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A B S T R A C T   

Ecosystem respiration (Reco) and its components, the autotrophic respiration (Ra) and soil respiration (Rs) are the 
essential indicators of the global carbon cycle. They are represented as functions of either temperature or soil 
moisture, or a combination of both in the widely-used Earth System Models (ESMs). Thus, it is difficult to 
evaluate the influence of other environmental factors (such as, precipitation, soil temperature, dissolved oxygen 
level and oxidation reduction potential (ORP)) on Ra, Rs and Reco. Here we introduced microbially mediated, 
detailed carbon cycle processes within our mechanistic model to address this issue. Dominance analysis using a 
multivariate approach was performed to find out the influence of individual environmental factors on Ra, Rs and 
Reco in the cold climate regions of Athabasca River Basin (ARB), Canada. Contribution of the 6 predictor vari-
ables, including air temperature, precipitation, soil temperature, water-filled pore space (WFPS) used as a proxy 
of soil moisture, dissolved oxygen level, and ORP, on Ra, Rs and Reco were estimated based on the R2 values 
originated from multiple regression analyses. Our results showed that the prevailing temperature (both air and 
soil) and dissolved oxygen levels are the major influencing factors on Ra, Rs and Reco. WFPS is found to be the 
least influential factor on respiration estimation. Output of this study can be used to consider the crucial roles of 
environmental drivers in Ra, Rs and Reco estimation in the development of future ESMs.   

1. Introduction 

Ecosystem respiration (Reco) is primarily responsible for soil carbon 
loss and natural carbon dioxide (CO2) emission (Ciais et al., 2014). 
Autotrophic respiration (Ra) from the vegetations and heterotrophic 
respiration (Rh) from soil microorganisms are majorly constituting Reco 
in natural ecosystems (Hicks Pries et al., 2013; Hicks Pries et al., 2015). 
Site-scale estimation of Reco (Chambers et al., 2004; Knohl and Buch-
mann, 2005; Hardie et al., 2009; Nowinski et al., 2010; Hicks Pries et al., 
2013), Ra (Chambers et al., 2004; Bond-Lamberty et al., 2004; Bond- 
Lamberty and Thomson, 2010b), Rh (Chambers et al., 2004; Bond- 
Lamberty et al., 2004; Bond-Lamberty and Thomson, 2010b; Bond- 
Lamberty et al., 2018) are well studied across the globe. Relationship 
between Reco and soil temperature and moisture are reported in earlier 
studies (Knohl and Buchmann, 2005; Misson et al., 2007). Rs variations 
with temperature and soil moisture (Bond-Lamberty and Thomson, 
2010a, 2010b; Hursh et al., 2017) were observed in different parts of the 
globe. However, relationships between Reco, Rs and Ra with the envi-
ronmental (temperature, precipitation, soil temperature, WFPS) and 

chemical environmental drivers (dissolved oxygen level, ORP) are not 
readily available. 

Estimating the influence of environmental factors on Reco is a 
necessary step to understand and manage future CO2 emissions partic-
ularly at the cold regions, where soil freeze and thaw cycle change 
associated with global warming could cause a shift in carbon mobili-
zation mechanism in the near future (Bhanja and Wang, in-Press). The 
ongoing carbon cycle processes are changing in cold regions due to 
climate change linked decline of permafrost, glacial thinning and the 
changing pattern of freeze thaw cycle (Bates et al., 2008). Reco compo-
nents respond differently to warming. Aboveground respiration 
component increased due to 20% increased aboveground productivity 
linked to soil warming of 2.3 0C at a cold region site in Alaska (Natali 
et al., 2012). Root respiration showed almost no change after a 2 0C of 
soil warming but a 21% increase in heterotrophic respiration was 
observed due to enhanced microbial activities (Wang et al., 2014). The 
soil carbon cycling involves multiple microbial species (Crowther et al., 
2019), which require favorable redox environment in soil for their 
sustenance (de Angelis et al., 2010). Soil carbon mineralization has been 
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impacted by hydrological processes too (Anthony et al., 2018). Atmo-
spheric CO2 concentration is reported to be influenced by terrestrial 
water storage change (Humphrey et al., 2018). All of the processes 
mentioned above are not undergoing alone, rather they are occurring 
with feedback from each other. Therefore, integration of hydrological, 
redox as well as microbial processes are necessary to enhance the model 
estimates (Bhanja et al., 2019a, 2019b). 

