 1 and 3 for details). However if 
Ri < 0.15, then the true diffusivity can be estimated from the buoyancy flux B, and hence Equation 1 can be 
simplified to the expression first proposed by Osborn (1980)


 

    
2 21

f

f

Ri BK
Ri N N


 (3)

where the flux Richardson number Rif = B/(B + ϵ). The challenge in using Equation 3 is that Rif must be in-
dependently known, and in practice Rif is not constant (e.g., Bluteau et al., 2013; Davis & Monismith, 2011; 

ℳ

ℳ ℳ

ℳ
ℳ

IVEY ET AL.

10.1029/2020GL089455

2 of 12

� (2)

where B is the buoyancy flux. For Ri > 0.15 the estimates on the left and right hand sides of Equation 2 
progressively diverge (see Venayagamoorthy & Koseff, 2016 their Figures 1 and 3 for details). However if 
Ri < 0.15, then the true diffusivity can be estimated from the buoyancy flux B, and hence Equation 1 can be 
simplified to the expression first proposed by Osborn (1980)


 

    
2 21

f

f

Ri BK
Ri N N


� (3)

where the flux Richardson number Rif = B/(B + ϵ). The challenge in using Equation 3 is that Rif must be in-
dependently known, and in practice Rif is not constant (e.g., Bluteau et al., 2013; Davis & Monismith, 2011; 

IVEY ET AL.

10.1029/2020GL089455

2 of 12



Geophysical Research Letters

Holleman et al., 2016; Ivey et al., 2018; Ijichi & Hibiya, 2018; Salehipour et al., 2015; Shih et al., 2005; Walter 
et al., 2014). And it has been argued that Rif cannot even be expressed as a function of a single dimensionless 
parameter (e.g., Mater & Venayagamoorthy, 2014b).

This problem of needing to first specify Rif is circumvented with the model of Osborn and Cox (1972) who 
proposed that the vertical diffusivity for heat Kθ can be estimated as

 







 
2

2 /
K

z� (4)

If the temperature gradient  / z dominates the density gradient, then one can assume that Kθ is equal 
to Kρ. Direct numerical simulation (DNS) studies of stratified shear flows have compared Kθ with Kρ (e.g. 
Itsweire et al., 1993), and recent simulations have shown that Kθ is within a factor or 2 (either low or high) 
of 

*K  for buoyancy Reynolds numbers Reb = ϵ/(νN2) as large as 5 × 104 (Kirkpatrick et al., 2019; Salehipour 
& Peltier, 2015). Although restricted to cases with Reb < 250, the DNS study of unsheared stratified mixing 
by Taylor et al. (2019) also found that Equation 4 was a good estimator of 

*K .

A third mixing model, proposed by Odier et al. (2009), is based on a Prandtl mixing length model for a shear 
flow and is given by

  2K L S� (5)

When temperature dominates the density gradient, the mixing length scale Lρ is (Ivey et al., 2018)
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And with Lρ now defined, the mixing efficiency Rif in Equation 3 can be written as (Ivey et al., 2018)
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where  
1/23/OL N  is the Ozmidov length scale and  

1/23/SL S  is the Corrsin shear length scale. 

Thus Rif = Rif (LO, LS, Lρ), and the DNS results of Kirkpatrick et al. (2019) are entirely consistent with Equa-
tion 7. As argued by Ivey et al. (2018), D has a lower bound of 1, thus yielding an upper bound of Rif = 0.5 
for shear flows.

Using field and laboratory observations obtained across a range of length scales spanning three orders of 
magnitude, Ivey et al. (2018), also showed the mixing length scale Lρ ≈ 0.3LE, where the Ellison length scale 

    / /EL d dz . The Ellison scale can be computed from time series measurements and has the advantage 

of not requiring direct estimates of turbulence quantities such as χ or ϵ from specialized instruments. The 
Ellison scale does, however, require sampling fast enough to resolve the larger energy containing scales and 
records that are not influenced by internal waves or mean flows. Equation 5 can thus be approximated by

  20.1 .EK L S� (8)

Almost all numerical studies have focused on shear flows when Ri < 0.25 and are unstable with active mix-
ing (e.g., Salehipour & Peltier, 2015; Shih et al., 2005; Smyth et al., 2001). But what happens when Ri > 0.25? 
As we show below, mixing still occurs in both field observations and numerical modeling and we evaluate 

IVEY ET AL.

