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ABSTRACT
Generally the virial theorem provides a relation between various components of energy integrated over a system. This helps
us to understand the underlying equilibrium. Based on the virial theorem we can estimate, for example, the maximum allowed
magnetic field in a star. Recent studies have proposed the existence of highly magnetized white dwarfs (B-WDs), with masses
significantly higher than the Chandrasekhar limit. Surface magnetic fields of such white dwarfs could be more than 109 G
with the central magnitude several orders higher. These white dwarfs could be significantly smaller in size than their ordinary
counterparts (with surface fields restricted to about 109 G). In this paper, we reformulate the virial theorem for non-rotating
B-WDs in which, unlike in previous formulations, the contribution of the magnetic pressure to the magnetohydrostatic balance
cannot be neglected. Along with the new equation of magnetohydrostatic equilibrium, we approach the problem by invoking
magnetic flux conservation and by varying the internal magnetic field with the matter density as a power law. Either of these
choices is supported by previous independent work and neither violates any important physics. They are useful while there is
no prior knowledge of field profile within a white dwarf. We then compute the modified gravitational, thermal, and magnetic
energies and examine how the magnetic pressure influences the properties of such white dwarfs. Based on our results we predict
important properties of these B-WDs, which turn out to be independent of our chosen field profiles.
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1 IN T RO D U C T I O N

White dwarfs are electron-degenerate compact stars in which the
outward degeneracy pressure force is able to balance the inward
gravitational force only when the white dwarf mass is below the
Chandrasekhar limit (Chandrasekhar 1935). In Newtonian calcula-
tions, the limiting mass of a carbon–oxygen white dwarf is 1.44 M�,
where M� is the mass of Sun, but this can be increased by rotation
or magnetic fields (Ostriker & Hartwick 1968). White dwarfs are
considered to be the progenitors of the Type Ia supernovae that are
some of the most widely studied astronomical events and explosions
and rightfully so because of their usefulness to measure cosmic
distances. Although not everything is understood about these events,
the general consensus is that they are thermonuclear explosions of
white dwarfs with masses very close to the Chandrasekhar limit.
However, recent observations of a fast-growing number of several
peculiar, overluminous Type Ia supernovae, for example SN 2006gz,
SN 2007if, SN 2009dc, and SN 2003fg, bring even this basic idea into
serious question, because they are best explained by progenitor white
dwarfs with super-Chandrasekhar masses in the range 2.1–2.8 M�
(Howell et al. 2006; Scalzo et al. 2010).

One acceptable proposal is that these super-Chandrasekhar
white dwarfs are highly magnetized white dwarfs (B-WDs; Das
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& Mukhopadhyay 2013). This model was first formulated by
Mukhopadhyay and his collaborators (Das & Mukhopadhyay 2012;
Kundu & Mukhopadhyay 2012), who put the idea in the limelight.
It has since been elaborated upon by various groups. Although
the idea was further questioned by various authors, most, if not
all, of the concerns that were raised against B-WDs have been
addressed by Mukhopadhyay and his collaborators in subsequent
publications. For instance, it was shown by Das & Mukhopadhyay
(2014a,b) that the unreasonable possibility of a 24 M� white dwarf
(Coelho et al. 2014; Dong et al. 2014) is ruled out when magnetic
energy density is appropriately included in magnetostatic balance
and the mass equation simultaneously and self-consistently. Also,
the maximum possible magnetic field sustainable in a B-WD and the
energy content of various corresponding terms in the virial theorem
(Coelho et al. 2014) were shown (Das & Mukhopadhyay 2014a) to be
misleading, unless the virial theorem is established for a strong field.
This was briefly explored by Mukhopadhyay & Rao (2016a) and
we elaborate upon it here in detail. Other authors (Chatterjee et al.
2017) argued, based on hypothetical pycnonuclear reaction rates,
that super-Chandrasekhar 16O B-WDs are not possible but instead
limited to less than 1.38 M�. However, if their chosen pycnonuclear
reaction rates are correct, even the Chandrasekhar limit for non-
magnetic, non-rotating white dwarfs has to be restricted to 1.21 M�.
This is counterintuitive. However the pycnonuclear reaction rates are
extremely uncertain and must be constrained carefully, more so than
they have been. Moreover with the same pycnonuclear reaction rates
12C white dwarfs recover the Chandrasekhar limit and the underlying
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B-WDs are found to be super-Chandrasekhar. In fact later on, with
more logical pycnonuclear reaction rates, Otoniel et al. (2019)
showed that highly magnetized non-rotating super-Chandrasekhar
white dwarfs are quite possible with masses greater than 2 M�. So
the issue of the pycnonuclear reaction is no longer problematic.
On the other hand, it has been well-known since 1973 (Markey
& Tayler 1973; Tayler 1973) that purely poloidal (or poloidally
dominated) or purely toroidal fields are unstable. Hence any stability
analysis of a magnetized star based on purely poloidal and purely
toroidal field, as attempted by Bera & Bhattacharya (2016), does
not make any sense (Mukhopadhyay et al. 2017). However, it
was shown by Wickramasinghe, Tout & Ferrario (2013) that a
white dwarf with toroidally dominated mixed field configuration
(with a small poloidal component) remains stable for a long time.
In this case the white dwarf is approximately spherical in shape
(Subramanian & Mukhopadhyay 2015). Hence, in a convenient
stable mixed field configuration, we can always formulate a profile
for the magnitude of magnetic field with respect to the stellar
radius or density as we advocate here. Without prior knowledge
of the variation of field magnitude within a star our simpler
profiles chosen below are not at odds with any known physics or
observations.

