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ABSTRACT
Turbulent gas motions are observed in the intracluster medium (ICM). The ICM is density-stratified, with the gas density being
highest at the centre of the cluster and decreasing radially outwards. As a result of this, Kolmogorov (homogeneous, isotropic)
turbulence theory does not apply to the ICM. The gas motions are instead explained by anisotropic stratified turbulence, with
the stratification quantified by the perpendicular Froude number (Fr⊥). These turbulent motions are associated with density
and pressure fluctuations, which manifest as perturbations in X-ray surface brightness maps of the ICM and as thermal
Sunyaev–Zeldovich effect (SZ) fluctuations, respectively. In order to advance our understanding of the relations between these
fluctuations and the turbulent gas velocities, we have conducted 100 high-resolution hydrodynamic simulations of stratified
turbulence (2562 × 384–10242 × 1536 resolution elements), in which we scan the parameter space of subsonic rms Mach
number (M), Fr⊥, and the ratio of entropy and pressure scale heights (RPS = HP/HS), relevant to the ICM. We develop
a new scaling relation between the standard deviation of logarithmic density fluctuations (σ s, where s = ln (ρ/〈ρ〉)), M,
and Fr⊥, which covers both the strongly stratified (Fr⊥ � 1) and weakly stratified (Fr⊥ � 1) turbulence regimes: σ 2

s =
ln(1 + b2M4 + 0.10/(Fr⊥ + 0.25/

√
Fr⊥)2M2RPS), where b ∼ 1/3 for solenoidal turbulence driving studied here. We further

find that logarithmic pressure fluctuations σ (ln P/ < P >) are independent of stratification and scale according to the relation
σ 2

(ln P̄ ) = ln(1 + b2γ 2M4), where P̄ = P/ 〈P 〉 and γ is the adiabatic index of the gas. We have tested these scaling relations to
be valid over the parameter ranges M = 0.01–0.40, Fr⊥ = 0.04–10.0, and RPS = 0.33–2.33.
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1 IN T RO D U C T I O N

Turbulence and buoyancy are concurrent in several geophysical and
astrophysical systems – the physics of stratified turbulence governs
ocean currents and atmospheric turbulence on the earth and other
planets, radiative, and convective zones in the atmospheres of the
sun and other stars, gas motions in hot gaseous haloes of galaxies
(the circumgalactic medium or CGM), galaxy groups and clusters
(intracluster medium or ICM) (Stein 1967; Goldreich & Keeley 1977;
Loewenstein & Fabian 1990; Sarazin, O’Connell & McNamara 1992;
Rudie et al. 2012; Parmentier, Showman & Lian 2013; Skoutnev,
Squire & Bhattacharjee 2020). Here we focus on stratified turbulence
relevant to the ICM.

ICM refers to the gas that pervades the region between galaxies in
a cluster. It is mostly composed of the hot X-ray-emitting gas, with
temperatures ranging from 107–108 K, although a filamentary colder
phase has also been detected in many clusters (Cowie et al. 1983;
McDonald et al. 2010; Simionescu et al. 2018; Olivares et al. 2019;
Vantyghem et al. 2019). It is moderately stratified (with Richardson
number Ri � 10 or Froude number Fr⊥ � 0.1, refer to fig. 1 in
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Mohapatra, Federrath & Sharma 2020) and the gas is in rough
hydrostatic equilibrium with the gravitational profile set by the dark
matter halo. Turbulence in the ICM plays an important role in the
gas dynamics and evolution. Turbulent energy dissipation on viscous
scales and subsequent heating of the ICM, turbulent mixing of hot
and cold phases of gas (Kim & Narayan 2003; Banerjee & Sharma
2014; Hillel & Soker 2020) may also play a key role in the gas
thermodynamics, by preventing the runaway cooling of the ICM
core (Zhuravleva et al. 2014a). Anisotropy in turbulent eddies may be
used to probe the orientation of ICM magnetic fields (Hu et al. 2020).
In cluster outskirts, estimating the turbulent pressure support of the
gas is important to get an unbiased estimate of the halo mass that is
required for cosmology with clusters (Schuecker et al. 2004; Bautz
et al. 2009; George et al. 2009; Cavaliere, Lapi & Fusco-Femiano
2011; Nelson, Lau & Nagai 2014; Biffi et al. 2016; Angelinelli et al.
2020)

However, direct measurements of the ICM turbulent gas velocities
(Hitomi Collaboration et al. 2016) are still a few years away (XRISM1

and ATHENA2), after the early mission end of the Hitomi satellite.
Recently, observers have relied on several indirect methods to

1https://global.jaxa.jp/projects/sas/xrism/
2https://www.the-athena-x-ray-observatory.eu/
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estimate gas velocities in the hot phase, such as relating X-ray surface
brightness fluctuations to turbulent velocity fluctuations (Zhuravleva
et al. 2014a, 2015, 2019), relating Sunyaev–Zeldovich effect (SZ)
observations to turbulent pressure fluctuations (Zeldovich & Sunyaev
1969; Khatri & Gaspari 2016; Mroczkowski et al. 2019), measuring
cold-gas velocities (e.g. using the H α line) and relating this to
the hot phase velocity (Li et al. 2020). Simionescu et al. (2019)
provide a detailed review of all these different methods of measuring
gas velocities in the ICM. It is important to develop accurate and
robust scaling relations between the ICM hot-gas velocities and these
observables.

Many recent theoretical studies have focused on the scaling of
density fluctuations with the rms Mach number (M; Gaspari et al.
2014; Zhuravleva et al. 2014b; Nolan, Federrath & Sutherland 2015;
Mohapatra & Sharma 2019; Shi & Zhang 2019; Grete, O’Shea &
Beckwith 2020; Mohapatra et al. 2020). Some of these studies have
ignored the effect of gravitational stratification or lack a detailed
parameter scan of the range of Fr⊥ and M relevant for the ICM.
The relation between density fluctuations and turbulent velocities is
also seen to depend on the equation of state of the gas (Federrath &
Banerjee 2015) and the adiabatic index (Nolan et al. 2015), and
whether gas cooling is included (Mohapatra & Sharma 2019; Grete
et al. 2020).