10.1029/2020GL089455

3 of 12



Geophysical Research Letters

the predictive capability of the shear-driven mixing models in Equations 3, 4, and 8 when Ri > 0.25. We also 
determine when the mechanism of convective instability starts to become important.

2.2.  Convective Mixing

By convective mixing we refer here to mixing that occurs in the interior of the density-stratified water col-
umn due to a local instability in the mean density gradient. This process is distinct from mixing driven by 
an externally imposed buoyancy flux at the free surface (as considered by Sohail et al., 2018, for example, 
where processes such as surface cooling, evaporation or salt rejection can occur). A common feature of in-
terior convective mixing observed in either laboratory experiments (Wykes & Dalziel, 2014) or in idealized 
numerical simulations (Chalamalla & Sarkar, 2015; Gayen & Sarkar, 2011; Puthan et al., 2019) is the often 
efficient mixing with * 0.5fRi . As discussed above, as internal waves always induce some background ver-
tical velocity shear S, internal wave forcing does not drive pure convective instabilities in the ocean.

A good example of pure convective instability, however, is the laboratory experiments of Barry et al. (2001). 
They conducted a zero mean shear mixing experiment by horizontally oscillating a vertically oriented 
square-bar mesh grid in a rectangular tank filled with a density stratified fluid (see their Figure 1). The tank 
was filled with a linearly salt-stratified fluid, the initial density profile was measured, and the fluid was then 
continuously agitated by rapidly moving the grid back and forth throughout the entire tank (but without 
creating any mean flow). Once the grid was stopped, the fluid was allowed to come to rest and the final 
density profile was then measured. The diffusivity 

*K  was calculated from the increase in background po-
tential energy after mixing, and N* was taken as the average of the two (near-linear) before and after density 
profiles. The moving grid was instrumented with a force transducer and the dissipation ϵ in the fluid was 
calculated directly. The experiments varied ϵ, N*, and fluid viscosity ν but, as S = 0, the experiments all had 

  2 2
* /Ri N S . The buoyancy Reynolds number reached values as large as Reb = 105, comparable to the 

highest values seen in the ocean (e.g., Gargett et al., 1984).

Barry et al. (2001) found from their measurements that the diapycnal diffusivity was given by

  * 2/3 1/3 1/324 bK Re� (9)

Barry et  al.  (2001) also found the largest overturning scales were given by LE  =  20Lco, where they in-

troduced the convective lengthscale defined as  
1/4 1/2

*/coL N . Hence the Rayleigh number 
   2 4 5

* / 2 10ERa N L  in their experiments. The diffusivity in Equation 9 is independent of the large 
scale shear S which, as noted by Mater and Venayagamoorthy (2014a), is a key difference between pure 
convective and shear mixing.

While Barry et al. (2001) did not discuss or provide estimates of mixing efficiency *
fRi , these can now be 

calculated from their measurements using the framework proposed by Salehipour and Peltier (2015). In 
particular, substituting Equation 9 into Equation 1 yields
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where processes such as surface cooling, evaporation or salt rejection can occur). A common feature of in-
terior convective mixing observed in either laboratory experiments (Wykes & Dalziel, 2014) or in idealized 
numerical simulations (Chalamalla & Sarkar, 2015; Gayen & Sarkar, 2011; Puthan et al., 2019) is the often 
efficient mixing with * 0.5fRi . As discussed above, as internal waves always induce some background ver-
tical velocity shear S, internal wave forcing does not drive pure convective instabilities in the ocean.
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was filled with a linearly salt-stratified fluid, the initial density profile was measured, and the fluid was then 
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creating any mean flow). Once the grid was stopped, the fluid was allowed to come to rest and the final 
density profile was then measured. The diffusivity 

*K  was calculated from the increase in background po-
tential energy after mixing, and N* was taken as the average of the two (near-linear) before and after density 
profiles. The moving grid was instrumented with a force transducer and the dissipation ϵ in the fluid was 
calculated directly. The experiments varied ϵ, N*, and fluid viscosity ν but, as S = 0, the experiments all had 

  2 2
* /Ri N S . The buoyancy Reynolds number reached values as large as Reb = 105, comparable to the 

highest values seen in the ocean (e.g., Gargett et al., 1984).