Contemporary earth system models (ESMs) employ empirical ap-
proaches (mostly as functions of either soil temperature or moisture 
contents) including transformation of numerous soil carbon pools at 
different rates for estimating Reco (Clark et al., 2011; Oleson et al., 2010; 
Davidson and Janssens, 2006). Widely used regional-scale models, 
CENTURY and DAYCENT models are using simplified functions of soil 
temperature and moisture to estimate soil respiration (Del Grosso et al., 
2005). Similar first order kinetics-based approaches are modeled in 
other well known regional-scale models such as ORCHIDEE (Qiu et al., 
2018), Biome-BGC (White et al., 2000) and CLM (Lawrence et al., 2019). 
However, the relationship between incident soil temperature and soil 
carbon transformation is not straightforward because microbes play 
crucial roles in litter and soil organic matter transformation (Melillo 
et al., 2017). As a result, most ESMs are unable to evaluate the effect of 
other environmental factors, such as dissolved oxygen and redox po-
tential, for realistic, grid-scale estimates of soil carbon (Todd-Brown 
et al., 2013). Large amount of errors are found in global-model gener-
ated Rs in arctic and subarctic regions with low Rs values (Hursh et al., 
2017). Challenges to develop such regional-scale, integrated models are 
twofold. Firstly, the model must be well evaluated and operated across a 
range of domains (e.g. climate, soil, land use, topography, hydrology) as 
well as land use change and management. Particularly, in cold regions, 
permafrost and freeze–thaw cycles due to climate change may cause a 
substantial change in hydrology and microbial activities, leading to 
change of soil respirations and soil gas exchange (Cui and Wang, 2019). 
Secondly, to calibrate and drive the models, various datasets with fine 
spatial resolution and continuous measurements at a range of different 
spatial scales are required. Particularly, at a regional scale, it is pertinent 
that the data requires to cover the diverse meteorological, soil, land use 
and management domains, all with the quantified uncertainties. 

Keeping these issues in mind, here we introduced detailed litter 

decomposition, root respiration and aboveground respiration modules 
in order to simulate realistic estimates of Rh, Ra and Reco. In the recent 
years, Bhanja and Wang (2020) introduced the soil CO2 emission ca-
pabilities in the Soil and Water Assessment Tool (SWAT). Indeed, Bhanja 
et al. (2019a) and Bhanja et al. (2019b) uniquely introduced multiple 
major chemical reactions and SOM decomposition, which integrated 
main environmental factors with the heterogeneity of vegetation, soil 
and hydrological processes. This enables us to evaluate the effect of 
environmental factors on Rh, Ra and Reco. Here the influence of envi-
ronmental drivers on Ra, Rs and Reco are investigated for the first time in 
boreal forest covered Athabasca river basin (ARB), Canada. We perform 
a dominance analysis using a multivariate approach to find out the in-
fluence of individual environmental factors on Ra, Rs and Reco. The 
contribution of the 6 predictor variables (air temperature, precipitation, 
soil temperature, WFPS, dissolved oxygen level and ORP) on respiration 
rates are estimated based on the R2 values originated from multiple 
regression analyses. We also attempted to validate the respiration esti-
mates on comparing with the site-scale measurements available. 

