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Controllability of Linear Dynamical Systems Under Input
Sparsity Constraints

Geethu Joseph and Chandra R. Murthy , Senior Member, IEEE

Abstract—In this article, we consider the controllability of a
discrete-time linear dynamical system with sparse control inputs.
Sparsity constraints on the input arises naturally in networked
systems, where activating each input variable adds to the cost of
control. We derive algebraic necessary and sufficient conditions
for ensuring controllability of a system with an arbitrary transfer
matrix. The derived conditions can be verified in polynomial time
complexity, unlike the more traditional Kalman-type rank tests.
Further, we characterize the minimum number of input vectors
required to satisfy the derived conditions for controllability. Finally,
we present a generalized Kalman decomposition-like procedure
that separates the state-space into subspaces corresponding to
sparse-controllable and sparse-uncontrollable parts. These results
form a theoretical basis for designing networked linear control
systems with sparse inputs.

Index Terms—Controllability, Kalman rank test, linear dynamical
systems, Popov–Belevitch–Hautus (PBH) test, sparsity, switched
linear systems.

I. INTRODUCTION

In networked control systems, the notion of controllability refers to
the ability to drive the system from an arbitrary initial state to a desired
final state in a finite amount of time. Complete characterization of con-
trollability of linear dynamical systems using unconstrained inputs have
pure algebraic rank-based forms, and are rather easily verifiable [1],
[2]. However, in applications involving networked control systems, it
is often necessary to select a small subset of the available sensors or
actuators at each time instant due to communication bandwidth, cost,
or energy constraints [3], [4]. Further, it is often desirable to select a
different subset of nodes at each time instant to improve the network
lifetime [5]. Now, when the number of actuators or input variables that
can be activated at each time instant is limited, the system may become
uncontrollable because all the feasible control signals are restricted to
lie in the union of low-dimensional subspaces. The controllability of
linear dynamical systems under sparse input constraints is the focus of
this article.
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A. Related Literature

We discuss the relationship between the problem considered in this
article and the existing literature in control theory and sparse signal
processing.

1) Time-Varying Actuator Scheduling Problem: This
problem focuses on finding a schedule for sparse actuator control,
such that the system is sparse-controllable [5]–[7]. These works rely
on a well-known condition for controllability—namely, rank of the
Gramian matrix of the sparsity-constrained system. However, finding a
sequence of control inputs that satisfy the rank condition on the Gramian
matrix is an NP-hard combinatorial problem [8], [9]. Hence, different
quantitative measures of controllability based on the Gramian matrix
have been considered—smallest eigenvalue, the trace of the inverse,
the inverse of the trace, the determinant, maximum diagonal element,
etc. [5]. More importantly, these studies do not directly address the
question of whether or not the system can be controlled by sparse
inputs.

2) Minimal Input Selection Problem: The minimal input se-
lection involves selecting a small set of input variables so that the system
is controllable using the selected set [8]–[10]. This problem imposes an
extra constraint that the support of the control input remains unchanged
for all time instants. We discuss and contrast the two cases in detail in
Section III-B.

3) Design of Sparse Control Inputs: Some work connecting
compressive sensing and control theory focus on the design (recovery)
of sparse control inputs using a limited number of observations [11]–
[13]. These studies assume the existence of a set of sparse control inputs
that can drive a given initial state to a desired final state.

4) Observability Under Sparsity Constraints: Recently, the
observability of linear systems with a sparse initial state has also been
studied [14], [15]. However, our problem assumes a general initial
state and sparse control inputs. Therefore, the problems have different
sparsity models, and consequently, require separate analysis.

B. Our Contributions

In this article, we answer the following key questions.
Q1) What are necessary and sufficient conditions for ensuring con-

trollability under sparse input constraints? Can we devise a
computationally simple test for controllability?

Q2) If a system is controllable using sparse inputs, how many control
input vectors needed to drive the system from a given initial state
to an arbitrary final state?

Q3) If the system is not controllable using sparse inputs, what part of
the state space is reachable using sparse inputs?

Answering the above questions requires a fresh look at controlla-
bility, and we start by deriving a Popov–Belevitch–Hautus (PBH)-like
test [2], which, unlike the Gramian matrix-based tests, allows one to
check for sparse-controllability of a system without solving a combi-
natorial problem. Our specific contributions are as follows.
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1) We establish a set of the necessary and sufficient conditions
for the controllability of a linear system under sparse inputs in
Section III. Using these conditions, we present a simple pro-
cedure to check the controllability of any system using sparse
inputs.

2) We upper and lower bound the minimum number of input vectors
that can steer the system from any given initial state to any desired
final state in Section IV. We show that the upper bound is no more
than the length of the state vector, which is also an upper bound
for the minimum number of input vectors for an unconstrained
system.

3) We present a procedure to convert a representation of any linear
dynamical system into a standard form in Section V. The stan-
dard form separates the state-space into uncontrollable, sparse-
uncontrollable, and sparse-controllable components.

In a nutshell, this article presents new results on the controllability
of linear dynamical systems under sparsity constraints on the input.
We also note that the classical results for the unconstrained system can
be recovered as a special case of our results, by relaxing the sparsity
constraint. A longer version of this article, which contains additional
results and examples, can be found in [16].