Nevertheless, there is another extensive set of independent work
that supports the proposition of super-Chandrasekhar magnetized
white dwarfs (Federbush, Luo & Smoller 2015; Franzon & Schramm
2015, 2017; Moussa 2017; Shah & Sebastian 2017; Sotani & Tatsumi
2017; Roy et al. 2019, to list a significant selection). Recently,
the Mukhopadhyay group explored the luminosity and possible
gravitational radiation of rotating B-WDs. While Bhattacharya,
Mukhopadhyay & Mukerjee (2018) and Gupta, Mukhopadhyay
& Tout (2020) showed that the B-WDs turn out to be too dim
to detect, Kalita & Mukhopadhyay (2019) explored their gravita-
tional waves, along with electromagnetic counterparts, of which the
detectability by forthcoming instruments was further explored by
Kalita & Mukhopadhyay (2019) and Kalita et al. (2020). Moreover,
others often go beyond the idea of introducing strong magnetic
fields and invoke additional physics, such as anisotropic pressure
(Herrera & Barreto 2013), lepton number violation (Belyaev et al.
2015), modified gravity (Banerjee, Shankar & Singh 2017; Eslam
Panah & Liu 2019), effects of net charge (Liu, Zhang & Wen
2014; Carvalho et al. 2018), and ungravity (Bertolami & Mariji
2016).

Here we explore the maximum possible magnetic fields and the
mass needed to sustain a magnetized star, particularly a white dwarf,
by modifying the virial theorem. Note that strong magnetic fields are
expected to affect not only momentum balance (by magnetostatic
balance for example) but also the underlying equation of state (EoS)
and thermal energy.

The virial theorem relates the integrated gravitational potential,
kinetic, thermal, and magnetic energies and provides an insight into
the equilibrium of the system. Understanding the virial theorem for
B-WDs helps us to understand how high a magnetic field could be
sustained therein and plausibly modify the properties of a normal
white dwarf, thereby, making it a B-WD. In the weak-field regime,
the deviation of the Chandrasekhar limit owing to magnetic field
has been explored earlier by Shapiro & Teukolsky (1983) and any
changes to the properties of the white dwarf found to be only
perturbative.

In the next section, we recall the basic idea of scalar virial theorem,
assuming the magnetic field is not perturbative. Subsequently, based
on the magnetohydrostatic (rather than the hydrostatic) equilibrium,
we compute various energy terms in virial equilibrium in Section 3

for two model magnetic field profiles. In the beginning of the same
section we also justify the chosen field profiles. In Section 4, we
discuss the results in detail and we end with conclusions in Section 5.

2 TH E S C A L A R V I R I A L T H E O R E M

The virial theorem is a general integral theorem that relates various
components of energy. We use it to discuss the effects of high
magnetic fields on white dwarfs, thereby making them B-WDs. The
well-known form of the virial theorem can be recalled as

2T + W + 3� + μ = 0 (1)

for a dynamically stable star when the moment of inertia I is constant
(see Shapiro & Teukolsky 1983 or Eldridge & Tout 2019 for details).
Here,

I = 1

2

∫
V

ρ x2 d3x (2)

is a generalized moment of inertia and

T = 1

2

∫
V

ρ v2 d3x, (3)

� =
∫

V

P d3x, (4)

μ = 1

8π

∫
V

B2 d3x, (5)

and

W = −
∫

M

Gm dm

r
(6)

are the kinetic, thermal, magnetic, and gravitational energies, respec-
tively, when ρ is the density, v is the bulk velocity, P is the pressure
of stellar matter, B is the magnetic field, G is Newton’s gravitational
constant, M is the mass of the star of volume V, r is the radius
from the centre of the star, dm is the elemental mass, and d3x is the
corresponding volume.