2. Data and methods 

2.1. Modeling framework 

The SWAT has been widely used for regional-scale simulation ca-
pacity of detailed hydrology (Arnold et al., 1998; Neitsch et al., 2011). 
We added additional carbon cycle capabilities into SWAT for simulating 
respiration components originating from litter decomposition, root, 
above-ground biomass and soil organic carbon transformation (Fig. 1). 
The new integrated hydro-biogeochemical model (named as SWAT- 
MKT) is capable of performing variety of tasks at one run (for detailed 
descriptions of the base model, please refer to Bhanja et al., 2019a, 
2019b; Bhanja and Wang, 2020). Major chemical processes are consid-
ered in this approach, as shown in Figure S1. 

Different remote sensing as well as modeled datasets are used to set 
up the SWAT model simulation for the ARB. Shuttle Radar Topography 
Mission (SRTM) sensor-based Digital Elevation Model (DEM) data (90 m 
× 90 m) was accessed from the Consultative Group on International 
Agricultural Research (CGIAR) (Jarvis et al., 2008). Land-use data (1 

Fig. 1. Schematic diagram of the processes considered in this study.  
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km × 1 km) was accessed from the United States Geological Survey 
(USGS; Loveland et al., 2000). Soil map (1:1 million resolution) was 
obtained from the Agriculture and Agri-Food Canada (AAFC; SLC, 
2010). Watershed delineation was done through SWAT at a 200 km2 

threshold that characterizes 131 sub-basins in ARB (Figure S2). The 
functional unit in SWAT were characterized as the Hydrologic Response 
Units (HRU). Four slope classes (5%, 10%, 15% and 20%) with 10%, 5% 
and 10% thresholds were used for land-use, soil and slope, respectively. 
Finally, 1370 HRUs were characterized in ARB. Daily-scale precipita-
tion, minimum and maximum temperature data were obtained from the 
GoC (2016) database. Daily-scale wind speed, relative humidity and 
solar radiation data were accessed for 230 stations from CFSR (2016) 
archive. Further details on model built-up were provided in Shrestha 
et al. (2017). 

2.2. Litter decomposition 

Liter decomposition sub-module was developed assuming the exis-
tence of two soil carbon pools, active and passive, respectively. Active 
litter fraction along with the microbial biomass were considered in the 
active pool (Fujita et al., 2014). We used CENTURY model’s first order 
litter decomposition kinetics approach as a baseline (Parton et al., 1987, 
1994, 2001; Fujita et al., 2014): 

Rdi,C = ki,C × Ci (1) 

Where, Rdi,C (gC kg− 1 soil d-1) is the litter decomposition rate from 
the CENTURY model, Ci the carbon contents within active or passive 
substrate (gC kg− 1 soil), ki,C the first-order decomposition coefficient of 
Ci (d-1), and i the active and passive substrate type. 

As microbes are playing major role in litter decomposition, microbial 
enzymatic approach adopting Michaelis-Menten kinetics (Fujita et al., 
2014) was used here. The modified decomposition rate Rdi,M (gC kg− 1 

soil d-1): 

Rdi,M = ki,M ×
Ci

Kmi + Ci
(2) 

Where, the half-saturation constant or Michaelis-Menten constant is 
represented as Kmi (gC kg− 1 soil). The decomposition coefficient of Ci is 
ki,M and it is estimated individually corresponding to the active (AC) and 
passive (PA) substrates: 

kAC,M =
kAC,C × (KmAC + 2Cb)

Cb
(3)  

kPA,M =
kPA,C × (KmPA + CT)

Cb
(4) 

Where, decomposition coefficients used in CENTURY model for the 
active and passive substrates are represented askAC,C and kPA,C, respec-
tively. KmAC is the Michaelis-Menten constant for active substrate and it 
is estimated at 0.3 g C kg− 1 soil (Allison et al., 2010). KmPA is the 
Michaelis-Menten constant for the passive substrate and its value is 
estimated at 600 g C kg− 1 soil (Allison et al., 2010). Microbial biomass 
carbon is represented as Cb (g C kg− 1 soil), its value was estimated as the 
global median microbial biomass (0.87 g C kg− 1 soil; Cleveland and 
Liptzin, 2007). Total carbon stock of soil, CT is considered as the global 
total soil carbon: 46 g C kg− 1 soil (Cleveland and Liptzin, 2007). 