Notation: In the sequel, we use | · | to denote the cardinality of a set
and ‖ · ‖0 to denote the �0 norm of a vector. For any positive integer
a, [a] denotes the set {1, 2, . . . , a}. The symbols I and 0 represent
the identity matrix and the all zero matrix (or vector), respectively.
The notation Ai denotes the ith column of the matrix A, and AS
represents the submatrix of A formed by the columns indexed by the
set S . Also, CS{·},Rank{·} and (·)T represent the column space, rank,
and transpose of a matrix, respectively.

II. SYSTEM MODEL

We consider the discrete-time linear dynamical system whose state
at time k, denoted by xk ∈ RN , evolves as

xk = Dxk−1 +Hhk (1)

where the transfer matrix D ∈ RN×N and input matrix H ∈ RN×L.
Here, the input vectors hk ∈ RL are assumed to be sparse, i.e.,
‖hk‖0 ≤ s, for all values of k. We denote the rank of the matrices
D and H using RD and RH , respectively.

We formally define the notion of controllability using sparse inputs
as follows.

Definition 1 (Sparse-Controllability): The system in (1) is said to
be s-sparse-controllable if, for any initial state x0 = xinit and any final
state xfinal, there exists inputs {hk}Kk=1 such that ‖hk‖0 ≤ s, which
steers the system from the state x0 = xinit to xK = xfinal for some
finite K.

Next, to characterize the sparse-controllability of the system, we
consider the following equivalent system of equations:

xK −DKx0 = H̃(K)h(K) (2)

where we define the matrices as follows:

H̃(K) =
[
DK−1H DK−2H . . .H

]
∈ RN×KL (3)

h(K) =
[
hT

1 hT
2 . . . hT

K

]T
∈ RKL. (4)

Note that h(K) is a piecewise sparse vector formed by concatenating
K vectors, each with sparsity at most s.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR

SPARSE-CONTROLLABILITY

This section addresses question Q1 in Section I. Now, it is known
that the system is sparse-controllable if, for some finite K, there exist
index sets {Si}Ki=1, Si ⊆ {1, 2, . . . , L}, |Si| = s, for i = 1, 2, . . . ,K,
such that the following submatrix of H̃(K) has rank N :[

DK−1HS1 DK−2HS2 . . . HSK

]
∈ RN×Ks. (5)

In the sequel, we refer this condition to as the Kalman-type rank test.
Note that the first (K − 1)N columns of H̃(K) belong to CS{D}.
Hence, to satisfy the Kalman-type rank test, SK should be such that
CS{HSK} should contain the left null space of D. Thus, a necessary
condition for sparse-controllability is the existence of an index set S
with s entries such that Rank{[D HS ]} = N , which is possible
only if s ≥ N −RD . Further, a system can be sparse-controllable
only if it is controllable using unconstrained inputs. Therefore, for
sparse-controllability, it is necessary that the system is controllable and
s ≥ N −RD . In fact, these two conditions are not only necessary but
also sufficient, as we show in the following theorem.

Theorem 1: The system in (1) is s-sparse-controllable if and only
if Rank{[λI −D H]} = N ≤ s+RD for all λ ∈ C.

Proof: See Appendix A. �
Note that there are two separate conditions here: one, a condition on

the rank of the matrix [λI −D H] ∈ RN+L, which we refer to as the
rank condition of Theorem 1; and two, a lower bound on the sparsity s,
which we refer to as the inequality condition of Theorem 1. The rank
condition is same as the classical PBH test [2] which is independent of
the sparsity level s, while the inequality condition is independent of the
input matrix H . We make the following remarks.
1) A reversible system, i.e., a system with an invertible state transition

matrix D, is s-sparse-controllable for any 0 < s ≤ L if and only
if it is controllable. Similarly, when L = 1, the notion of sparse-
controllability and controllability are the same, and hence Theorem
1 reduces to the PBH test.

2) If the system defined by the matrix pair (D,HS) is controllable for
some index setS with s entries, the system is s-sparse-controllable.
In particular, a controllable system with RH ≤ s is s-sparse-
controllable.

3) The system given by (1) is controllable using inputs that are
s-sparse under a basis Ψ ∈ RL×L if and only if the system is
controllable using inputs that are s-sparse under the canonical basis.
This follows by replacing H with HΨ in Theorem 1, and noting
that for any λ ∈ C

Rank
{[

λI −D HΨ
]}

= Rank
{[

λI −D H
]}

.

4) The verification of sparse-controllability has the same complexity
as the classical PBH test. This is because, we only need to ad-
ditionally check the inequality in Theorem 1, and RD is already
known from the PBH test. Thus, Theorem 1 allows us to verify the
controllability of any discrete system in polynomial complexity in
N , independent of the sparsity s. On the other hand, to verify the

Kalman-type rank test, we need to perform
(
L
s

)N
rank computa-

tions. Further, since the Kalman-type rank test involves powers of
D, numerical stability also needs to be considered.