Here we consider the case of a (static) non-rotating white dwarf
for which T = 0. Hence, the scalar virial theorem reduces to

W + 3� + μ = 0, (7)

and this can be approximately recast to

−α
GM2

R
+ β ′M

P

ρ
+ γ

�2
M

R
= 0 (8)

(Shapiro & Teukolsky 1983; Mukhopadhyay & Rao 2016a), where
α, β

′
, and γ are the constants, determined by the shape and other

properties of the star investigated below, the magnetic flux through
its surface �M ≈ BR2, with B being the average magnetic field
and R is the radius of the star. Here we consider the isotropic
effects of an averaged magnetic field B and so overall consider
the star to be spherical in shape. For the plausibility of this, see
numerical simulation results by Wickramasinghe et al. (2013) and
Subramanian & Mukhopadhyay (2015), particularly for toroidally
dominated cases.

Next we assume that a polytropic EoS is satisfied through the
entire star such that P = Kρ	 , where K and 	 are the polytropic
constants and M = 4

3πR3ρ, where ρ is the mean density. The scalar
virial theorem can then be reduced to

−α
GM2

R
+ β

M	

R3(	−1)
+ γ

�2
M

R
= 0, (9)

where β = K(3/4π)	 − 1β
′
. We have simply substituted P from the

EoS in equation (8) to arrive at the second term in equation (9).
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Now rearranging equation (9), we obtain

M =
√√√√√ γ�2

M

αG
(

1 − βM	−2

αGR3	−4

) (10)

for any 	. For 	 = 4/3, appropriate for extremely relativistic
degenerate electrons, this becomes

M =
√√√√√ γ�2

M

αG
(

1 − βM−2/3

αG

) , (11)

which is independent of R for a fixed magnetic flux, as expected
from Chandrasekhar’s theory. This can be solved for M. For 	

= 2, appropriate to high magnetic field and high density (Das &
Mukhopadhyay 2013), equation (10) becomes

M =
√√√√√ γ�2

M

αG
(

1 − β

αGR2

) (12)

to give the mass explicitly.

3 MO D I F I C AT I O N TO TH E V I R I A L T H E O R E M

Here we evaluate the coefficients α, β, and γ to establish the virial
theorem at high magnetic field. First we note, very importantly, that
in the presence of strong magnetic field, the upper limit for magnetic
fields in white dwarfs, as discussed for weak field cases by Shapiro
& Teukolsky (1983), must be revised because the contribution of the
magnetic pressure to the magnetohydrostatic balance equation cannot
be neglected. Here we attempt to revise it in a simpler framework. The
new momentum balance condition, neglecting the effect of magnetic
tension, is given by (see e.g. Das & Mukhopadhyay 2014a)

1

ρ

(dP

dr
+ dPB

dr

)
= −Gm(r)

r2
(13)

at an arbitrary radius r with mass enclosed at that radius m(r), where ρ

includes the contribution from magnetic field and PB is the pressure
owing to the magnetic field of the star. Neglect of the magnetic
tension for now is justified because our interest is to estimate the
maximum possible magnetic field strength and its effect in white
dwarfs, without worrying about underlying stability issues or the
shape of the star. Indeed this implies neglecting anisotropic effects
that would further make the star non-spherical in a manner that cannot
be addressed with a scalar virial theorem. Note that terms associated
with magnetic pressure and magnetic tension are of the same order
of magnitude and the virial theorem deals with the effects of order
of magnitude by its virtue.

We use two different approaches to address this problem based
on equation (13): first we invoke flux conservation (freezing) that
is quite common in stars when conductivity is high and secondly
we assume B to vary as a power law with respect to density, just
as the EoS of thermal pressure, throughout. This choice, without
other prior knowledge of the field profile within the star, does
not violate any important physics, e.g. no magnetic monopoles or
spherical magnetohydrostatic equilibrium, while indeed magnetic
field is expected to be related to the matter density. Below we
justify the choice of these two approaches and the underlying field
profiles.