Several fluid mechanics studies (Bolgiano 1959, 1962; Carnevale,
Briscolini & Orlandi 2001; Lindborg 2006; Brethouwer & Lindborg
2008; Herring & Kimura 2013; Kumar, Chatterjee & Verma 2014;
Rorai, Mininni & Pouquet 2014; Feraco et al. 2018; Alam, Guha &
Verma 2019) discuss the theory of stratified turbulence in the context
of planetary atmospheres and oceans. In these studies, turbulence is
driven perpendicular to the direction of gravity, whereas turbulence
in the ICM is driven more isotropically by active galactic nuclei
(AGN) jets and galaxy mergers (Churazov et al. 2002, 2003; Omma
et al. 2004). They also mainly focus on the scaling of velocity and
passive scalar spectra, intermittency and velocity anisotropy in the
strong stratification limit.

In our previous study (Mohapatra et al. 2020, hereafter referred
to as MFS20), we performed stratified turbulence simulations with
a fixed M and scanned the parameter space of weakly and mod-
erately stratified turbulence. We also proposed a scaling relation
between density fluctuations, Richardson number (Ri) and M for
this regime. We found that density fluctuations also depended on a
third parameter, namely the ratio between pressure and entropy scale
heights (RPS = HP/HS). We found that for Ri � 10 (only moderately
stratified), these numbers are sensitive to the turbulent driving length
scale L, as Ri ∝ L2. Here we scan the parameter space of these three
parameters: M, the transverse Froude number Fr⊥ (Fr⊥ ≈ 1/

√
Ri

for Fr⊥ � 1), and RPS through 100 simulations, extending into the
strongly stratified regime (Fr⊥ � 1).

This paper is organized as follows. In Section 2, we briefly describe
our setup and methods, present our results and their interpretations
in Section 3, compare our results with the literature and discuss the
caveats of our work in Section 4, and conclude in Section 5.

2 ME T H O D S

2.1 Model equations

We model the ICM as a fluid using compressible Euler equations
and ideal gas equation of state. We implement gravity and turbulent
forcing as additional source terms in the momentum and energy
equations. We solve the following equations:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1a)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) + ∇P = ρ F + ρg, (1b)

∂E

∂t
+ ∇ · ((E + P )v) = ρ F · v + ρ(v · ∇)�, (1c)

where ρ is the gas mass density, v is the velocity, P = ρkBT/(μmp)
is the pressure (we use the ideal gas equation of state), F is the
turbulent acceleration that we apply, � is the gravitational potential,
g = −∇� is the acceleration due to gravity, E = ρv2/2 + P/(γ −
1) is the sum of kinetic and internal energy densities, μ is the mean
particle weight, mp is the proton mass, kB is the Boltzmann constant,
T is the temperature, and γ = 5/3 is the adiabatic index.

2.2 Setup

We choose − ẑ to be the direction of the gravitational field, and
pressure and density to have scale heights HP and Hρ , respectively.
Thus, the initial pressure and density profiles are given by

P (t = 0) = P0 exp

(
− z

HP

)
and (2a)

ρ(t = 0) = ρ0 exp

(
− z

Hρ

)
, respectively. (2b)

We work with dimensionless units and choose ρ0 = 1 and P0 = 0.6, so
that cs,0 = √

γP0/ρ0 = 1. Since we start with the gas in hydrostatic
equilibrium, the initial density, pressure, and g, are related by

dP

dz
= −ρg. (3a)

Hence, g is set as

g = P0

ρ0HP
exp

(
−z

[
1

HP
− 1

Hρ

])
. (3b)

This equilibrium is convectively stable if dln S/dz > 0, where

S = P

ργ
is the pseudo-entropy. (4)

This gives us the condition for the entropy scale height HS (≡
1/[dln S/dz]), given by

1

HS
= γ

Hρ

− 1

HP
> 0. (5)

This condition is satisfied for all our simulations, which locally mimic
the stably stratified ICM.

2.3 Important stratified turbulence parameters

When a parcel of gas in a stably stratified medium is displaced from
its original position, it oscillates with a frequency N defined as the
Brunt–Väisälä (BV) frequency, given by

N2 = g

γ

d

dz
ln

(
P

ργ

)
. (6a)

We define the turbulent time-scale as �⊥/v⊥, where �⊥ is the integral
scale, defined as

�⊥ = 2π

∫
k−1

⊥ Ek⊥ dk⊥∫
Ek⊥ dk⊥

, (6b)

v⊥ =
〈

1

2
v2

⊥

〉1/2

. (6c)
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Here Ek⊥ is the velocity power spectrum perpendicular to the
direction of g. Here v⊥ = (vx, vy, 0) denotes the components of
the velocity field perpendicular to the direction of gravity. The
perpendicular Froude number Fr⊥ is the ratio of these two time-
scales (see e.g. chapter 14 in Davidson 2013), given as

Fr⊥ = v⊥
N�⊥

. (6d)

We can use the approximation �⊥ ≈ Ldriv, where Ldriv is the driving
length scale of the turbulence. The parallel Froude number Fr� is
defined as

Fr‖ = v⊥
Nl‖

, where (6e)

�‖ = 2π

∫
k−1

‖ Ek‖ dk‖∫
Ek‖ dk‖

, (6f)

with l� being the integral scale parallel to the direction of gravity
and Ek‖ is the velocity power spectrum parallel to the direction of
g. Notice that the transverse velocity (v⊥, and not vz) is used in
the above expressions as vz peaks at scales smaller than l⊥. In this
study, we use Fr⊥ to quantify the relative strength of stratification
to turbulence.3The scale-dependent Froude numbers F̃r⊥(�̃⊥) and
F̃r‖(�̃‖), for an eddy of size (�̃⊥ and �̃‖), and perpendicular velocity
ṽ⊥ are defined as

F̃r⊥(�̃⊥) = ṽ⊥(�̃⊥)

N�̃⊥
, (6g)

F̃r‖(�̃‖) = ṽ⊥(�̃⊥)

N�̃‖
. (6h)

Fr⊥ � 1 indicates strong stratification (in this regime, Fr� ≈ 1; see
Billant & Chomaz 2001) and Fr⊥ � 1 denotes weak stratification.
Strongly stratified turbulence transitions into weakly stratified turbu-
lence at the Ozmidov length scale �O, which is defined as the scale
on which the relative strengths of buoyancy and turbulence terms
become equal. Since F̃r⊥(�O) = 1,

�O =
√

εK/N3, (6i)

where εK = v3
⊥/�⊥ is the kinetic energy transfer rate and is assumed

to be a constant just as in conventional turbulence. For weak and
moderately stratified turbulence (Fr⊥ � 1), Fr⊥ ≈ (1/Ri)0.5.