A. Output Controllability

We consider the linear dynamical system described by (1) and the
following output relation:

yk = Axk (6)
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where the output matrix A ∈ Rm×N with m < N . Similar to
Definition 1, we define the notion of output s-sparse-controllability
as the existence of an s-sparse sequence of inputs which steers the
system from initial state x0 to a final output yK , for some finite K.
Now, to characterize the output sparse-controllability, we consider the
following equivalent system of equations:

yK −ADKx0 = AH̃(K)h(K). (7)

In [17], a Kalman test for output controllability of an unconstrained
system is derived, which states that the system given by (1) and (6) is
output controllable if and only if the matrix AH̃(K) has full row rank
for some finite K. However, a direct extension of this result to the case
of output sparse-controllability leads to a computationally expensive
combinatorial test as follows. The system is output controllable if and
only if, for some finite K, there exists a submatrix of AH̃(K) with
rank m of the form

A
[
DK−1HS1 DK−2HS2 . . . HSK

]
∈ Rm×Ks

such that the index set Si ⊆ {1, 2, . . . , L} and |Si| = s, for i =
1, 2, . . . ,K. Hence, we first present the following PBH test-type result
for output (unconstrained) controllability:

Proposition 1: For an unconstrained system given by (1) and (6),
the system is output controllable only if, for all λ ∈ C, the rank of
A[λI −D H] ∈ Rm×(N+L) is m.

Proof: Our proof is by contradiction. Suppose that, for some λ ∈ C,
the matrix A[λI −D H] does not have full row rank. Then, there
exists a 0 �= z ∈ Cm such that

zTAD = λzTA and zTAH = 0 (8)

which implies zTAH̃(K) = 0 for all K. Hence, the Kalman test is
violated, and the system is not output controllable. �

Our extension of Theorem 1 to output sparse-controllability is as
follows.

Corollary 1: The system given by (1) and (6) is output s-sparse-
controllable only if s ≥ m−Rank{AD}, and for all λ ∈ C, the rank
of A[λI −D H] ∈ Rm×(N+L) is m.

Proof: The proof is similar to that of Theorem 1 in Appendix A.
We replace z in the last part of the proof with Az to show the necessity
of the above conditions. �

Corollary 1 is the same as Theorem 1, except for a premultiplication
with A. We make the following observations.
1) We note that Rank{AH∗} ≤ Rank{A} for any matrix H∗.

Hence, if Rank{A} < m, the Kalman test fails and the system
is not output sparse-controllable.

2) Suppose Rank{A} = m for an s-sparse-controllable system. In-
voking Sylvester’s rank inequality [18], we get

m = Rank {A} +Rank {H∗} −N

≤ Rank {AH∗} ≤ Rank {A} = m (9)

where H∗ ∈ RN×Ks is the submatrix of H̃(K) that satisfies the
Kalman test for state sparse-controllability, for some finite K.
Hence, the system is output s-sparse-controllable. Therefore, when
Rank{A} = m, the conditions in Corollary 1 are less restrictive
than those in Theorem 1, as the output dimension m ≤ N .

B. Inputs With Common Support

We recall the minimal input selection problem discussed in Section I.
For such a problem, the system is controlled using sparse inputs with
a common support, i.e., when the indices of the nonzero entries of all
the inputs coincide. In this case, the effective system has the transfer

matrix-input matrix pair as (D,HS) for some index set S such that
|S| = s. Hence, the controllability conditions are given as follows.

i) For some finite positive integer K, there exists a N ×Ks subma-
trix [DK−1HS DK−2HS . . . HS ] of H̃(K) with rank N , where
S ⊆ [L] and |S| = s.

ii) For all λ ∈ C, the rank of [λI −D HS ] ∈ RN×(N+s) is N , for
some S ⊆ {1, 2, . . . , L} such that |S| = s.

Clearly, (ii) above implies the two conditions of Theorem 1. There-
fore, the above conditions are more stringent than those in Theorem 1,
which is expected due to the additional requirement of using a common
support. Thus, a system with sparse inputs with time-varying support
offers greater flexibility and control, and incurs a similar communica-
tion cost,1 compared to a system that uses sparse inputs with a common
support.

From the PBH-type condition, s-sparse-controllability with a com-
mon support holds only if

min {RH , s} ≥ gD ≥ N −RD (10)

where gD is the largest geometric multiplicity of an eigenvalue of D.
To sum up, in this section, we answered Q1 posed in Section I. We

address the question Q2 in the following section.

IV. MINIMUM NUMBER OF CONTROL INPUT VECTORS

In this section, we bound the minimum number of input vectors
that are required to drive the system from any given state to any final
state. For comparison, we first state the corresponding result for the
unconstrained system. In this section, q denotes the degree of the
minimal polynomial of D.

Theorem 2: For a controllable system, the minimum number of
input vectors K required to steer the system from any given state to
any other state satisfies

N/RH ≤ K ≤ min {q,N −RH + 1} ≤ N. (11)

Proof: See [19, Sec. 6.2.1]. �
We note that when we restrict the admissible inputs to sparse vectors,

the minimum number of input vectors required can increase. This
change is captured by the following theorem.

Theorem 3: For an s-sparse-controllable system, the minimum
number of s-sparse input vectors K∗ required to steer the system from
any given state to any other state satisfies

N

R∗
H,s

≤ K∗ ≤ min

{
q

⌈
S∗

s

⌉
, N −R∗

H,s + 1

}
≤ N (12)

where R∗
H,s � min{RH , s} and

S∗ � min {T : T = |S| for S ⊆ [L]

and Rank
{[

D − λI HS
]}

= N, ∀λ ∈ C
}
.