3.1 Physical justification of field profiles

While the surface field of a star can be observationally inferred or
even determined, there is no reliable practice to infer its interior
field. However there is ample evidence that stars exhibit dipolar
field geometries, at least in their outer regions. Therefore such stars
are expected to have stronger interior fields than at the surface,
following a power law with respect to the radial coordinate. See e.g.
Fendt & Dravins 2000; Pili, Bucciantini & Del Zanna 2014; Das &
Mukhopadhyay 2015; Quentin & Tout 2018; Otoniel et al. 2019; and
Pons & Viganó 2019; for a few representative examples in neutron
stars and white dwarfs. Thus the field magnitude in a white dwarf
could certainly follow a scaling as B ∝ r−m, with m = 3 corresponding
to dipole. For m = 3, B effectively scales as the inverse square of the
stellar size because the magnetic moment is proportional to the size of
the star. In general, white dwarfs and all stars are expected to exhibit
much more complicated multipolar geometries combining poloidal
and toroidal field components. Numerical simulations show that the
central field of a white dwarf could be several orders of magnitude
higher than the surface field (Subramanian & Mukhopadhyay 2015;
Mukhopadhyay, Rao & Bhatia 2017; Quentin & Tout 2018). In
fact, recently Quentin & Tout (2018) modelled the evolution of two
components of the magnetic field along with angular momentum
based on Cambridge stellar evolution code STARS using three time-
dependent advection–diffusion equations coupled to the structural
and compositional equations of stars. They found that the magnetic
field could be dipolar, decaying with an inverse square law, in most
of the star. This gives us greater confidence to choose a model field
that decays with the radial coordinate from the centre following a
power law. The computations of Quentin & Tout (2018) also showed
that, even late stages of stellar evolution, large-scale magnetic fields
are sustained in degenerate cores and, based on conservation of
magnetic flux, very high fields can develop in white dwarfs. Hence,
the force owing to magnetic pressure must be considered in the
magnetohydrostatic balance equation (13) to correctly establish the
virial theorem of B-WDs.

Now for the conservation of magnetic flux throughout the star,
which is likely in highly conducting white dwarfs with very thin
envelopes, Br2 is conserved. This leads to the scaling B ∝ r−2, which
is quite synonymous to the dipole consideration above. However this
cannot be strictly valid to the centre of the star because the field
strength cannot be singular there. Therefore we invoke such a radial
variation of field from the surface to a finite distance inside the star
below which field is assumed to be constant.

Now the density of a star generally decreases with increasing radial
coordinate. From a simple self-similar consideration the scaling of
density is given by ρ ∝ r−3/2 (Narayan & Yi 1994). Therefore, from
the above discussion, the magnitude of the magnetic field should
scale with density as B ∝ ρp with p > 0. Hence it is justified that
the magnetic pressure directly scales with the density, with a similar
relation to that of stellar matter pressure. This argues in favour of
our second choice of magnetic field profile as a power law with
matter density. Indeed the field magnitude within neutron stars and
white dwarfs has been extensively modelled with a more complex
variation with matter density, rather than a simple power law and this
has successfully explained some observations (e.g. Bandyopadhyay,
Chakrabarty & Pal 1997; Gupta et al. 2020). Nevertheless, such a field
profile turns out to reveal a constant field in the high-density regime
and one that decays outside it. As a white dwarf and generally a
star is expected have a high-density core and a low-density envelope,
this profile practically mimics the profile described above primarily
based on magnetic flux conservation.
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We show here that two apparently different magnetic field profiles,
prescribed based on apparently different physics, give rise to very
similar results. Hence, the effect of magnetic pressure and corre-
sponding gradient in the magnetohydrostatic balance in the virial
theorem is independent of the chosen field profile. Although the
calculations described below rely on the chosen field profiles, and
also the chosen EoS, it appears that our conclusions do not depend on
them as long as they are prescribed based on realistic physics. Our
approach is similar to invoking an EoS, as commonly done when
working with the virial theorem.

3.2 Invoking magnetic flux conservation

First, we consider a case of an approximately constant field in the
central region (Bint), which further falls off from the centre towards
the surface, as described in Section 3.1. Further we consider the
central region to be confined to a radius of R/n with the field falling
off as r2 towards the surface outside. We apply flux conservation
from R/n to R to calculate the dependence of PB on the radius and
obtain B(r) as a piecewise smooth function such that

B(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�Mn2

R2
, 0 ≤ r ≤ R/n,

�M

r2
, R/n < r ≤ R.