Barry et al. (2001) found from their measurements that the diapycnal diffusivity was given by

  * 2/3 1/3 1/324 bK Re (9)

Barry et  al.  (2001) also found the largest overturning scales were given by LE  =  20Lco, where they in-

troduced the convective lengthscale defined as  
1/4 1/2

*/coL N . Hence the Rayleigh number 
   2 4 5

* / 2 10ERa N L  in their experiments. The diffusivity in Equation 9 is independent of the large 
scale shear S which, as noted by Mater and Venayagamoorthy (2014a), is a key difference between pure 
convective and shear mixing.

While Barry et al. (2001) did not discuss or provide estimates of mixing efficiency *
fRi , these can now be 

calculated from their measurements using the framework proposed by Salehipour and Peltier (2015). In 
particular, substituting Equation 9 into Equation 1 yields

   
 

 
*

1/3 2/3
1

1 1 / 24f
b

Ri
Pr Re


  (10)

For a fixed Pr, Equation 10 demonstrates that  * * ,f f O KRi Ri L L , a very different length scale dependence 
than that found in Equation 7 for a shear flow.

Using Equations 9 and 10, we can estimate the range of *
fRi  and 

*K  for convective mixing in the laborato-
ry experiments and under typical oceanic conditions. As the laboratory experiments of Barry et al. (2001) 
were salt stratified with Pr = 700, at their lower limit of Reb = 10 we obtain * 0.37fRi  from Equation 10 
and  * 500K  from Equation 9. The upper limit for their laboratory experiments was Reb = 105 and hence 

we obtain * 0.001fRi  and  * 510K . For representative ocean conditions of Pr = 7 and a lower limit of 

Reb = 10 (e.g., Ivey et al., 2008), Equation 10 yields * 0.73fRi , while Equation 9 predicts  * 180K . At a 
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typical oceanic upper limit of Reb = 105 (e.g., Gargett et al., 1984), Equations 10 and 9 predict * 0.006fRi  

and   * 35 10K , respectively. Equations 9 and 10 thus predict wide ranges in mixing efficiencies and 
diffusivities resulting from convective mixing in the ocean.

2.3.  Mixing Mechanisms in the Ocean

The shear and convective mixing mechanisms discussed above are thus quite different, as shown by the dif-
fering expressions for both the mixing efficiencies in Equation 7 versus Equation 10 and the diffusivities in 
Equation 3 versus Equation 9. The diffusivity in Equation 9 is derived from a laboratory experiment with 
zero mean shear and hence Ri is infinite, but in the ocean there is inevitably some shear and so Ri will almost 
always be finite. Are the diffusivities observed in the ocean therefore ever consistent with the prediction for 
pure convective mixing given by Equation 9? Can convective mixing ever dominate ocean mixing? When does 
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Figure 1.  (a) Observed diffusivities Kθ as a function of Ri obtained at the MTPs during the 10 days of measurement. For comparison with the observations, 
the first line is Kρ = (1 × 10−2)e−10Ri (399 points, r2 = 0.17) and the second line for Ri > 0.15 is Kρ = (2.5 × 10−3)e−2Ri (388 points, r2 = 0.023); (b) histogram of 
estimated Ri; and (c) histogram of diffusivities Kθ. The black circles in (a) represent median values of the binned data, with error bars containing 68% of the data 
in each bin (16th and 84th percentiles). MTP is moored turbulence package.
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shear mixing dominate ocean mixing? Can the two mechanisms operate together? To address these questions, 
we examine below two sources of information: field observations collected on the Australian North West Shelf 
(NWS) and numerical simulations of an oscillating stratified flow over a smooth bottom.