While the microbes facilitating the litter decomposition rates, its own 
biomass can be well subjected to active decomposition. Therefore, mi-
crobial biomass is considered as an active litter component and its 
magnitude is directly proportional to the litter decomposition rate. The 
new rate (Rdi,MM) can be estimated as (Fujita et al., 2014): 

Rdi,MM = ki,M ×
Ci

Kmi + Ci
× Cb (5) 

Soil respiration rates (RLD) associated with litter decomposition was 
estimated following Fujita et al. (2014). 

RLD =
∑PA

i=AC

(
1 − ei,m

)
× Rdi,MM +Om,c (6) 

Where, the growth efficiency of microbes during decomposition of 
either active or passive substrates is represented as ei,m (0.45; Fujita 
et al., 2014). Overflow of carbon due to low nitrogen concentration is 
represented as Om,c; we have omitted this parameter due to data limi-
tation to represent the processes. Finally the Eq. (6) becomes: 

RLD = 0.45 ×
kAC,C × (KmAC + 2Cb)

Cb
×

CAC

KmAC + CAC
+ 0.45

×
kPA,C × (KmPA + CT)

Cb
×

CPA

KmPA + CPA
(7)  

2.3. Root respiration 

SWAT model is not capable of simulating the root respiration (Rr). 
We have introduced a new sub-module in SWAT to simulate Rr following 
Li et al. (1994): 

Rr =
(
Rn × Un +Rrg × BGr +Rrm × Blr

)
(8) 

Where, CO2 produced by roots for nitrogen uptake is represented as 
Rn (13.8 mg C meq-1N; Veen, 1981; Li et al., 1994). Un (kg N ha− 1 d-1) 
represents the nitrogen uptake rates of plant. CO2 produced as a function 
of root growth is represented as Rrg (19.19 mg C g− 1 dry matter; Veen, 
1981; Li et al., 1994). Root biomass growth per day is represented as BGr 
(g dry matter ha− 1). CO2 produced due to root maintenance is repre-
sented as Rrm (0.288 mg C g− 1 dry matter d-1; Veen, 1981; Li et al., 
1994). Blr represents the living root biomass (g dry matter ha− 1). 

2.4. Respiration from aboveground biomass 

Respiration by above ground biomass (Rabv) was not present in 
SWAT model. It is estimated following Ryan et al. (1994): 

Rabv =
(
Rabvf × BGabvf +Rabvw × BGabvw

)
(9) 

Where, daily aboveground foliar biomass growth: BGabvf (g dry 
matter ha− 1 d-1). CO2 produced due to aboveground foliar biomass 
growth: Rabvf (1.767 mg C g− 1 dry matter d-1; Ryan et al., 1994). Daily 
aboveground woody biomass growth is represented as BGabvw (g dry 
matter ha− 1 d-1). CO2 produced due to aboveground woody biomass 
growth is represented as Rabvw (0.12 mg C g− 1 dry matter d-1; Ryan et al., 
1994). 

2.5. Dominance analysis 

Dominance analysis was performed to find a qualitative relation 
defined in a pairwise fashion (Budescu, 1993). If one variable is more 
useful than its competitor in all subset regressions, it is called to domi-
nate another. We adopted a multivariate approach for dominance 
analysis to rank order of individual environmental factors that influence 
on Ra, Rs and Reco in terms of their relative importance. The contribution 
of the 6 predictor variables (air temperature, precipitation, soil tem-
perature, WFPS, dissolved oxygen level and ORP) to the respiration are 
estimated based on the statistical performance of R2 values originated 
from multiple regression analyses (Azen and Budescu, 2006). 