Similar to MFS20, density, pressure, and velocity are normal-
ized to construct dimensionless variables, such that ρ̄ = ρ/ 〈ρ(z)〉,
P̄ = P/ 〈P (z)〉, and M = 〈v/cs〉rms, where 〈ρ(z)〉 and 〈P(z)〉 are
the average density and pressure at a z-slice, respectively, v is the
amplitude of velocity, and cs ≡ (γ 〈P〉/〈ρ〉)1/2 is the local speed of
sound. The potential energy per unit mass is defined as

Eub
= u2

b/2 = P

2ρ

γ δρ̄2

RPS
, (6j)

where ub = gδρ̄/N is the strength of density fluctuations expressed
in velocity units, and

RPS = HP/HS (7)

3In MFS20, we used the Richardson number (Ri) to quantify the strength
of stratification, which is the ratio of buoyancy and turbulence terms in the
momentum equation. For weakly and moderately stratified turbulence (the
parameter regime that we scanned in MFS20), we used Ri ≈ N2L2

driv/v
2
Ldriv

.
The assumption of isotropic eddies breaks down for strongly stratified
turbulence, which is why we now parametrize the stratification in terms
of the transverse Froude number (Fr⊥).

is the ratio of pressure and entropy scale heights. The kinetic energy
is defined as Eu = δv2/2, where v is the magnitude of the fluctuating
velocity.

2.4 Numerical methods

We evolve the Euler equations (1a–1c) using the hydrodynamic
version of the HLL5R Riemann solver (Bouchut, Klingenberg &
Waagan 2007, 2010; Waagan, Federrath & Klingenberg 2011) in a
modified version of the FLASH code (Fryxell et al. 2000; Dubey et al.
2008), version 4. Our setup is the same as in MFS20 – we use a
uniformly spaced 3D grid, with a box size Lx = Ly = 1 and Lz = 1.5,
centred at (0,0,0).

2.4.1 Boundary conditions

We use periodic boundary conditions for all variables (density, pres-
sure and velocity) along the x- and y-directions. Along the z-direction,
we use reflective boundary conditions for velocity and Dirichlet
boundary conditions for pressure and density with the guard cells
filled according to equations (2a) and (2b), respectively. In MFS20,
we used reflective boundary conditions along the z-direction, which
led to a hydrostatic instability at the z-direction boundaries (due to
an inverted pressure gradient at these boundaries). This instability
was stronger for strongly stratified turbulence simulations and led to
anomalous sound waves moving in the z-direction, starting from the
boundaries (also seen in Shi & Zhang 2019, hereafter SZ19). The
Dirichlet boundary conditions used here let us avoid this instability
and allow us to extend our study to include the strongly stratified
turbulence limit (down to Fr⊥ ∼ 0.05).

We restrict our analyses to a cube of size 1 centred at (0,0,0), with
boundaries at (± 0.5, ±0.5, ±0.5), to avoid any other anomalous
effects near the z-direction boundaries. We run our simulations with
shallow density profile (Hρ > 1) on grids with 2562 × 384 resolution
elements, and the simulations with steep density profile (Hρ ≤ 1) or
simulations with high rms Mach number (M ≈ 0.4) on grids 5122 ×
768 resolution elements. We also run four strongly stratified simula-
tions at resolution 10242 × 1536 for numerical convergence checks.

2.4.2 Turbulent forcing

We follow the same spectral forcing method as in MFS20. We
use the stochastic Ornstein–Uhlenbeck (OU) process to model the
turbulent acceleration F with a finite autocorrelation time-scale tturb

(Eswaran & Pope 1988; Schmidt, Hillebrandt & Niemeyer 2006;
Federrath et al. 2010). We inject power as a parabolic function of
|k|, for 1 ≤ |k| ≤ 3 (note that we have dropped the wavenumber unit
2π /L). The power peaks at |k|inj = 2, i.e. Ldriv = L/2. For k ≥ 3,
turbulence develops self-consistently. We set tturb = Ldriv/σ v , where
σ v is the standard deviation of the velocity on Ldriv. Our driving
is solenoidal (zero divergence). For further details of the forcing
method, refer to section 2.7 of MFS20 and section 2.1 in Federrath
et al. (2010).

We also use the same window function, w(z), on the acceleration
field, as in MFS20, such that F decays to zero near the boundaries
in the z-direction, given by

w(z) =
{

1, for |z| < 0.625,

exp(−||z| − 0.625|/0.125), for |z| > 0.625.

Note that w(z) = 1 inside the analysis box (|x|, |y|, |z| ≤ 0.5). So
it only serves to exponentially decrease the acceleration amplitudes
close to the z boundaries.
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Table 1. Simulation parameters for different runs.