(14)

It is apparent that the larger n is so the smaller stellar core. Because
PB = B2/8π, we obtain PB in terms of r as

PB (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�2
Mn4

8πR4
, 0 ≤ r ≤ R/n,

�2
M

8πr4
, R/n < r ≤ R.

(15)

Thus both B and PB are continuous functions that are constant in a
central stellar core. The gravitational energy

W = −
∫ R

0

Gm(r)

r
4πr2ρ dr

=
∫ R

0
4πr3 (dP + dPB ), (16)

and with PB given by equation (15), we obtain

W =
∫ R

0
4πr3(dP + dPB ) = [4πr3(P + PB )]R0

− 3
∫ R

0
4πr2P dr − 3

∫ R

0
4πr2PB dr. (17)

The second term in the right-hand side (RHS) of equation (17) is

−3
∫ R

0
P 4πr2 dr = −3

∫ R

0

P

ρ
dm

= 3

[
P

ρ
m

]R

0

+ 3
∫ R

0
d

(
P

ρ

)
m.

(18)

Because P/ρ = Kρ	 − 1,

d

(
P

ρ

)
= 	 − 1

	

dP

ρ
, (19)

and using equation (13) we obtain

dP

ρ
= Gm d

(
1

r

)
− dPB

ρ
. (20)

So, with equations (19) and (20), the last term of equation (18) is

3
∫ R

0
d

(
P

ρ

)
m = 3

	 − 1

	

∫ R

0
m

dP

ρ

= 3
	 − 1

	

(∫ R

0
m2G d

(
1

r

)
−

∫ R

0
m

dPB

ρ

)
.

(21)

Because∫ R

0
Gm2 d

(
1

r

)
=

[
Gm2

r

]R

0

− 2
∫ R

0

Gm dm

r
, (22)

using equations (18), (21), and (22), from equation (17) we
obtain

W = [4πr3(P + PB )]
R

0 − 3

[
Pm

ρ

]R

0

+ 3(	 − 1)

	

GM2

R

+ 6(	 − 1)

	
W − 3

∫ R

0

(	 − 1)

	

m dPB

ρ

− 3
∫ R

0
4πr2 PB dr. (23)

This equation has all the significant terms that may or may not vanish.
In the first term of RHS of equation (23), only the PB part survives
at r = R, the surface of the star. The second term vanishes on the
assumption that P/ρ is negligibly small at r = R, compared to other
terms because the density is very small at the surface and 	 > 1.
This could easily be verified with the chosen polytropic EoS. We
see that the presence of the fifth and sixth terms on the RHS of the
expression for W is solely due to the presence of magnetic pressure in
addition to the matter pressure. In order to integrate the fifth term, we
approximate ρ(r) = m(r)/ 4

3πr3. Of course in practice ρ(r) should
be a local density, not that averaged over the region from centre to r,
but for the ease of computation we approximate it so and note that,
in any case, the virial theorem stands on averaged effects. Below it
will be evident that this approximation does not influence our main
conclusion. Now, we just use PB from equation (15) for the fifth and
sixth terms in order to obtain an expression in terms of �2

M . Finally,
putting all these together and writing everything in terms of W, we
have

W = −3(	 − 1)

5	 − 6

GM2

R
+ 2(n − 1)

5	 − 6

�2
M

R
. (24)

Quentin & Tout (2018) showed, in numerical simulations, that, as
the degenerate core grows in an asymptotic giant branch star, the
magnetic field may not penetrate to the centre because the centre
becomes superconducting first and the field cannot diffuse inwards
easily. In that case B(r) = 0 in 0 ≤ r ≤ R/n and W is amended with a
contribution �2

Mn/2R.
We find the magnetic energy component

μ = 1

8π

∫
V

B2 dV =
∫ R

0
4πr2PB dr (25)

can be easily integrated to give

μ = �2
M

R

(
4n − 3

6

)
. (26)

Substituting equations (24) and (26) in equation (7), we obtain

−3(	 − 1)

5	 − 6

GM2

R
+ 3	KM	

(4πR3)	−1

+
(

2(n − 1)

5	 − 6
+ 4n − 3

6

)
�2

M

R
= 0,

(27)
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and comparing with equation (9), we have

α = 3(	 − 1)

5	 − 6
, (28)

β = 3	K

(4π)	−1 , (29)

γ = 2(n − 1)

5	 − 6
+ 4n − 3

6
. (30)

Note that there is a change in γ , which is now significantly greater
than for a weakly magnetized white dwarf for which γ = 1/6. For
example, with n = 10 and 	 = 2, γ = 32/3. Note that when n = 1 the
situation simplifies to that of a non-magnetized or weakly magnetized
white dwarf or a B-WD with constant B and hence constant PB

throughout.