2.6. Assumptions and limitations 

Geological CO2 emission from mineralization was not considered in 
this study (Andrews and Schlesinger, 2001). Animal respiration is not 
included in ecosystem respiration computation. However, in this pre-
vailing cold climatic conditions, number of animals residing at the ARB 
is very low (Weber et al., 2015), respiration from animals can be 
neglected here. Several assumptions and limitations related to the basic 
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version of the model were described in Bhanja et al. (2019a) and Bhanja 
et al. (2019b) and Bhanja and Wang (2020). All of the soil microbes are 
either not participating in the decomposition process or even partici-
pating and performing decomposition at a slower rates leading to re-
striction of the decomposition process (Kaiser et al., 2015). Values of 
some of the constants in this respiration modeling approach are taken 
from literature information due to non availability of the data within the 
study region. 

3. Results and discussions 

3.1. Trends of environmental factors, total ecosystem respiration and its 
components 

Annual mean air temperature, soil temperature and precipitation 
show spatial variations across ARB (Figure S2, S3, S4). Annual trends of 

air and soil temperature show an increasing pattern during 2000–2013 
in most of the subbasins of ARB (Fig. 2a, c). Precipitation trends show a 
distinct north–south demarcation with increasing values in southern 
subbasins and decreasing values in northern subbasins (Fig. 2b). WFPS 
trends show a mixture of increasing and decreasing patterns while dis-
solved oxygen levels show an increasing trend in most of the subbasins 
(Fig. 2d, e). WFPS as a measure of soil water availability, it is related to 
precipitation, temperature, snow melt as well as the freeze and thaw 
cycle of the soil (Bhanja and Wang, 2021). WFPS is also dependent on 
the soil physical properties that are not homogenous in the study region 
(Bhanja et al., 2019a). These are the reasons for its distinct deviation on 
comparing with precipitation patterns. Dissolved oxygen level is 
dependent on multiple factors, such as incident oxygen concentration, 
nature of chemical reactions, air filled pore space and soil temperature 
(Bethke, 2007; Fan et al., 2014). ORP trends show increasing values in 
all of the subbasins with a couple of exceptions (Fig. 2f). Soil ORP being 

Fig. 2. Maps of annual trends of (a) air temperature (AirT); (b) precipitation; (c) soil temperature (SoilT); (d) water filled pore space (WFPS); (e) dissolved oxygen; (f) 
oxidation reduction potential (ORP); (g) autotrophic respiration (Ra); (h) soil respiration (Rs) and (i) ecosystem respiration (Reco) at ARB in 2000–2013. 
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the function of oxygen concentration, microbial activities and the pre-
vailing chemical reactions (Bethke, 2007; Reddy and Delaune, 2008; 
Bhanja and Wang, 2020), it is very difficult to state the exact reason for 
its rise over the years. The ORP increase would make the system more 
oxidized and hence if it continues to rise in future, soil chemical dy-
namics would change. Earlier studies used WFPS as a proxy of ORP to 
estimate soil greenhouse gas emissions (Bateman and Baggs, 2005; 
Wagena et al., 2017; Yang et al., 2017; Shrestha et al., 2018), however, 
differences in WFPS and ORP trends are distinct. Ra, Rs and Reco trends 
show near similar spatial patterns of increasing and decreasing values 
but the magnitudes are different (Fig. 2g, h, i). As observed for trends of 
temperature (both air and soil) and precipitation, temperature shows 
rising trend and precipitation shows declining trend in most of the 
northern subbasins. The spatial patterns of temperature and precipita-
tion trends are not evident for Ra, Rs and Reco in northern subbasins. The 
modeled estimates compare well with the available Reco estimates 
(Table S1) at nearby boreal sites taken from FLUXNET measurements 
(Pastorello et al., 2017). Simulated Rs values are also matching well with 
nearby site data (Table S2) available from SRDB archives (Bond-Lamb-
erty and Thomson, 2010b). It should be noted that the majority (if not 
all) of the FLUXNET and SRDB sites are located in the south of the ARB- 
this is the reason for the observing some higher values at the sites. 