Label Hρ range Resolution Actual M range Fr⊥ range σ 2
s range

(1) (2) (3) (4) (5) (6)

M0.01RPS0.67 8.0–1.0 5122 × 768 0.0087–0.010 0.34–0.04 6.4 × 10−6–1.2 × 10−5

M0.05RPS0.33 17.3–0.55 2562 × 384–5122 × 768 0.047–0.053 9.5–0.16 1.7 × 10−6–1.4 × 10−4

M0.05RPS0.67 21.3–0.28 2562 × 384–10242 × 1536 0.048–0.057 11.0–0.07 2.1 × 10−6–2.5 × 10−4

M0.05RPS1.0 21.9–0.2 2562 × 384–5122 × 768 0.048–0.06 11.0–0.05 2.5 × 10−6–3.7 × 10−4

M0.05RPS1.5 17.8–0.2 2562 × 384–5122 × 768 0.047–0.063 8.80–0.06 4.2 × 10−6–5.8 × 10−4

M0.05RPS2.33 20.0–0.2 2562 × 384–10242 × 1536 0.046–0.064 10.0–0.06 4.1 × 10−6–9.6 × 10−4

M0.10RPS0.33 8.7–0.273 2562 × 384–5122 × 768 0.096–0.104 9.5–0.16 1.7 × 10−5–6.0 × 10−4

M0.10RPS0.67 9.6–0.22 2562 × 384–5122 × 768 0.094–0.114 9.8–0.12 2.1 × 10−5–1.1 × 10−3

M0.10RPS1.0 11.2–0.22 2562 × 384–5122 × 768 0.094–0.114 11.0–0.12 2.1 × 10−5–1.4 × 10−3

M0.10RPS1.5 10.6–0.22 2562 × 384–5122 × 768 0.096–0.114 11.0–0.12 2.4 × 10−5–2.5 × 10−3

M0.10RPS2.33 10.0–0.2 2562 × 384–5122 × 768 0.097–0.114 11.0–0.11 2.8 × 10−5–4.7 × 10−3

M0.25RPS0.33 3.5–0.125 2562 × 384–5122 × 768 0.21–0.25 8.9–0.16 4.3 × 10−4–4.2 × 10−3

M0.25RPS0.67 6.4–0.12 2562 × 384–10242 × 1536 0.23–0.27 11.0–0.18 5.0 × 10−4–8.5 × 10−3

M0.25RPS1.0 7.0–0.10 2562 × 384–5122 × 768 0.23–0.36 12.0–0.19 5.1 × 10−4–2.3 × 10−2

M0.25RPS1.5 6.4–0.10 2562 × 384–5122 × 768 0.23–0.45 11.0–0.22 5.9 × 10−4–6.7 × 10−2

M0.25RPS2.33 6.0–0.1 2562 × 384–10242 × 1536 0.23–0.55 11.0–0.29 6.4 × 10−4–1.4 × 10−1

M0.40RPS0.67 1.8–0.15 5122 × 768 0.36–0.40 7.4–0.33 2.4 × 10−3–3.2 × 10−2

M0.40RPS1.0 1.75–0.17 5122 × 768 0.37–0.44 7.8–0.42 2.6 × 10−3–4.5 × 10−2

M0.40RPS1.5 1.4–0.14 5122 × 768 0.37–0.54 6.8–0.47 2.9 × 10−3–9.0 × 10−2

M0.40RPS2.33 1.3–0.12 5122 × 768 0.37–0.58 7.3–0.71 3.0 × 10−3–1.0 × 10−1

Notes Column 1 shows the simulation name. The numbers following ‘M’ and ‘RPS’ are the binned Mach number (Mbin) and the ratio of
pressure to entropy scale heights HP/HS in the simulations, respectively. In columns 2 and 3,we list the Hρ range and the resolution range. These
parameters are defined in equations (2a) and (2b), and Section 2.5. The default resolution of all the weak stratification runs (Hρ > 1) is 2562 ×
384. The runs with stronger stratification (Hρ < 1) or Mbin = 0.4 are run with 5122 × 768 resolution elements. We also run four simulations at a
resolution of 10242 × 1536, for convergence checks and four strongly stratified simulations at M = 0.01 and resolution 5122 × 768. Column 4
lists the actual rms M range, which can be different from the targeted M in strongly stratified simulations. In column 5, Fr⊥ refers to the mean
perpendicular Froude number of the simulations (see equation 6d). Column 6 shows σ 2

s , the standard deviation of s = ln ρ̄ squared. All quantities
(M, Fr⊥, σ s) were averaged over 10 turbulent turnover times, for 6 ≤ t/tturb ≤ 16. A more detailed version of this table, which lists each of the
total of 96 simulations used here, is available in Table B1.

2.5 List of Simulation models

We have conducted 100 simulations, scanning Fr⊥ between 0.05
and 12.0, M between 0.01 and 0.4, and RPS between 0.33 and
2.33, covering the parameter range relevant for the stratified ICM.
We have three input parameters (HP, Hρ , and the acceleration
field) that we vary in our various simulations to scan the range
of interest in M, Fr⊥, and RPS. The bin Mach number, Mbin,
indicates the rms Mach number that the acceleration field would
produce in a homogeneous isotropic setup. We use these bins to
separate our runs with different Mach numbers. The actual M can
be slightly different from Mbin, especially in models with steep
temperature profiles (Hρ, HP � 0.25), as cs can vary by an order of
magnitude with height. By definition, RPS depends only on HP/Hρ

(cf. equation 7). Fr⊥ depends on all three input parameters, roughly
Fr⊥ ∝ MbinHP/

√
RPS (as u⊥ ∝ Mbin and N2 ∝ 1/[HPHS]).

In Table 1, we provide a compressed list of the simulation models,
grouped under their common Mbin and RPS. We indicate the range
of Hρ , the resolution, M, Fr⊥, and σ 2

s (σ s is the standard deviation
of s = ln (ρ/〈ρ〉) in the analysis box) for each of these groups. In
Table B1, we have expanded each grouping and list all of these
parameters individually for each of the 100 simulations.

2.5.1 Dividing the analysis box into slabs

In order to take into account the variation in Fr⊥ and M along z

due to steep temperature profiles, and to maintain uniformity during
post processing among all our simulations, we divide the the analysis

data cube (see definition in Section 2.4.1) into four slabs along the
z-direction (−0.5 ≤ z < −0.25, −0.25 ≤ z < 0, 0 ≤ z < 0.25, and
0.25 ≤ z ≤ 0.5). This means that for each simulation, we have four
sets of data points (σ s, σln(P̄ ), M, and Fr⊥), corresponding to each
of these four slabs.