Proof: See Appendix B. �
The above result can be intuitively explained as follows. At each time

instant, we use at most s linearly independent columns of H to drive
the system. Therefore, RH is replaced with R∗

H,s. Also, the first term
of the upper bound is computed by mapping the system to the reduced
controllable system (D,HS∗). The reduced system retains the least
number of columns of H that are necessary to ensure controllability.
Thus, under sparse inputs, we need 
|S∗|/s� times larger number of
inputs compared to an unconstrained system. We make the following
further observations from Theorem 3.

1The communication cost remains of order s, since the support can be
conveyed using s log(L) bits.
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1) Using the fact that that S∗ ≤ RH , and from Theorem 1 which
implies R∗

H,s ≥ max{N −RD, 1}, we can get a relaxed bound
instead of (12) as follows:

N

min {RH , s} ≤ K∗ ≤ min

{
q

⌈
RH

s

⌉
, RD + 1, N

}
.

2) The bound is invariant under right or left multiplication of H by a
nonsingular matrix, and under any similarity transform on D.

3) As s increases, the system has more flexibility, and thus requires
fewer number of input vectors to ensure controllability. Hence, the
fact that the bounds are nonincreasing in s is intuitively satisfying.

4) The upper and lower bounds in Theorem 3 meet when N/R∗
H,s =

N −R∗
H,s + 1, which gives R∗

H,s as 1 or N . Similarly, for s = 1,
the lower and upper bounds in Theorem 3 are equal, and K∗ = N .
Further, if RH ≥ s, we get R∗

H,s = s, and thus the bounds are
equal when s = N .

5) We consider three cases for comparison with Theorem 2.
a) When s = L, which corresponds to the unconstrained case,

Theorem 3 reduces to Theorem 2, as expected.
b) When s ≥ S∗ ≥ RH , Theorem 3 reduces to Theorem 2,

as R∗
H,s = RH . This follows because when s ≥ RH ,

CS{H̃(K)} is the same as the column space of an N ×Ks

submatrix of H̃(K) with maximum rank.
c) Whenmin{q,N −RH + 1} = N , the system requires the

same number of inputs to achieve controllability and s-
sparse-controllability, for any s. However, this is possible
only if RH = 1. When s ≥ RH , the system is equivalent
to an unconstrained system, as discussed above.

The following interesting corollary bounds the number of s-sparse
input vectors that ensures output controllability.

Corollary 2: For an output s-sparse-controllable system, the mini-
mum number of input vectors K∗ required to steer any initial output to
any final output satisfies

m

R∗
AH,s

≤ K∗ ≤ min

{
q

⌈
RH

s

⌉
,m−R∗

AH,s + 1

}
≤ m

where R∗
AH,s = min{Rank{AH}, s}.

The bounds in Corollary 2 are smaller than those in Theorem 3,
because the dimension of the output space, m, is smaller than that of
the state space, N . Further, substituting s = L in Corollary 2, we see
that for an output controllable system, the minimum number of input
vectorsK required to steer any initial output to any final output satisfies

m

Rank {AH} ≤ K ≤ min {q,m−Rank {AH}+ 1} ≤ m.

Similarly, we can extend Theorem 3 to the common support case
discussed in Section III-B.

Corollary 3: For a system that is controllable using s-sparse inputs
with a common support, if R∗

H,s = min{RH , s}, the minimum num-
ber of input vectors K∗ required to steer any initial output to any final
output satisfies

N

R∗
H,s

≤ K∗ ≤ min
{
q,N −R∗

H,s + 1
} ≤ N. (13)

Proof: The proof follows from Theorem 2 and the fact that there
exists an index set S ⊆ [L] such that |S| = s and the system defined
by (D,HS) is controllable. �

V. DECOMPOSING SPARSE-CONTROLLABLE STATES

In this section, we consider Q3 in Section I, and present a decompo-
sition of the state space into sparse-controllable, sparse-uncontrollable,

and uncontrollable subspaces. We begin with the observation that
s-sparse-controllability inherits the invariance under a change of basis
property of the conventional controllability, as discussed in the propo-
sition below.

Proposition 2 (Invariance under change of basis): The system de-
fined by the matrix pair (D,H) is s-sparse-controllable if and only if
the system defined by (U−1DU ,U−1H) is s-sparse-controllable for
every nonsingular U ∈ RN×N .

Proof: We note that when D and H are replaced with U−1DU
and U−1H respectively, in (3), we get U−1H̃(K) instead of H̃(K).
Now, the result follows from the Kalman-type rank test and the fact
every submatrix of H̃(K) and U−1H̃(K) have the same rank. �

Inspired by the above proposition and in the same spirit as the
Kalman decomposition [20], we transform the original system to
an equivalent standard form using a change of basis, such that the
transformed state-space is separated into an s-sparse-controllable sub-
space and an orthogonal s-sparse-uncontrollable subspace. To this end,
we first separate the controllable and uncontrollable states using the
Kalman decomposition. Next, we identify the sparse-controllable part
of the controllable part, for which we use the inequality condition of
Theorem 1. For this, we find a basis for the controllable part such that
the transformed state-space separates into two subsystems: one which
satisfies the inequality condition, and the other which does not. We now
formally present the procedure for the decomposition, followed by an
explanation of why the procedure works. This procedure assumes that
Rank{D} = Rank{D2}.
1) Find a basis for CS{H̃(N)} as {ui}Ri=1, where R ≤ N is the

rank of H̃(N). Extend the basis by adding N −R linearly in-
dependent vectors {ui}Ni=R+1 to define the invertible matrix U �
[u1 u2, . . . ,uN ] ∈ RN×N .