3.2. Influential factors of autotrophic and soil respirations 

We have investigated the relationship between Ra and the environ-
mental influencing factors (Fig. 3). Temperature (both air and soil) 
variations can explain Ra variations well at most of the subbasins as 
statistically significant (p < 0.001) correlations are observed at most of 
the subbasins of ARB (Fig. 3a, 3c). Dissolved oxygen and ORP values can 
also explain Ra values well with very good correlation coefficients 
(Fig. 3e, 3f). Correlation of Ra with precipitation and WFPS are not so 
good even mostly negative r values are obtained for WFPS (Fig. 3b, d). 
Based on the correlation analyses, soil temperature, dissolved oxygen 

level and air temperature are the three most crucial parameters that can 
well explain the Ra variations. Monthly basin averaged values of Ra show 
non-linear relationship with environmental drivers (Figure S5). Co-
efficients of determination of these non-linear relationships show best 
results for ORP, soil temperature and dissolved oxygen level, respec-
tively. Dominance analysis for the monthly-scale basin-averaged values 
indicated complete dominance of soil temperature on influencing Ra 
with 24% contribution (Fig. 4). Dissolved oxygen and air temperature 
are the next two most influencing factors of Ra. 

Prevailing temperature (air and soil both) influence the Rs most with 
observed correlation coefficients > 0.9 in most of the subbasins for soil 
temperature (Fig. 5a, c). Dissolved oxygen level and precipitation are 
the next two main influential drivers of Rs (Fig. 5b, e). ORP closely 
follows precipitation in most of the subbasins or even performs better in 

Fig. 3. Maps of correlation of autotrophic respiration (Ra) with (a) air temperature (AirT); (b) precipitation; (c) soil temperature (SoilT); (d) water filled pore space 
(WFPS); (e) dissolved oxygen; (f) oxidation reduction potential (ORP) for 168 months in 2000–2013. 

Fig. 4. Influence of environmental drivers on autotrophic respiration (Ra), soil 
respiration (Rs) and ecosystem respiration (Reco) based on dominance analysis. 
Average contribution factor of each environmental drivers are shown using the 
color-scale. 
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Fig. 5. Correlation of soil respiration (Rs) with (a) air temperature (AirT); (b) precipitation; (c) soil temperature (SoilT); (d) water filled pore space (WFPS); (e) 
dissolved oxygen; (f) oxidation reduction potential (ORP) for 168 months in 2000–2013. 

Fig. 6. Correlation of ecosystem respiration (Reco) with (a) air temperature (AirT); (b) precipitation; (c) soil temperature (SoilT); (d) water filled pore space (WFPS); 
(e) dissolved oxygen; (f) oxidation reduction potential (ORP) for 168 months in 2000–2013. 
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a handful of them (Fig. 5b, f). WFPS found to be the least influential 
factor for Rs (Fig. 5d). Scatter analysis using basin-averaged environ-
mental factors exhibits non-linear relationships with Rs (Figure S6). The 
coefficient of determination is found to be best for soil temperature, air 
temperature and dissolved oxygen level. Dominance analysis also shows 
strong influence of soil temperature, followed by dissolved oxygen and 
air temperature on Rs (Fig. 4). The three parameters contribute nearly 
67% of Rs. Influence of temperature on Rs is well reported in earlier 
studies (Bond-Lamberty and Thomson, 2010ab; Chen et al., 2010; Hursh 
et al., 2017). Our observation based on dissolved oxygen is not reported 
before. 

3.3. Influential factors of ecosystem respiration 

Soil temperature and dissolved oxygen levels are influencing Reco 
most with statistically significant (p < 0.001), very high correlation (r >
0.8) at most of the subbasins (Fig. 6c, e). Air temperature, ORP and 
precipitation are the other important drivers of Reco with moderate to 
good correlation estimates (Fig. 6a, b, f). Similar to other respiration 
estimates, WFPS and Reco relationships are weak (Fig. 6d). 