In the presence of significant turbulent pressure (∝ local M2),
comparable to the thermal pressure, our Dirichlet + reflective
boundary conditions break hydrostatic equilibrium. This leads to
fluctuations in the computational domain whose amplitude increases
for steeper pressure profiles, since the thermal pressure is small
at the z = 0.75 boundary. These fluctuations originate at the
upper boundary, but they are confined close to the boundary itself,
since strong stratification prevents them from travelling to lower z.
Therefore, as a precaution, we ignore the upper two slabs and only
use the lower two slabs in our analysis of simulations that have steep
density or pressure profiles (HP, Hρ < 0.25).

All our simulations run for a total of 16 eddy turnover times (teddy ≈
tturb) on the driving length scale. The simulations reach a steady state
between 3 and 6 tturb. We analyse turbulence from 6 tturb to 16 tturb,
for a total duration of 10 tturb, for statistical averaging.

3 R ESULTS AND D I SCUSSI ON

Now we describe the results of our simulations and discuss their
possible interpretations. We also compare our results against δρ̄–
δP̄ –M relations in other stratified turbulence simulations of the
ICM.
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3.1 Density and velocity projection maps

In Fig. 1, we compare six representative simulation models (three
different models with high to low Froude number, from the top to
bottom, and two different Mach numbers, left versus right). Each
panel shows the column density fluctuations δ�̄i = ∫

ρ̄di − 1, with
the projected velocity field superimposed as vectors, where i denotes
the line of sight (LOS) direction (the absolute column density �i =∫

ρdi is shown in the insets to provide a sense of the strength of the
stratification). We have chosen x as the LOS, which is perpendicular
to the direction of stratification. For small density fluctuations (δρ̄ <

1), the δ�̄x plots provide a sense of comparison (refer to section 3.2 of
MFS20) to X-ray surface brightness fluctuations in Zhuravleva et al.
(2014a), which have been used to reconstruct turbulent velocities of
ICM gas.

For this figure, we have chosen six representative simulations, with
two differentM and three different Fr⊥, such that we roughly present
the extremes of these two parameters. We have plotted them such that
M is approximately constant along a column, Fr⊥ is approximately
constant along a row and RPS is a constant for all.

For the �x plots shown in the insets, we have used a separate
log-scale colourbar for each row. The steepness of the �x profile is
inversely proportional to Hρ . For these plots, Fr⊥ ∝ MHρ , as Hρ

decreases between the left- and right panels, and also decreases from
the top to the bottom panels. The column density fluctuations (δ�̄x)
increase with both M and Fr⊥, but are more sensitive to the changes
in M.

In the top and middle rows (weakly and moderately stratified
turbulence), we observe that the eddies are roughly circular and hence
the velocity field is roughly isotropic (similar to fig. 3 of MFS20).
However, for strongly stratified turbulence shown in the bottom row,
the eddies become flatter in the z-direction and turbulence forms
layered stratified structures. We also observe the correlation between
δ�̄x and vz in the middle row, where upward velocity arrows (vz

> 0) are associated with regions where δ�̄x > 0 (shown in red),
and downward velocity arrows (vz < 0) are associated with regions
where δ�̄x < 0 (shown in blue). This positive correlation implies
that some of the kinetic energy is converted into buoyancy potential
energy.

3.2 Velocity anisotropy

In homogeneous idealized turbulence, the velocity field is expected
to be isotropic and to follow a nearly Gaussian distribution. However,
external fields such as gravity (lower panel of fig. 4 in MFS20 and
SZ19) and magnetic fields (Federrath 2016; Beattie, Federrath &
Seta 2020) can induce strong anisotropies in velocity fields. In our
strongly stratified simulations, we expect the z component of velocity
vz to be the most affected by the strength of the stratification.

Understanding the variation in vz as a function of stratification
is of key significance to our study, since in MFS20 we showed
that the additional density fluctuations introduced by buoyancy
effects (δρ̄buoy) are correlated to vz. We also derived a scaling
relation for δρ̄buoy, assuming the velocity field to be isotropic, i.e.〈
v2

z

〉 ≈ v2/3. However, this assumption breaks down for strongly
stratified turbulence (Fr⊥ � 1), since the velocity field becomes
strongly anisotropic and motion is confined to layers perpendicular
to the direction of gravity, as we see in the lower panels of
Fig. 1.

In order to investigate this further and understand the scaling of vz

with Fr⊥, we show the ratio of <vz > rms to v⊥ (defined in equation
(6c)) in Fig. 2. For weak stratification (Fr⊥ � 1), the velocity is

roughly isotropic (vz/v⊥ ≈ 1),4 perpendicular and parallel velocities
being roughly the same. As we move from the right- to left-hand
side in Fig. 2, in the moderately stratified turbulence regime (Fr⊥
≈ 1), the ratio starts decreasing slowly with decreasing Fr⊥. This is
expected, as more of the z-direction kinetic energy gets converted into
buoyancy potential energy with increasing strength of stratification.
As we move further left in the plot to the strong stratification limit
(Fr⊥ � 1), the ratio shows a sharp decrease with decreasing Fr⊥,
with vz/v⊥ ∝ Fr0.7

⊥ .
For strongly stratified turbulence, buoyancy dominates on large

scales, for �O < �̃ < Ldriv (defined in equation 6i), till the relative
strengths of buoyancy and turbulence terms become equal. For
�̃ < �O, the turbulence transitions to weakly stratified turbulence.
Thus, unlike isotropic turbulence, vz is set by ṽ‖(�O) instead of the
integral scale velocity v�. For �̃ > �O , we may use the Boussinesq
approximation (changes in density are small relative to the mean
density), for which equation (1a) reduces to ∇ · v = 0. Then the
ratio

ṽ‖
(
�̃⊥

)
ṽ⊥

(
�̃⊥

) ≈ �̃‖
�̃⊥

≈ F̃r⊥
(
�̃⊥

)
F̃r‖

(
�̃⊥

) ≈ F̃r⊥(�̃⊥) = ṽ⊥
(
�̃⊥

)
N�̃⊥

, (8)

using equations (6g) and (6h), where we assume F̃r‖ ∼ 1 for strong
stratification and that the vertical velocity fluctuations peak at the
Ozmidov scale and not the driving scale. This gives us

vz

v⊥
≈ ṽ‖ (�O)

v⊥
≈ ṽ2

⊥(�O)

N�Ov⊥
= ε

2/3
K

�
1/3
O Nv⊥

= Fr0.5
⊥ , (9)

using equations (6i) and (8) (see example 14.2 in Davidson 2013).
We observe vz/v⊥ ∝ Fr0.7±0.1

⊥ in our strongly stratified simulations,
which roughly agrees with the theoretical prediction. Some devi-
ations from the theoretical prediction may arise because the low-
Froude simulations are not in the limit of Fr⊥ � 1, but around Fr⊥
∼ 0.1.