2) Compute Ď = U−1DU ∈ RN×N and Ȟ = U−1H ∈ RN×L

which take the following forms:

Ď =

[
Ď(1) Ď(2)

0 Ď(3)

]
Ȟ =

[
Ȟ(1)

0

]
(14)

where Ď(1) ∈ RR×R and Ȟ(1) ∈ RR×L.
3) Use the Jordan decomposition to get the following:

Ď(1) = V

[
D̄(11) ∈ Rr×r 0

0 0

]
V −1 (15)

where V ∈ RR×R and r ≤ R is the rank of Ď(1).
4) Define an invertible matrix W ∈ RN×N as follows:

W �
[

V ∈ RR×R 0 ∈ RR×N−R

0 ∈ RN−R×R I ∈ RN−R×N−R

]
. (16)

5) Compute D̄ = W −1ĎW ∈ RN×N and H̄ = W −1Ȟ ∈
RN×L, which take the following forms:

D̄ =

⎡
⎢⎣
D̄(11) 0 D̄(21) ∈ Rr×N−R

0 0 D̄(22) ∈ RR−r×N−R

0 0 D̄(3) ∈ RN−R×N−R

⎤
⎥⎦H̄ =

⎡
⎢⎣
H̄(1)

H̄(2)

0

⎤
⎥⎦

where H̄(1) ∈ Rr×L and H̄(2) ∈ RR−r×L. Define Rs � r +
min{s,R− r}. Then, the part of the state vector correspond-
ing to the first Rs entries is s-sparse-controllable, while the
remaining part is s-sparse-uncontrollable. Also, since D̄ =
(UW )−1D(UW ) and H̄ = (UW )−1H , the new basis isUW .

Here, steps 1 and 2 are the same as the Kalman decomposition, and
in steps 3 and 4, we find a basis that separates the sparse-controllable
part from the controllable part. Let (UW )−1xT

k = [αT
k ∈ Rr βT

k ∈
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RR−r γT
k ∈ RN−R]. We then have the following equations which are

equivalent to (1):

αk = D̄(11)αk−1 + D̄(21)γk−1 + H̄(1)hk (17)

βk = D̄(22)γk−1 + H̄(2)hk (18)

γk = D̄(3)γk−1. (19)

Clearly, γk is uncontrollable as it is independent of the input sequence.
Further, the Kalman decomposition ensures that the part of the state
vector corresponding to [αT

k βT
k]

T is controllable. Thus

Rank

{[
D̄(11) − λI 0 H̄(1)

0 0 H̄(2)

]}
= R (20)

for any λ ∈ C, and hence

Rank

⎧⎨
⎩
⎡
⎣D̄(11) − λI 0 H̄(1)

0 0
(
H̄

T
(2)

)T

S

⎤
⎦
⎫⎬
⎭ = r + |S| (21)

for any index setS ⊆ [R− r]. Therefore, from the inequality constraint
of Theorem 1, choosing |S| = min{s,R− r} ensures that the part of
[αT

k βT
k,S ] ∈ RRs corresponds to the sparse controllable part of the

state vector. We choose S as the top Rs − r indices of the new state
vector. This is valid because αk is independent of βk−1, and βk is
independent of both αk−1 and βk−1.

VI. CONCLUSION

We presented two easily verifiable necessary and sufficient condi-
tions for controllability of linear systems subject to sparsity constraints
on the input. Further, we bounded the minimum number of sparse input
vectors that ensure controllability. The sparse-controllability tests led
to a Kalman decomposition-like procedure for separating the system
into sparse-controllable, controllable but sparse-uncontrollable, and
uncontrollable parts. We also extended our results to the output control-
lability and controllability using sparse inputs with a common support.
However, our work does not impose any constraint on the �∞ norm of the
input vector, which may be required in applications where the maximum
input magnitude is constrained. Addressing sparse-controllability under
this constraint is an interesting avenue for future work.

ACKNOWLEDGMENT

We thank Chandrasekhar Sriram (Indian Institute of Science,
Bangalore) for several helpful discussions.

APPENDIX A
PROOF OF THEOREM 1

Proof: We show that the conditions of the theorem are equivalent to
the Kalman-type rank test. The proof relies on the fact that the Kalman
rank test for the unconstrained system is equivalent to the PBH test,
which is the same as the rank condition of Theorem 1 [2].

We first prove that conditions of Theorem 1 imply the Kalman-type
rank test. Suppose that the Kalman-type rank test fails. Then, consider
the following matrix of size N ×NK̃s:

H̃
∗
= [DK̃N−1HS1 DK̃N−2HS1 . . . D(K̃−1)NHS1

. . . D(K̃−1)N−1HS2 . . .D(K̃−2)NHS2 . . .