3.3 Varying B as a power law

Now we instead assume that the variation of B is a power law with
density. Thus, the corresponding magnetic pressure PB = K1ρ

	1 with
K1 and 	1 constant (Mukhopadhyay & Rao 2016a), as justified in
Section 3.1. The gravitational energy for such a star is

W = −
∫ R

0

Gm(r)

r
4πr2ρ dr

=
∫ R

0
4πr3

(
dP + dPB

)
. (31)

We integrate equation (31) following the same procedure as we
started with for equation (16), given by equation (17). However
here the term [4πr3(P + PB)] vanishes in both the limits, because
the stellar density vanishes at the surface. So we drop it from further
calculations. We can write the remaining terms of equation (17) as

−3
∫ R

0
4πr2(P + PB ) dr = − 3

∫ R

0

P

ρ
dm − 3

∫ R

0

PB

ρ
dm, (32)

and using equation (19), we obtain

W = −3

[
P + PB

ρ
m

]R

0

+ 3
	1 − 1

	1

∫ R

0

dPB

ρ
m

+3
	 − 1

	

∫ R

0

dP

ρ
m. (33)

The second term on the RHS of equation (33) can be further recast
to

3
	1 − 1

	1

(∫ R

0
Gm2 d

(
1

r

)
−

∫ R

0

dP

ρ
m

)

= 3
	1 − 1

	1

(
GM2

R
+ 2W −

∫ R

0

dP

ρ
m

)
,

(34)

and using equations (20) and (33), we obtain

W = −3

[
P + PB

ρ
m

]R

0

+ 3
	1 − 1

	1

(
GM2

R
+ 2W

)

+ 3

(
	 − 1

	
− 	1 − 1

	1

)∫ R

0

dP

ρ
m. (35)

The first term vanishes because both forms of pressure are
negligibly small at the surface and mass vanishes at the centre.
Solving with the expression for P and using the same prescription as
before we obtain

W = −3(	1 − 1)

5	1 − 6

GM2

R
+ 	 − 	1

5	1 − 6

3�

	 − 1
, (36)

assuming that ρ is negligibly small at r = R, the surface of the star,
compared to the centre (or its average). While computing μ in this
case, we integrate equation (5) by simply taking the average of B.
Although the integration is over r (or V), we do not know a priori
how ρ or B varies with r in this case. So the integral in equation (5)
simply gives us �2

M/6R. Thence, from equations (7)–(9), we obtain

− 3(	1 − 1)

5	1 − 6

GM2

R
+

(
1 + 	 − 	1

(5	1 − 6)(	 − 1)

)
3	KM	

(4πR3)	−1

+ 1

6

�2
M

R
= 0,

(37)

and consequently

α = 3(	1 − 1)

5	1 − 6
, (38)

β =
(

1 + 	 − 	1

(5	1 − 6)(	 − 1)

)
3	K

(4π)	−1 , (39)

γ = 1

6
. (40)

An important outcome here is that α is related to the scaling of B
with ρ. This is indeed expected from the magnetohydrostatic balance
equation (13). In other words, it could be expected from equation (13)
itself that the presence of magnetic pressure allows either a more
massive or smaller star. For 	 = 	1, the result reduces to that of the
non-magnetic case with a redefined K.

3.4 Variation of K

Equations (29) and (39) derived above contain K that changes
depending on the strength of the magnetic field. For a weak magnetic
field B � 1014 G, 	 = 4/3 (Subramanian & Mukhopadhyay 2015).
Thus, for this case we use Chandrasekhar’s theory (Chandrasekhar
1935) and

K = 1

8

(
3

π

) 1
3
(

hc

(μemp)
1
3

)
, (41)

where h is Planck’s constant, c is the speed of light, μe ≈ 2 is the
mean molecular weight per electron, and mp is the mass of proton.

The strong field B � 1016 G case corresponds to 	 ≈ 2, because
of Landau quantization. For this case we define K as

K = mec
2

2Qμemp
(42)

(Das & Mukhopadhyay 2013), where me is the mass of electron and
Q is given by

Q = μempBD

2π2λ̄3
e

, (43)

where λ̄e = h
2πmec

is the reduced Compton wavelength of electron
and BD = B/Bc is the dimensionless magnetic field, with Bc =
4.414 × 1013 G.