3.3 Density and pressure fluctuations

In this subsection, we discuss the variation of density and pressure
fluctuations as a function of our simulation parameters – M,
Fr⊥ and RPS. The scaling relations between these quantities are
important for obtaining ICM gas velocity estimates from X-ray and
SZ observations. The X-ray surface brightness fluctuations and SZ
effect fluctuations are used to calculate the amplitude of density and
pressure fluctuations, respectively, which are further used to calculate
velocity fluctuations using these relations (Zhuravleva et al. 2013,
2014b; Khatri & Gaspari 2016).

3.3.1 Density and pressure fluctuations as a function of M

In Fig. 3, we show the density and pressure fluctuations squared
(σ 2

s and σ 2
ln P̄

) versus M for all our simulations. We also present
approximate fits based on the scaling relations that we propose in
the next Section 3.3.2. Clearly, σ 2

s increases with increasing M,
stratification strength (decreasing Fr⊥) and RPS. In comparison, σ 2

ln P̄

only increases with M and is independent of Fr⊥ and RPS.
As we discussed in section 3.5 of MFS20, the density fluctuations

are comprised of two components, which can be written as the sum
of an un-stratified and a stratified turbulence component:

δρ̄2 = δρ̄2
turb + δρ̄2

buoy, (10)

4From here on, we denote <vz > rms as vz.
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Density fluctuations in the turbulent ICM 5077

Figure 1. Normalized projected density fluctuations integrated over entire x − extent, δ�̄x , with the x −integrated velocity field superimposed, for six
representative simulations at t = 6 teddy. The insets show the projected profiles of density, �x for the entire box, instead of the fluctuations. All of the
six simulations shown have the same RPS = 0.67 but different HP, Hρ to have roughly the same Fr⊥ in each row and the same M in each column (≈0.05, 0.4).
The Froude number in each row decreases from ∼10 (top panels), to ∼1 (middle panels), to ∼0.2 (bottom panels). The colourbar for the δ�̄x panels (shown
below the subpanels) has a linear scale. Note that each row of the �x insets has its own colourbar, which is in log-scale. A movie of the time evolution of these
representative simulations is available at this youtube link.
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5078 R. Mohapatra, C. Federrath and P. Sharma

Figure 2. The ratio between vz and v⊥ versus Fr⊥, where vz and v⊥ are
the rms values of one-component velocities perpendicular and parallel to the
direction of stratification, respectively, averaged over slabs in the z-direction
(see subsection 2.5.1). Colours red, blue, purple and green indicate the Mbin

of the runs. Different shades of these colours indicate the value of Fr⊥, as
shown in the colourbars. The different symbols indicate different values of
the ratio RPS = HP/HS. The dotted, dashed, and solid lines indicate fits in the
low to high Fr⊥ regime. The shaded region around the fits shows the 1σ error
margins in the fitting parameters. We see significant anisotropies arising in
the turbulence, for strong stratification (Fr⊥ � 0.5).

where δρ̄2
turb scales as b2M4 (Mohapatra & Sharma 2019; MFS20),

and b is the turbulence driving parameter (Federrath, Klessen &
Schmidt 2008). The parameter b = 1/3 for solenoidal turbulence, as
we use for the present set of simulations. Our fits in Fig. 3 show this
dependence on M for Frfit � 1 (light bronze coloured fits). We also
showed that δρ̄turb corresponds to adiabatic density fluctuations, so
the corresponding pressure fluctuations δP̄ 2 scale as γ 2δρ̄2

turb ∝ M4

for Fr⊥ � 1. The δρ̄2
turb component of density fluctuations dominates

for weakly stratified turbulence or at large M.
For moderate stratification (Fr⊥ ∼ 1) or low M turbulence, the

δρ̄buoy term dominates, but it corresponds to the isobaric motions
of isotropic gas parcels, which have zero contribution to the net
pressure fluctuations. Hence δP̄ still scales as γ δρ̄turb and shows
an M4 variation throughout as seen in the lower panel of Fig. 3.
This scaling seems to hold even in the strongly stratified turbulence
limit, which means that the nature of δρ̄buoy is isobaric even for
Fr � 1. This behaviour is expected, since a rising/falling parcel of
gas with subsonic velocity is always in pressure equilibrium with its
immediate surroundings (such that δP̄buoy = 0). Thus, the expression
for logarithmic pressure fluctuations becomes

σ 2
ln P̄

= ln
[
1 + b2γ 2M4

]
. (11)

In the lower panel of Fig. 3, we fit the data to equation (11) using
the fitting tool LMfit (Newville et al. 2016). The results are in good
agreement with our expectations.

Figure 3. he density and pressure fluctuations (σ 2
s ; upper panel and σ 2

log P̄
;

lower panel) versus the rms Mach number (M) for all our simulations. The
rightmost colourbar indicates the value of Fr⊥ used for plotting the different
fits in the upper panel. The different line styles indicate the value of the
ratio RPS = HP/HS used for the different fits in the upper panel. The shades
on different symbols correspond to the different Froude numbers. Density
fluctuations are smaller for a larger Fr⊥ (weaker stratification). The respective
fitting functions (Section 3.3.2) for the upper and lower panels are indicated
in the bottom right-hand corner of each panel. For reference, we have also
shown sample M2 and M4 scaling in the upper panel.

In MFS20, we also showed that δρ̄2
buoy increases with M as

approximately M2, for constant Fr⊥ � 1 (or Ri � 1). The motions
in the z-direction associated with δρ̄buoy are strongly constrained for
Fr⊥ � 1 and because of the large energy cost, BV oscillations (with
small displacement in the z-direction) dominate over turbulence in
the vertical direction. But the scaling with M still holds in this limit,
as is seen in the dark bronze fits in the upper panel of Fig. 3.