3.  Data Sources
3.1.  Field Observations

The field observations come from a 34 m long mooring bottom-anchored on the NWS in 105 m of water. The 
site is energized by strong and nonlinear internal tidal motions on the NWS. Details of the measurements 
are given in Bluteau et al.  (2016a), but briefly the mooring was deployed from 4–22 April 2012 and was 
instrumented with: (i) 22 temperature sensors (including Seabird Electronics SBE56 and SBE39 sensors) 
sampling respectively at 0.5 and 10 s; (ii) a conductivity-temperature sensor (Seabird Electronics, SBE37) 
sampling at 15 s; (iii) a temperature-pressure sensor sampling at 10 s (SBE39, Sea-Bird Electronics); and (iv) 
an upward-looking 300 kHz acoustic-Doppler current profiler (ADCP, RDInstruments) measuring veloci-
ties in 1 m bins over 1-min averages (see Table 1 of Bluteau et al., 2016b). The SBE56 thermistors were verti-
cally spaced at 0.75 m around the moored turbulence packages (MTPs), and 1 m elsewhere on the mooring. 
As detailed by Ivey et al. (2018), these velocity, temperature, and salinity observations were used to estimate 
the background shear S and stratification N around the heights of the MTPs described below using the same 
segment length of 8.53 min as the turbulence computations, corresponding to a time-scale of approximately 
half the time-mean buoyancy period.

Two MTPs were placed on the mooring at 7.5 and 20.5 m above the seabed (ASB) to provide estimates of ϵ 
and χ, using the observations from an acoustic-Doppler velocimeter (ADV, Vector, Nortek-AS) and a fast-re-
sponse temperature sensor (FP07, GE Thermometics). The MTPs recorded data for the first 10 days of the 
deployment. To ascertain whether the MTPs were in the bottom boundary layer, we compared the Ellison 
length scale      / /EL z  (computed over the same time- and length-scales as the other turbulence 
and mean quantities [e.g., N and S]) to the log law of the wall integral scale Lz = kz, where k is von Karmans 
constant. Estimates with LE > Lz were removed from further analysis, leaving us with observations of the 
density stratified fluid at a depth of around 100 m, but free from any surface or bottom influence. Each MTP 
included a motion pack to recover the instruments’ motion and correct the velocity spectral observations 
using the techniques described by Bluteau et al. (2016b). We fitted the ADV and FP07 spectral observations 
(computed with 8.53 min segments) over their respective inertial subranges to yield estimates ϵ and hence χ 
using the inertial subrange fitting methods described by Bluteau et al. (2011, 2017). With χ determined, the 
diffusivity Kθ was then determined from Equation 4. Whether the mixing mechanism is shear or convective 
in nature, for the reasons discussed above in Section 2.1 we assume that Kθ is a good estimator of Kρ

*.

3.2.  Numerical Simulations

Using resolved large eddy simulations (LES), Gayen et al. (2010) considered an initially linearly stratified 
oscillating tidal flow over a flat bottom. Their simulations solved the three-dimensional unsteady Navi-
er-Stokes equations under the Boussinesq approximation. An initially linear ambient stratification was im-
posed in the vertical direction and the unsteady free-stream velocity U was forced by an oscillating pressure 
gradient in the horizontal direction, thus modeling the forcing by a semi-diurnal tidal flow with frequency 
ω. Detailed descriptions of the solution technique and model setup are found in Gayen et al. (2010). The 
large scale Reynolds number ReS = U2/ων = 1790 (where U is the unsheared free-stream velocity and ω the 
tidal frequency) and the bulk Richardson number Rib = N2/ω2 = 500, which Gayen et al. (2010) considered 
a moderate stratified case. While their original simulations were done with Pr = 0.7, the results discussed 
here were achieved with a new simulation with Pr = 7 to better represent ocean conditions.

We chose a computational grid with an effective grid resolution in the mean flow direction of x+ = (xu*/ν) = 60 
(where u* was the bottom friction velocity) and in the cross flow direction of y+ = (yu*/ν) = 30. The hori-
zontal grid resolution in both the mean and transverse flow directions was uniform throughout the domain. 
In the vertical direction, a variable grid resolution was used with strong clustering near the bottom with 
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z+ = (zu*/ν) = 2 to resolve the viscous sublayer. This resolution was sufficient to resolve the near-wall eddies 
that carry the Reynolds stress. Far from the bottom in the weakly sheared interior the vertical grid scale was 
relaxed to z+ = (zu*/ν) = 20. As discussed in Gayen et al. (2010), our numerical simulation thus resolved the 
flow near the bottom and did not require any near-wall closure model. A dynamic eddy viscosity and eddy 
diffusivity model was used for subgrid scale closure well away from the bottom in the interior.