4 R ESULTS

We divide our findings into two classes, the Flux Conservation model
and the Power Law model, mainly for strongly magnetized (with B ≈
1016 G) and weakly magnetized (with B � 1014 G) stars. Ignoring
the thermal energy contribution for the time being, from equation (8),
regardless of the model or the strength of the magnetic field, we have

R ≈
(

αGM2

γB2

) 1
4

. (44)
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Figure 1. Variation of the radius R with n for the Flux Conservation model
with 	 = 4/3 and B = 1014 G.

Note that there is an inverse relation between radius and magnetic
field, while 	 and 	1 do not increase much and M generally increases
by some factor with increasing B or B, when magnetic flux is not
fixed. So an increase in the magnetic field corresponds to a larger
magnetic flux and this leads to a contraction of the star in order to
maintain virial equilibrium. For a B-WD of mass 2 M� and radius
1000 km, the maximum B ≈ 4 × 1013 G for 	 = 1.8 and n = 5
according to the Flux Conservation model. For the same mass and
radius the maximum B ≈ 2 × 1014 G for 	1 = 2 according to the
Power Law model.

We can now explore various properties of B-WDs based on either
of the models for various parameters. All the figures that follow
have been based on equation (9) or equation (10) and include all
components of the energy. We begin with the Flux Conservation
model and consider the variation of R with n. For the strong field
case ideally 	 = 2. However this may not be followed strictly so
we also include the case when 	 = 1.8. For the Power Law model
we consider the variation of R with varying 	1, similarly to the
previous model. The results are explored to determine whether 2,
2.5, and 3 M� stars are possible for either of the models, because
magnetic field is generally known to allow the super-Chandrasekhar
mass stars (Ostriker & Hartwick 1968; Das & Mukhopadhyay 2013;
Subramanian & Mukhopadhyay 2015).

Figs 1–3 show that, for a given mass, the radius decreases with
increasing n. This can be understood from equations (28)–(30), where
an increase in n increases γ but leaves α and β unchanged. A larger
γ results in a larger contribution of magnetic energy and so, in
order to maintain virial equilibrium, there must be an increase in the
star’s potential energy, which results from a contraction of the star.
Physically, this trend can be understood by equation (15), wherein a
smaller core leads to an overall increase in total magnetic pressure,
which is balanced by a larger inward gravitational potential energy
for a given mass. So a smaller core leads to a smaller star.

Figs 4–6 have a region 	1 � 1.8, where the radius tends to become
independent of 	1. This can be understood from equation (38),
where α is proportional to (	1 − 1)/(5	1 − 6), which becomes
approximately a constant for 	1 � 1.8. This tells us that the power
law dependence of PB on 	1 is restricted to 	1 � 2. Also, (	1 −
1)/(5	1 − 6) diverges for 	1 = 1.2 and becomes negative for 1 < 	1

< 1.2. This leads to an overall positive gravitational potential energy,

Figure 2. Variation of the radius R with n for the Flux Conservation model
with 	 = 2 and B = 1016 G.

Figure 3. Variation of the radius R with n for the Flux Conservation model
with 	 = 1.8 and B = 1016 G.

Figure 4. Variation of the radius R with 	1 for the Power Law model with
	 = 4/3 and B = 1014 G.
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Virial theorem for highly magnetized stars 769

Figure 5. Variation of the radius R with 	1 for the Power Law model with
	 = 2 and B = 1016 G.

Figure 6. Variation of the radius R with 	1 for the Power Law model with
	 = 1.8 and B = 1016 G.

which would unbind the star. So any physical result must correspond
to 	1 > 1.2.

Furthermore, Figs 1–3 with Figs 4–6 show that, for a given mass,
with increasing 	 there is a decrease in the star’s maximum attainable
radius. This can be understood by solving equation (9) for various
	. However, decreasing 	 corresponds to a significant decrease in
the magnetic field, by two orders of magnitude when 	 falls from 2
to 4/3, and this increases R. So we expect that R for 	 = 4/3 and a
2 M� star (curve A) is greater than R for 	 = 2 and a 3 M� star (curve
B). Figs 7 and 8 illustrate this for the Flux Conservation model and
the Power Law model, respectively, for 2 and 3 M� stars. While curve
A is always above curve B throughout for the Power Law model in
Fig. 8, indicating larger radii for the former, the Flux Conservation
model in Fig. 7 shows an intersection of the two curves. This is due
to the fact that there is a stronger n dependence in γ for curve A than
for curve B (equations 30 and 44) and so the magnetic flux dominates
at higher n for curve A, thereby driving it below curve B, and hence
decreasing R, above a certain n. Physically this may be thought of as
the effect of high magnetic flux density supporting gravity.