Seasonal cycles are distinctly observed in basin-averaged Reco and 
other environmental drivers (Figure S7). ARB has been characterized by 
cold and dry winter and wet summer (Figure S7), which is the reason for 
the seasonal cycle. Our model performs well on comparing the simulated 
WFPS and soil temperature with the observed values at 3 locations 
(Bhanja et al., 2019a). Temperatures (both air and soil), precipitation 
and dissolved oxygen level show lowest values during winter time. 
WFPS exhibit maximum values during early summer/snow melt period 
and lowest values during late summer period when evapotranspiration 

rates are higher. ORP shows lowest values in late winter during March- 
April (Figure S7). 

Scatter analyses of basin averaged Reco and environmental factors 
show nonlinear patterns (Fig. 7). Soil temperature, dissolved oxygen 
levels and air temperature are ranked first three variables based on co-
efficient of determination of these non-linear fitting patterns. Based on 
the scatter analyses, WFPS is not capturing the Reco patterns well 
(Fig. 7). Dominance analysis based estimates strongly support our 
findings from correlation and scatter analyses (Fig. 4). Out of the 6 
environmental drivers we have used, soil temperature completely 
dominated Reco with nearly 26% contribution while the dissolved oxy-
gen and air temperature are the next two influencers of Reco with esti-
mated contributions of 20% and 19%, respectively (Fig. 4). 

4. Conclusions 

We have studied the influence of environmental factors on Ra, Rs and 
Reco using our newly developed model at the Athabasca River basin, 
Canada. Our model with detailed microbially-mediated, carbon cycle 
capability enables users to simulate Ra, Rs and Reco at a daily time step. A 
dominance analysis was performed using a multivariate approach to 
rank the influence of the 6 predictor variables (air temperature, pre-
cipitation, soil temperature, WFPS, dissolved oxygen level and ORP) on 
Ra, Rs and Reco, based on the R2 values originated from multiple 
regression analyses. Respiration estimates show clear spatial as well as 
temporal variations. Our results show that the air and soil temperature 
and dissolved oxygen level are exhibiting the highest correlations at 
most of the subbasins on comparing with all of the respiration estimates 
and are the major influencing factors with >65% contribution for the 

Fig. 7. Basin averaged, monthly scatters of ecosystem respiration (Reco) and the environmental factors.  
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respiration estimates (Ra, Rs and Reco). Scatter and time-series analyses 
also support the result. 

In general, the previous studies reported either temperature and soil 
moisture or both in combination as the major influencing factors of Reco 
and Rs. Results from this study indicate other environmental drivers 
such as dissolved oxygen levels and the ORP of the system play a crucial 
role in Reco dynamics. More studies using site-scale data remain to be 
required to improve our understanding in this rarely studied area. We 
believe incorporation of these components in future models could 
improve regional-scale respiration simulation. 
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Parmentier, F.W., Peichl, M., Pirk, N., Peltola, O., Pawlak, W., Rasse, D., Rinne, J., 
Shaver, G., Schmid, H.P., Sottocornola, M., Steinbrecher, R., Sachs, T., Urbaniak, M., 
Zona, D., Klaudia Ziemblinska, K., 2018. ORCHIDEE-PEAT (revision 4596), a model 

for northern peatland CO2, water, and energy fluxes on daily to annual scales. 
Geosci. Model Dev. 11, 497–519. 

Reddy, K.R., DeLaune, R.D., 2008. Biogeochemistry of Wetlands: Science and 
Applications. CRC Press. 

Ryan, M.G., Linder, S., Vose, J.M., Hubbard, R.M., 1994. Dark respiration of pines. Ecol. 
Bull. 50–63. 

Shrestha, N.K., Du, X., Wang, J., 2017. Assessing climate change impacts on fresh water 
resources of the Athabasca River Basin. Canada. Sci. Total Environ. 601, 425–440. 