After just one tidal cycle, the flow started to form a three-layer structure (see Figure 1a of Gayen et al., 2010). 
The three-layer structure consisted of a strongly sheared (but nearly well-mixed layer) bottom layer of 
height hm, a second weakly sheared (but linearly stratified) region in the interior, and a third relatively thin 
(and strongly sheared) pycnocline region separating the bottom layer from the linearly stratified interior. 
The height of the bottom mixing layer hm was defined as the height where the local density gradient first 
reached 0.1 of the interior density gradient. The gradient Richardson number Ri was generally very small 
near the bottom and increased with height. The height above the bottom where Ri first reached 0.25 was 
defined as h0.25 (Gayen et al., 2010 found hm ≈ 0.9h0.25), and the value of Ri then continued to increase with 
height above h0.25. A classical logarithmic mean velocity profile was only seen during a small portion of the 
tidal cycle. All mixing estimates were calculated once the simulation had reached a statistical steady state, 
which took about 10–12 tidal cycles. Over the next five tidal cycles, all mean and turbulence properties at 
a particular instant and height were horizontally averaged in the (x, y) plane, a spatial averaging process 
denoted by <>. Data were taken in the vertical over the range z+ = 200 − 800. The Ellison scale was calcu-
lated as     / (d / d )EL z  and the vertical eddy diffusivity was calculated using two methods. First, to 
allow direct comparison with the analysis methods used in processing the field data above, we calculated 
the diffusivity from the buoyancy flux B as Kρ = <B / N2>. Second, we re-sorted the instantaneous density 
fields to get the irreversible diffusive flux ℳ and hence also calculated 
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(and strongly sheared) pycnocline region separating the bottom layer from the linearly stratified interior. 
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defined as h0.25 (Gayen et al., 2010 found hm ≈ 0.9h0.25), and the value of Ri then continued to increase with 
height above h0.25. A classical logarithmic mean velocity profile was only seen during a small portion of the 
tidal cycle. All mixing estimates were calculated once the simulation had reached a statistical steady state, 
which took about 10–12 tidal cycles. Over the next five tidal cycles, all mean and turbulence properties at 
a particular instant and height were horizontally averaged in the (x, y) plane, a spatial averaging process 
denoted by <>. Data were taken in the vertical over the range z+ = 200 − 800. The Ellison scale was calcu-
lated as     / (d / d )EL z  and the vertical eddy diffusivity was calculated using two methods. First, to 
allow direct comparison with the analysis methods used in processing the field data above, we calculated 
the diffusivity from the buoyancy flux B as Kρ = <B / N2>. Second, we re-sorted the instantaneous density 
fields to get the irreversible diffusive flux ℳ and hence also calculated  * 2/K N .

4. Results
4.1. Field Observations

The values of both Ri and Kθ varied strongly during the 10 days over which the MTPs collected turbulence 
observations (Figure 1). Around 65% of the data had Ri < 0.25 and 95% of the data had Ri less than 0.6 (Fig-
ure 1b). Around 90% of the events had diffusivities Kθ between 10−4 m2 s−1 and 10−2 m2 s−1 (Figure 1c). The 
largest Ri observed was Ri ≈ 1.25, but mixing events with such large values of Ri were rare. For Ri < 0.02 
bin-averaged diffusivities Kθ  >  10−2 m2s−1 and in this limit the observations had Reb  >  105 (Figure  1a). 
As Ri increased, the diffusivities then progressively decreased with increasing Ri (Figure 1a). Zaron and 
Moum (2009) suggested a modified version of the original KPP model of Large et al.  (1994), where this 
decay was exponential with Ri with an exponent of −10. As shown in Figure 1a, this appears a reasonable 
description for small Ri < 0.15, but for most of the Ri range a lower value for the exponent is required, and 
the second line shown for comparison in Figure 1a) has an exponent of −2. This choice of exponents is 
motivated by the numerical results discussed below.