3.3.2 Density & pressure fluctuations as a function of Fr⊥ and RPS

In this subsection, we discuss the scaling of density and pressure
fluctuations with the stratification parameters Fr⊥ and RPS. We know
that the δρ̄2

turb and δρ̄2
buoy terms scale as M4 and M2, respectively. In

order to make comparisons between different Fr⊥ and RPS easier, we
normalize σ 2

s and σ 2
ln P̄

to σ 2
s,bin and σ 2

ln P̄ ,bin, respectively, given by

σ 2
s,bin = ln

[
1 + b2M4

bin + M2
bin

M2

(
exp σ 2

s − 1 − b2M4
)]

, (12a)

σ 2
ln P̄ ,bin = ln

[
1 + M4

bin
M4

(
exp σ 2

ln P̄
− 1

)]
. (12b)

This way, the runs with different M are scaled to the same Mbin.
We described Mbin in Section 2.5 and Mbin ≈ M for shallow initial
density and pressure profiles (HP, Hρ � 1). We take four different
values of Mbin, namely Mbin = 0.05, 0.10, 0.25, and 0.40. We show
σ 2

s,bin and σ 2
ln P̄ ,bin versus Fr⊥ in Fig. 4.
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Density fluctuations in the turbulent ICM 5079

Figure 4. The density and pressure fluctuations (σ 2
s,bin; upper panel and

σ 2
log P̄ ,bin

; lower panel) versus the transverse Froude number (Fr⊥) for all our
simulations. The symbol shape corresponds to RPS and the shade indicates
the Mach number. The different line styles indicate the value of the ratio RPS

used for our different fits in the upper panel. The fits are given in individual
panels.

As we move from right to left in this plot (increasing stratification
and decreasing Fr⊥), σ 2

s,bin increases for Fr⊥ � 0.5. It reaches a peak
around Fr⊥ ≈ 0.5 and starts decreasing for smaller Fr⊥. For Fr⊥ � 1,
σ 2

s,bin increases with RPS, but this dependence is weaker as compared
to that on Fr⊥. For a constant Mbin, σ 2

ln P̄ ,bin stays constant with both
Fr⊥ and RPS, as expected from equation (11).

All the variation in σ 2
s,bin can be attributed to the dependence of

δρ̄2
buoy on these stratification parameters, since δρ̄2

turb depends only on
M. The δρ̄2

buoy component is correlated with the rms displacement
in the z-direction <δz2 > and is given by

δρ̄2
buoy = N4

g2

〈
δz2

〉
. (13a)

In the weak and moderately stratified turbulence limit (Fr⊥ � 1), we
simplify this expression further and showed in MFS20 that

δρ̄2
buoy ≈ ζ 2M2RiRPS ≈ ζ 2 M2RPS

Fr2
⊥

, (13b)

where ζ 2 is a fitting parameter. However, this simplification involved
assuming the velocity field to be roughly isotropic, which is true
for Fr⊥ � 0.5 (see Fig. 2), not for strongly stratified turbulence. In
the limit of strongly stratified turbulence (Fr⊥ � 1), the z-direction
motions are heavily suppressed by buoyancy and the velocity field is
no longer isotropic, as we showed in Section 3.2. In this limit,

δρ̄2
buoy ≈ N4

g2

〈
δz2

〉 ≈ N4

g2
ζ ′2 v2

z

N2

≈ ζ ′2M2Fr⊥RPS, (13c)

using equations (3a), (6a), and (9). Interpolating between the two
asymptotic expressions for δρ̄buoy in equations (13b) and (13c), we
obtain

δρ̄2
buoy = ζ 2

1 M2RPS(
Fr⊥ + ζ2/

√
Fr⊥

)2 , (13d)

where ζ 1 and ζ 2 are fitting parameters. The combined expression for
the net density fluctuations is then given by

δρ̄2 = b2M4 + ζ 2
1 M2RPS(

Fr⊥ + ζ2/
√

Fr⊥
)2 and (13e)

σ 2
s = ln

[
1 + b2M4 + ζ 2

1 M2RPS(
Fr⊥ + ζ2/

√
Fr⊥

)2

]
. (13f)

Here we substituted σ 2
s = ln

[
1 + σ 2

ρ̄

]
. This is valid for lognormal

distributions of ρ̄ but it also holds approximately for non-lognormal
distributions with small σ 2

ρ̄ (see Appendix A).
Thus, we find that introducing stratification has two main effects.

For Fr⊥ � 0.5, due to the existing density gradient, the turbulent
motions in the z-direction produce higher density fluctuations. This
happens simply because when a gas parcel moves along the z-
direction, it only attains pressure equilibrium at that height, but
still has a density contrast with respect to its surroundings. On
assuming isotropic gas velocities, which is roughly valid for Fr �
0.5 (see Fig. 2), we obtain δρ̄2

buoy = ζ 2M2RPS/Fr2
⊥ (equation 13b).

However, on further increasing the stratification (Fr⊥ � 0.5), the
turbulence becomes anisotropic as gas motions along the z-direction
are suppressed, with the kinetic energy along the z-direction being
converted into buoyancy potential energy. The turbulent eddies flatten
along the z-direction and become pancake-like (see lower panels
of Fig. 1). In this limit, the motion along the z-direction is best
described by BV oscillations. The amplitude of these oscillations
is proportional to vz, which decreases with decreasing Fr⊥ for
constant M (see Fig. 6). Substituting the Fr⊥ dependence of the
ratio vz/v⊥, we obtain δρ̄2

buoy = ζ ′2M2RPSFr⊥ (equation 13c). The
general expression for the dependence of δρ̄2

buoy (equation 13d) is
thus an interpolation between these two forms.

For even stronger stratification (Fr⊥ � 0.001), we expect the
amplitude of δρ̄2

buoy to decrease below δρ̄2
turb, and the net density

fluctuations would again be given by δρ̄2 ∼ b2M4, similar to the
unstratified subsonic turbulence scaling. One can interpret this limit
as 2D subsonic turbulence, with M representing the 2D Mach
number, since vz � v⊥.