. . . DN−1HS
K̃

. . . HS
K̃
] (22)

where we define K̃ � 
L/s� index sets as follows:

|Si| = s, ∪K̃
i=1 Si = [L]. (23)

We note that H̃
∗

has the same form as that of the matrix for the Kalman-
type rank test for sparse-controllability in (5), withK asNK̃. Since the
Kalman-type rank test fails, H̃

∗
does not have full row rank. Further,

we can rearrange the columns of H̃
∗

to get the following matrix which
has the same rank as that of H̃

∗
:[

DN−1H∗ DN−2H∗ . . . H∗
]

where we define the matrix H∗ ∈ RN×K̃s as follows:

H∗ �
[
D(K̃−1)NHS1 D(K̃−2)NHS2 . . .HS

K̃

]
.

Thus, using the classical Kalman rank test for the unconstrained
inputs, the system defined by the matrix tuple (D,H∗) is not con-
trollable. Then, the classical PBH test for the unconstrained inputs
implies that there exists λ ∈ C such that Rank{[D − λI H∗]} < N.
Therefore, there exists a nonzero vector z ∈ RN such that zTD = λzT

and zTH∗ = 0. However, we have

0 = zTH∗ = zT
[
λ(K̃−1)NHS1 λ(K̃−2)NHS2 . . . HS

K̃

]
.

(24)
So either λ = 0 and zTHS

K̃
= 0, or, if λ �= 0, zTH = 0 because z is

orthogonal to all columns of H due to (23). Hence, for every index set
Si with s entries, there existsz ∈ RN such that zTD = λzT, and either
λ = 0 and zTHSi = 0, or zTH = 0. Therefore, one of the following
cases hold.
1) There exists a left eigenvector z of D, such that zTH = 0. Thus,

the rank condition of Theorem 1 does not hold.
2) For every left eigenvector z of D, we have zTH �= 0. However,

for every index set S with s entries, there exists a nonzero vec-
tor z ∈ RN such that zTD = 0, and zTHS = 0. This implies
that Rank{[D H]} = N and for every index set S with s
entries, there exists z ∈ RN such that zT[D HS ] = 0. There-
fore, s < N −RD ≤ RH . Thus, the inequality condition in
Theorem 1 does not hold.

Thus, when the Kalman-type rank test is unsuccessful, the conditions
of the theorem are also violated.

Next, we prove that the Kalman-type rank test implies the conditions
of the theorem. Suppose that the two conditions do not hold simultane-
ously. This could happen under the following two exhaustive cases.
1) Suppose that the rank condition does not hold. Then, the PBH test is

violated, which implies that the system is not controllable. Hence,
it cannot be sparse-controllable.

2) Suppose that the rank condition holds, but the inequality condition
does not hold. Then, for every index set S with s entries, there
exists a nonzero vector z such that zTHS = 0 and zTD = 0. This
implies that for any set of K > 0 index sets {Si : |Si| = s}Ki=1

there exists a nonzero vector z ∈ RN such that

zT
[
DK−1HS1 DK−2HS2 . . . HSK

]
= 0. (25)

Hence, the Kalman-type rank test for fails.
Thus, the proof is complete. �

APPENDIX B
PROOF OF THEOREM 3

Using the Kalman-type rank test, the minimum number of input
vectors required to ensure controllability is the smallest integer K that
satisfies the rank condition of the test. So, for any finite K, we define

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on February 25,2021 at 05:45:59 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 66, NO. 2, FEBRUARY 2021 929

H(K) ⊆ RN×Ks as the set of submatrices of H̃(K) of the form given
in (5). Also, we define the following:

R∗
(K) = max

H(K)∈H(K)

Rank
{
H(K)

}
(26)

H∗
(K) =

{
H(K) ∈ H(K) : Rank

{
H(K)

}
= R∗

(K)

}
. (27)

With these definitions, K∗ is the smallest integer K satisfying R∗
(K) =

N .
Before starting the proof, we outline the main steps involved. At a

high level, there are five steps to the proof.
1) We begin by showing that for any matrix H(K) ∈ H(K), we can

find a matrix H∗
(K) ∈ H∗

(K) such that

CS {
H(K)

} ⊆ CS {
H∗

(K)

}
. (28)

2) Second, using the above claim, we show that if K is any integer
such that

R∗
(K) = R∗

(K+1) (29)

then R∗
(K+Q) = R∗

(K), for any positive integer Q.
3) Third, we prove that K∗ is the smallest integer K such that (29)

holds, which in turn leads to the upper bound: K∗ ≤ N + 1−
R∗

H,s, where R∗
H,s is as defined in the statement of the theorem.

4) Fourth, we show that in order to satisfy the rank criterion in (29),
H∗

(K∗) needs to contain at most qS∗ number of columns with
a particular structure. Then, we provide a choice of index sets
{Si}K=q
S∗/s�

i=1 which can lead to that particular structure. Since
the smallest integer K that can meet the rank criterion in (29) is
K∗, we assert that K∗ ≤ q
S∗/s�. Thus, together with the above
step, we establish the upper bound in the theorem.