Figure 7. Variation of the radius R with n for the Flux Conservation model
with various 	 and total masses. In each case 	 = 4/3 corresponds to B =
1014 G and 	 = 2 corresponds to B = 1016 G.

Figure 8. Variation of the radius R with 	1 for the Power Law model with
various 	 and total masses. In each case, 	 = 4/3 corresponds to B = 1014 G
and 	 = 2 corresponds to B = 1016 G.

However equation (9), and consequently equation (44), cannot be
used to calculate the radius of white dwarfs with small magnetic
field (B � 1011 G). For a fixed magnetic flux, decreasing field
increases the radius, the information pertaining to which is missing
in equation ( 44). More precisely, it is the B−1/2 dependence of
radius on magnetic field in equation (44) that increases the radius
extremely for small magnetic fields and this is unphysical. This is
mainly because, at a lower B, the contribution from thermal energy
cannot be neglected compared with the magnetic energy and so
equation (44) becomes invalid.

5 C O N C L U S I O N S

We have demonstrated the power of the highly magnetized virial
theorem to make broad statements about highly magnetized stars,
particularly white dwarfs. The virial theorem is generally applicable
to dynamical and thermodynamic systems and can be formulated to
address a plethora of other systems, including relativistic systems and

MNRAS 500, 763–771 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/1/763/5924459 by J.R
.D

. Tata M
em

orial Library, Indian Institute of Science, Bengaluru user on 23 D
ecem

ber 2021



770 B. Mukhopadhyay, A. Sarkar and C. A. Tout

stars with magnetic fields or rotation. In the presence of additional
effects, the magnetic field in our case, application of the calculus of
variations to the theorem can provide information about dynamical
behaviour because it represents a structural relationship that the
system must follow. However, we emphasize that the virial theorem
is an integral theorem that generally relates scalar quantities, three
different energy contributions in this case, rather than vectors.
Usually this reduction in complexity results in an associated loss
of information and we do not obtain as complete a description of a
physical system as would be possible from a complete analysis of
the system (Collins 1978). Nevertheless, we have presented simple
analytical models of the properties of B-WDs, wherein important
properties are revealed merely by looking at the contributions of
gravitational, thermal, and magnetic energies. We have shown how
these various contributions to energy change with the introduction
of the strong magnetic field when compared to non-magnetic or
weakly magnetic counterparts. This leads us to understand the overall
properties of a system, in our case white dwarfs.

More precisely, we have explored the application of the virial
theorem to recently proposed B-WDs. These highly magnetic white
dwarfs can explain several observations, including peculiar overlu-
minous Type Ia supernovae, some white dwarf pulsars, soft gamma-
ray repeaters, and anomalous X-ray pulsars (Mukhopadhyay & Rao
2016a,b), all of which have otherwise been rather puzzling. We
have shown that incorporating magnetic field and thence magnetic
pressure in the virial theorem can explain the existence of super-
Chandrasekhar white dwarfs with radii significantly smaller than
those of non-magnetized white dwarfs. We have explored this with
two inherently different models: the first considers a core with
constant magnetic field and a varying field in the outer envelope
that conserves the magnetic flux; and the second models the magnetic
pressure as varying with the matter density as a power law throughout.
Flux conservation is able to explain the magnetic field variation and
so the magnetic pressure variation of a B-WD and a non-magnetic
white dwarf. Our chosen boundary conditions, which are otherwise
considered realistically for white dwarfs, play an important role when
we obtain the coefficients α, β, and γ in the various energy contri-
butions. Nevertheless, under certain assumptions, which include a
B profile that varies with the same slope for all sizes of central
core, our results show that a star might retain its spherical shape in
spite of the presence of strong magnetic field if it is non-rotating.
Importantly while a field profile needs to be prescribed in order to
obtain our results, the same results are obtained from apparently
different model profiles. The only common feature is how the field
varies, in one model directly with the radial coordinate and in the
other with the stellar density that also falls with radius. This suggests
that it is not really the model profile, but the effect of the magnetic
field in general that reveals new physics in the magnetized virial
theorem.

A more detailed and rigorous study of these magnetized objects
would uncover more of their inconspicuous features. Nevertheless,
as preliminary global estimates of strongly magnetized stellar prop-
erties, including how strong a magnetic field could be maintained in
a star, this modified virial theorem serves as a very useful tool.
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