Shrestha, N.K., Thomas, B.W., Du, X., Hao, X., Wang, J., 2018. Modeling nitrous oxide 
emissions from rough fescue grassland soils subjected to long-term grazing of 
different intensities using the Soil and Water Assessment Tool (SWAT). Environ. Sci. 
Pollut. Res. 25, 27362–27377. 

SLC. 2010. Agriculture and Agri-Food Canada (Ed.), Soil Landscapes of Canada Version 
3.2 http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html. 

Todd-Brown, K.E.O., Randerson, J.T., Post, W.M., Hoffman, F.M., Tarnocai, C., Schuur, E. 
A.G., Allison, S.D., 2013. Causes of variation in soil carbon simulations from CMIP5 
Earth system models and comparison with observations. Biogeosciences 10, 
1717–1736. https://doi.org/10.5194/bg-10-1717-2013. 

Veen, B.W., 1981. Relation between root respiration and root activity. In: Structure and 
Function of Plant Roots. Springer, Dordrecht, pp. 277–280. 

Wagena, M.B., Bock, E.M., Sommerlot, A.R., Fuka, D.R., Easton, Z.M., 2017. 
Development of a nitrous oxide routine for the SWAT model to assess greenhouse gas 
emissions from agroecosystems. Environ. Model. Softw. 89, 131–143. 

Wang, X., Liu, L., Piao, S., Janssens, I.A., Tang, J., Liu, W., Chi, Y., Wang, J., Xu, S., 2014. 
Soil respiration under climate warming: Differential response of heterotrophic and 
autotrophic respiration. Glob. Change Biol. 20 (10), 3229–3237. 

White, M.A., Thornton, P.E., Running, S.W., Nemani, R.R., 2000. Parameterization and 
sensitivity analysis of the BIOME–BGC terrestrial ecosystem model: Net primary 
production controls. Earth Interact. 4 (3), 1–85. 

Weber, M., Hauer, G., Farr, D., 2015. Economic-ecological evaluation of temporary 
biodiversity offsets in Alberta’s boreal forest. Environ. Conserv. 42 (4), 315–324. 

Yang, Q., Zhang, X., Abraha, M., Del Grosso, S., Robertson, G.P., Chen, J., 2017. 
Enhancing the soil and water assessment tool model for simulating N2O emissions of 
three agricultural systems. Ecosyst. Health Sustain. 3, e01259. 

S.N. Bhanja and J. Wang                                                                                                                                                                                                                     

http://refhub.elsevier.com/S1470-160X(21)00182-5/h0230
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0230
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0235
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0235
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0235
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0240
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0240
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0245
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0245
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0245
https://dx.doi.org/10.5065/D6FB50WZ
https://dx.doi.org/10.5065/D6FB50WZ
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0255
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0255
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0255
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0260
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0260
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0260
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0265
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0265
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0265
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0270
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0270
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0270
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0275
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0280
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0280
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0285
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0285
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0290
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0290
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0295
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0295
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0295
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0295
http://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/index.html
https://doi.org/10.5194/bg-10-1717-2013
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0315
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0315
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0320
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0320
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0320
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0325
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0325
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0325
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0330
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0330
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0330
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0335
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0335
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0340
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0340
http://refhub.elsevier.com/S1470-160X(21)00182-5/h0340

	Influence of environmental factors on autotrophic, soil and ecosystem respirations in Canadian boreal forest
	1 Introduction
	2 Data and methods
	2.1 Modeling framework
	2.2 Litter decomposition
	2.3 Root respiration
	2.4 Respiration from aboveground biomass
	2.5 Dominance analysis
	2.6 Assumptions and limitations

	3 Results and discussions
	3.1 Trends of environmental factors, total ecosystem respiration and its components
	3.2 Influential factors of autotrophic and soil respirations
	3.3 Influential factors of ecosystem respiration

	4 Conclusions
	5 Credit statement
	Declaration of Competing Interest
	Acknowledgement
	Appendix A Supplementary data
	References