5) Finally, we lower bound K∗ to complete the proof.

A. Characterizing H∗
(K)

If H(K) ∈ H∗
(K), the result is trivial: H∗

(K) = H(K). Suppose that
H(K) /∈ H∗

(K), thenRank{H(K)} < R∗
(K). Therefore, to findH∗

(K),
we have to replace some linearly dependent columns of H(K) with
columns which are linearly independent of the rest of the columns of
H(K), as follows.

1) Find a set {ui}Rank{H(K)}
i=1 of columns of H(K) that are linearly

independent and span CS{H(K)}.
2) Since H(K) is a submatrix of H̃(K), we can extend the set

{ui}Rank{H(K)}
i=1 to form a basis {ui}Rank{H̃(K)}

i=1 of CS{H̃(K)}
by adding columns from H̃(K). We note that ui = DpHj for
some integers p and j because of the structure of H̃(K).

3) Replace the linearly dependent columns ofH(K) with the columns

from the set {ui}Rank{H̃(K)}
i=Rank{H(K)}+1 to get a new matrix H̄(K) ∈

RN×Ks. We only replace a column of the form DpHj in H(K)

with another column of the form DpHj′ , for all p and j and some
integer j ′. This ensures that H̄(K) ∈ H(K). In this fashion, we
replace as many columns of H(K) as necessary to ensure that
H̄(K) has the maximum rank, R∗

(K). However, since we are only
replacing linearly dependent columns, we have

CS {
H(K)

} ⊆ CS {
H̄(K)

}
. (30)

Since Rank{H̄(K)} = R∗
(K) and H̄(K) ∈ H(K), we get that

H̄(K) ∈ H∗
(K), satisfying (30). Hence, the first step of the proof is

complete.

B. Characterizing R∗
(K)

We use induction to show that R∗
(K+Q) = R∗

(K), for any integer
Q > 0. Hence, it suffices to show the following:

R∗
(K+2) = R∗

(K+1). (31)

From (26), we know that R∗
(K+2) ≥ R∗

(K+1). Also

R∗
(K) = max

H(K)∈H(K)

dim
{CS {

H(K)

}}
(32)

where dim{·} denotes the dimension of a subspace. Thus, we establish
(31) by showing that for any matrix H(K+2) ∈ H(K+2), there exists a
matrix H∗

(K+1) ∈ H∗
(K+1) such that

CS {
H(K+2)

} ⊆ CS {
H∗

(K+1)

}
. (33)

We prove this relation by separately looking at the column spaces
spanned by the first s columns and the last (K + 1)s columns of
H(K+2). We know that the submatrix formed by the last (K + 1)s
columns of any matrix in H(K+2) belongs to H(K+1). Thus, using the
claim in the first step, we can find a matrixH∗

(K+1) such that the column
space spanned by the last (K + 1)s columns of H(K) is contained in
CS{H∗

(K+1)}. Therefore, it suffices to show that the column space
spanned by the first s columns of H(K+2) is contained in the column
space of H∗

(K+1).
To prove the above statement, we note that the column space of

the first s columns of H(K+2) is contained in CS{DK+1H}. Also,
CS{H∗

(K+1)} contains ∩
H∗

(K+1)
∈H∗

(K+1)

CS{H∗
(K+1)}. Hence, it suf-

fices to show that

CS {
DK+1H

} ⊆ ∩
H∗

(K+1)
∈H∗

(K+1)

CS {
H∗

(K+1)

}
(34)

which we prove using the relation (29).
To show that (34) holds, we consider an index set S ⊆ [L] with s en-

tries and a matrixH∗
(K) ∈ H∗

(K). Now, the matrix [DKHS H∗
(K)] ∈

RN×(K+1)s belongs to H(K+1). Thus, from (26) and (29) we have

Rank
{[

DKHS H∗
(K)

]}
≤ R∗

(K+1) = R∗
(K). (35)

However, we also have

Rank
{[

DKHS H∗
(K)

]}
≥ Rank

{
H∗

(K)

}
= R∗

(K). (36)

Thus, for all index sets S with s entries and any H∗
(K) ∈ H∗

(K)

Rank
{[

DKHS H∗
(K)

]}
= Rank

{
H∗

(K)

}
. (37)

This relation immediately implies the following:

Rank
{[

DKH H∗
(K)

]}
= Rank

{
H∗

(K)

}
(38)

for any matrix H∗
(K) ∈ H∗

(K). Thus, we get that the columns of DKH

belong to CS{H∗
(K)}, for any matrix H∗

(K) ∈ H∗
(K). Hence

CS {
DKH

} ⊆ ∩
H∗

(K)
∈H∗

(K)

CS {
H∗

(K)

}
. (39)

Therefore, we get

CS {
DK+1H

} ⊆ ∩
H∗

(K)
∈H∗

(K)

CS {
DH∗

(K)

}
. (40)
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Hence, to prove (34), we need to show that

∩
H∗

(K)
∈H∗

(K)

CS {
DH∗

(K)

} ⊆ ∩
H∗

(K+1)
∈H∗

(K+1)

CS {
H∗

(K+1)

}
. (41)

We prove the above relation by showing that there exists a matrix
H∗

(K+1) ∈ H∗
(K+1) such that

CS {
DH∗

(K)