In Figure 2a we compare these observed diffusivities Kθ with the predicted diffusivities for the mixing length 
model in Equation 8. While individual data points are scattered, once binned the observations are consistent 
with the predictions within the error bounds shown over the observed range of Ri. In Figure 2b we com-
pare these observed diffusivities with the predictions for convective mixing in Equation 9. For Ri close to 
0, Equation 9 clearly underpredicts the observed Kθ, but as Ri increases the binned observations approach 
the predicted value for convectively dominated mixing. The challenge is there are very few estimates in the 
field data with Ri > 0.75, reflecting the practical difficulty of making reliable estimates of the mean velocity 
gradients to accurately estimate high Ri values in the field. This constraint with the available field data is 
one motivation for examining independent data from a numerical model, as discussed below.

4.2. Numerical Simulations

The results of the numerical simulations are shown in Figure 3. Overall around 85% of the data have 
Ri < 0.25 while only 15% have Ri > 0.25. The points with Ri > 0.25 typically correspond to times when 
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the oscillating flow was reversing and the vertical shear S was small. In Figure 3a, we plot Kρ versus Ri 
and in Figure 3b we plot 

*K  versus Ri. What is striking is that Kρ appears a very good representation of 


*K . For very low Ri, both diffusivities approach 10−4 m2s−1. As Ri increases, both diffusivities decrease 

progressively toward 10−6 m2s−1 as Ri approaches 2. Also shown in Figures 3a and 3b, are exponential 
decay lines for the diffusivities as a function of Ri. Consistent with the field data, an exponential decay 
with an exponent of −10 is reasonable only for small Ri. For 0.15 < Ri < 2 a much smaller exponent 
is clearly required, and for comparison we show a line with an exponent of −2. This is a simple first 
suggestion and clearly more data is required, particularly in the regime where Ri > 1.25. In summary, 
the field observations (Figure 2a) and the numerical simulations (Figure 3b) thus show a very similar 
decrease of diffusivity with increasing Ri, although the numerical results extend to much higher Ri 
than the field observations.

Given the very similar dependence of Kρ and 
*K  with Ri in Figures 3a and 3b, we restrict our analysis to 

Kρ in the remaining panels. In Figures 3c and 3d, we compare the diffusivities Kρ from the simulations 
with those predicted from the same two mixing models evaluated above with the field observations. The 
predictions from the mixing length model in Equation 8 are in good agreement with the numerical diffu-
sivities out to the observed upper bound of Ri = 2 (Figure 3c). Figure 3d compares the simulation diffusiv-
ities Kρ with the predicted diffusivities for convective mixing in Equation 9. For small Ri, the convective 
model underestimates the diffusivities by as much as a factor of 5. When Ri > 1, however, more than 80% 
of the diffusivities are within a factor of 0.5 (high or low) of the predictions of the convective model in 
Equation 9.
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Figure 2.  Observed diffusivities Kθ as a function of Ri where we nondimensionalize Kθ with: (a) the predicted 
diffusivity from the mixing length model in Equation 8; and (b) the predicted diffusivity from the convective mixing 
model in Equation 9. The black circles represent median values of the binned data with error bars containing 68% of 
the data in each bin (16th and 84th percentiles).
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5.  Discussion and Conclusions
The field observations and the numerical simulations are very consistent in demonstrating that the Rich-
ardson number Ri provides a useful differentiation between the shear and convective mixing mechanisms 
(from hereon we drop the superscript * for simplicity of notation). Our results show that when Ri < 0.25, 
the mixing is dominated by shear, the mixing efficiency Rif = Rif(LO, LS, Lρ), and Rif is in the range from 0 to 
0.5. When Ri > 1.0, the mixing is dominated by convection, the mixing efficiency Rif = Rif(LO,LK), and Rif is 
in the range from 0 to 0.75. In the intermediate case when 0.25 < Ri < 1.0, our results imply that both the 
shear and convective mechanisms can contribute to mixing.