} ⊆ CS {
H∗

(K+1)

}
(42)

for every matrix H∗
(K) ∈ H∗

(K). So we consider a new matrix

H̄(K+1) ∈ RN×(K+1)s as follows:

H̄(K+1) �
[
DH∗

(K) HS
]

(43)

for some index set S ⊆ [L] and |S| = s. Since H̄(K+1) ∈ H(K+1),
using the arguments in the first step, we can find a matrix H∗

(K+1) ∈
H∗

(K+1) such that

CS {
H̄(K+1)

} ⊆ CS {
H∗

(K+1)

}
. (44)

However, (43) implies that CS{DH∗
(K)} ⊆ CS{H̄(K+1)}. There-

fore, (42) holds, and hence (41) is proved.
Recall that (41) implies (34), which in turn establishes the relation

(31). By mathematical induction, we conclude thatRank{H∗
(K+Q)} =

Rank{H∗
(K)}, for any positive integer Q, and the proof of the second

step in the outline is complete.

C. First Part of the Upper Bound

Suppose that K∗ is the smallest integer such that R∗
(K∗) = R∗

(K∗+1).
From (26), it is clear that

R∗
(K) ≤ R∗

(K+1) ≤ N (45)

for any positive integer K. Since R∗
(K∗) = N , we have R∗

(K∗) =
R∗

(K∗+1) = N . Therefore, K∗ ≤ K∗, and R∗
(K∗) = N from the claim

in the second step.
Further, since K∗ is the smallest integer such that R∗

(K∗) = N , we
have K∗ = K∗. Hence, R∗

(K) strictly increases with K, for 1 ≤ K ≤
K∗, and we have

N = R∗
(K∗) ≥ R∗

(K∗−1) + 1 ≥ R∗
(K∗−2) + 2

≥ R∗
(1) +K∗ − 1 = R∗

H,s +K∗ − 1. (46)

Hence, the third step in the outline is complete.

D. Upper Bounding K∗

To prove that K∗ ≤ q
S∗/s�, we first look at the linearly indepen-
dent columns in H∗

(K∗). For any K, each column of H∗
(K) is of the

form DpHj , for some integer p, and j ∈ [L]. However, since q is the
degree of the minimal polynomial of D, for any integer Q, Dp can
be expressed as a linear combination of {Di}Q+q−1

i=Q , for all p ≥ Q.

Therefore, for any j, if {DiHj ∈ RN}Q+q−1
i=Q are any q columns of

H∗
(K), further adding columns of the form DpHj , p ≥ Q, does not

improve the rank of the matrix. Therefore, for a given j, at most q
columns of the form DpHj need to be present in H∗

(K) to ensure the
rank criterion in (29).

Further, let HS′ with S′ ⊆ [L] represent the smallest set of columns
of H such that the linear system described by the tuple (D,HS) is
controllable. As given in the statement of the theorem, let S∗ = |S′|.
Then, for any integer p, if {DpHj ∈ RN}j∈S′ are any S∗ columns of
H∗

(K), further adding columns of the form DpHj , for j /∈ S′ does

not improve the rank of the matrix. Thus, for any given p, at most S∗

columns of the form DpHj need to be present in H∗
(K) to ensure the

rank criterion.
In short, we have proved that, in order to ensure the rank criterion in

(29), H∗
(K) needs to have at most q columns of the form DpHj , for

any given j, and at most S∗columns of the form DpHj , for any given
p. Hence, H∗

(K) needs to have at most qS∗ columns to satisfy the rank
criterion in (29).

Finally, we provide a choice of index sets for each input vector,
that satisfies the above conditions. We form index sets {S′

i}K=
S∗/s�
i=1

that partition the set of S∗ columns into groups of size at most
s. The index sets are selected such that ∪K

i=1S′
i = S′, |Si| = s,

and SK is such that [D HSK ] has rank N . The existence of
such an index set SK is ensured by Theorem 1, and they need
not be disjoint. Next, we choose Si = S′

j , for i = (j − 1)q +
1, (j − 1)q + 2, . . . , jq. Hence, we get the following submatrix
of H̃(K) ∈ RN×qKL:

H∗
(K) = [DKq−1HS1 DKq−2HS1 . . . D(K−1)qHS1

. . . D(K−1)q−1HS2 . . .D(K−2)qHS2 . . .

. . . Dq−1HSK . . . HSK ]. (47)

It is easy to see that this choice of index sets ensures that for any given
p, S∗ columns of the form DpHj are present in H∗

(K). Also, for

any given j ∈ S′, q columns of {DiHj ∈ RN}Q+q−1
i=Q are present in

H∗
(K). Hence, K∗ ≤ q
S∗/s�, which establishes the upper bound in

(12).

E. Lower Bounding K∗

The lower bound is achieved when all columns of H∗
(K) are linearly

independent. Thus, to ensure that rankH∗
(K) isN ,Ks ≥ N . However,

if s ≥ RH , the maximum number of independent columns become
KRH , and thus we get thatKRH ≥ N . Hence,Kmin{RH , s} ≤ N ,
and the lower bound in (12) is proved.

As noted in the proof outline, this suffices to establish
Theorem 3.
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