The field and numerical results both show there is a progressive two order of magnitude decrease in Kρ as Ri 
increases from 0 to 2. However, the field and numerical results show that Kρ is not determined solely by Ri: 
at the same value of Ri, the field values of Kρ are nearly two orders of magnitude larger. For both the shear 
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Figure 3.  Diffusivities from the LES simulations as a function of Ri. (a) Kρ versus Ri. The line shown for 
the interval 0 < Ri < 0.15 is Kρ = (8 × 10−5)e−10Ri (1,300 points and r2 = 0.56). The line shown for the interval 
0.15 < Ri < 2 is Kρ = (2.5 × 10−5)e−2Ri (200 points and r2 = 0.4); (b) 

*K  vs. Ri, and the lines shown are as in (a); 
(c) Kρ nondimensionalized with the predicted diffusivity from the mixing length model in Equation 8; and (d) Kρ 
nondimensionalized by the predicted diffusivity from the convective mixing model in Equation 9. LES is large eddy 
simulations.
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and convective mechanisms Ri appears as a natural and important parameter or, since  
4/3/S ORi L L , 

both the Corrsin length scale LS and the Ozmidov length scale LO are important. But the Kolmogorov scale 
LK characterizing the smallest scales is also important in any turbulent flow, and three length scales imply 

a second dimensionless parameter is necessary. An obvious choice for this parameter is  
4/3/b O KRe L L .  

There is a factor of 102 difference in the Reb between the field observations in Figure 1 and the numerical 
results in Figure 3. The much higher value of Reb in the field seems the likely cause for the difference in the 
magnitude of Kρ for the same Ri.

Our analysis shows that while Ri is a useful parameter in distinguishing between shear and convective 
mixing, Ri alone cannot be used to predict diffusivity in the ocean. The popular KPP closure model of Large 
et al. (1994) makes four assumptions: mixing only occurs due to shear; Kρ depends only on Ri; in the limit 
when Ri → 0 the diffusivity Kρ → K0 = 5 × 10−3m2s−1; and when Ri > 0.7 the diffusivity Kρ = 0. None of these 
assumptions are supported by our results.

Our results can, however, be used to formulate a modified version of the KPP model similar to that suggest-
ed by Large et al. (1994) (a decaying polynomial dependence on Ri) and Zaron and Moum (2009) (a decay-
ing exponential dependence on Ri). Consistent with both the field and numerical results presented here, 
the following empirical expression accounts for both shear and convective mixing over a wide range of Ri
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where Reb0 is the buoyancy Reynolds number in the limit when Ri → 0. For the field data, Reb0 ≈ 105 and 
K0 ≈ 10−2 m2s−1 (Figure 1b)—only a factor of 2 above the K0 value proposed by Large et al. (1994)—while 
for the numerical data Reb0 ≈ 103 and K0 ≈ 8 × 10−5 m2s−1 (Figure 3a). Equation 11 requires as input a 
value of Reb0 in order to determine K0. As a first step, we propose adopting the same K0 = 5 × 10−3 m2s−1 
suggested by Large et al. (1994) and then using Equation 11 over the full range of the computed Ri. The 
exponent of ‒10 is reasonable only for Ri < 0.15 and a lower exponent is needed as Ri increases. There 
are few data points at large Ri and the exponent of −2 is just a first suggestion and clearly more data, 
particularly at Ri > 1.25, is required to refine this estimate. And more generally, our proposed formulation 
in Equation 11 needs to be tested further with measurements of K0 and estimates of Reb0 before use in 
modeling applications.

The simple mixing length model in Equation 8 appears to be a reliable predictor of the observed diffusivities 
Kρ in both the field observations and the numerical results reported here. In practice, this agreement occurs 
over a broader range of Ri than might be anticipated from mixing length theory, and even appears to be a 
good predictor of mixing at high Ri when mixing is dominated by convection. Whether the mechanism 
driving the mixing is shear or convection and irrespective of the value of Ri, it appears Equation 8 can be 
applied to mooring data to get long time estimates of Kρ. Such long-term estimates of Kρ would be invaluable 
in evaluating the description of mixing within circulation models.

Data Availability Statement
The data used in creating the figures are available in a repository for the numerical simulations (http://doi.
org/10.5281/zenodo.3819339) and the field observations (http://doi.org/10.5281/zenodo.3840536).
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