3.3.3 Obtaining the fitting parameters

Here we derive the fitting parameters ζ 1 and ζ 2, such that they de-
scribe the variation in density fluctuations for all of our 96 simulations
simultaneously. We use the fitting tool LMfit with equation (13f) as
the fitting function, M, Fr⊥, and RPS as independent variables, and
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5080 R. Mohapatra, C. Federrath and P. Sharma

σ 2
s as the dependent variable. We obtain ζ 2

1 = 0.10 ± 0.01 and ζ 2 =
0.25 ± 0.02.

In order to present all our data and the fitting function together,
we scale all density and pressure fluctuations to Mscaled = 0.25 and
RPS = 2.33. These are the same parameter values we used in all
simulations of MFS20 and hence they provide a direct comparison
between both of our studies. We construct two new scaled quantities,
given by

σ 2
s,scaled = ln

[
1 + b2(0.25)4 +

(
0.25

M

)2 2.33

RPS

× (
exp σ 2

s − 1 − b2M4
)]

and (14a)

σ 2
ln P̄ ,scaled = ln

[
1 +

(
0.25

M

)4 (
exp σ 2

ln P̄
− 1

)]
. (14b)

In Fig. 5, we show these two quantities as a function of Fr⊥. We also
show the fitting function equation (13f) for M = 0.25 and RPS =
2.33. Thus, our scaling relation for σ 2

s works well for the entire range
of parameter space we have scanned using the 96 simulations. The
value of σ 2

ln P̄ ,scaled is roughly constant, as expected from equation
(11). We expect the variation to be mostly due to two reasons
both leading to inaccurate estimates of M, and these variations are
amplified in the plot since σ 2

ln P̄ ,scaled ∝ M4. First, the box heats up
in larger Mbin simulations (especially Mbin = 0.25 and 0.4), which
leads to an increased speed of sound and a decreased Mach number.
Secondly, due to the steep temperature profiles for simulations with
HP, Hρ < 0.2, (HP �= Hρ), the speed of sound significantly varies
along the z-direction, whereas we drive an isotropic velocity field.
This leads to a strong variation in M along the z-direction, which
may cause the differences from the scaling relations for Fr⊥ � 0.5.

3.3.4 Pressure fluctuations and the SZ effect

In this subsection, we discuss the importance of pressure fluctuations
for estimating turbulent gas velocities in the ICM. In the previous
subsections, we showed that density fluctuations are sensitive to the
parameters Fr⊥ and RPS, whereas pressure fluctuations depend only
on M. We found that the relation σ 2

P̄
= b2γ 2M4 describes all our

simulations very well (see lower panels of Figs 3 and 5). This happens
because the stratified turbulence component of density fluctuations
is isobaric (see fig. 8 of MFS20). In fig. 14 of Mohapatra & Sharma
(2019), we also showed that pressure fluctuations do not significantly
depend on whether radiative cooling is included or not. While density
fluctuations are sensitive to the thermodynamic and stratification
parameters, pressure fluctuations are independent of these. Thus,
compared to density fluctuations, we expect pressure fluctuations to
provide a robust estimate of turbulent velocities.

Hot electrons in the ICM, on average, up-scatter the cosmic
microwave background (CMB) photons through inverse-Compton
scattering, and the change in the CMB brightness temperature is
proportional to the ICM electron pressure integrated along the line
of sight. This effect is known as the thermal Sunyaev–Zeldovich
(tSZ) effect (see Mroczkowski et al. 2019, for a review). Although
it is possible to recover turbulent gas velocities from the resolved
observations of the tSZ effect (Khatri & Gaspari 2016), the present
observations suffer from a lack of angular resolution (e.g. up to
a few 100 kpc for the Coma cluster). The tSZ observations also
suffer from projection effects (more than X-ray surface brightness
which is proportional to ρ2), which makes the measured pressure
fluctuations even smoother than the density fluctuations. Many of

Figure 5. The density (σ 2
s,scaled; upper panel) and pressure fluctuations

(σ 2
log P̄ ,scaled

; lower panel), scaled such that they collapse on to a single line as
a function of Fr⊥ all our simulations. The symbol shape corresponds to RPS

and the colours indicate the Mach number. The fits are shown in the respective
panels. The shaded region around the fits shows the 1σ error margins in the
fitting parameters.

these limitations are expected to be addressed by future facilities
(see section 6.2 of Mroczkowski et al. 2019). The relative robustness
of the relation between pressure fluctuations and turbulent veloc-
ities (unlike density fluctuations that depend on stratification and
thermodynamic parameters) provides a strong motivation for high-
angular-resolution SZ observations.

3.3.5 Testing the scaling relation at lower M and Fr⊥ � 1

In this subsection, we test the scaling of the velocity ratio, density
and pressure fluctuations with Fr⊥ through four simulations at
M ≈ 0.01, RPS = 0.67, and Fr⊥ � 0.4. See Table 2 for the
simulation parameters. Since these simulations have HP = Hρ , the
sound speed is uniform throughout the domain and the turbulent
pressure is negligible compared to the thermal pressure (turbulent
pressure ∼10−4 thermal pressure). Since HP, Hρ > 1.0, the density
and pressure gradients are not very steep. Thus, these simulations
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Density fluctuations in the turbulent ICM 5081

Table 2. Simulation parameters for the M = 0.01, Fr⊥ < 0.4 runs.

Label Hρ M σ 2
s σ 2

log P̄

(1) (2) (3) (4) (5)

Fr0.34M0.01RPS0.67 8.0 (8.7 ± 0.3) × 10−3 1.2−0.2
+0.2 × 10−5 1.4−0.3

+0.4 × 10−9

Fr0.18M0.01RPS0.67 4.0 (8.9 ± 0.4) × 10−3 1.1−0.1
+0.2 × 10−5 1.4−0.2

+0.3 × 10−9

Fr0.09M0.01RPS0.67 2.0 (9.9 ± 0.8) × 10−3 7.0−1.2
+1.5 × 10−6 1.6−0.4

+0.6 × 10−9

Fr0.04M0.01RPS0.67 1.0 (1.0 ± 0.1) × 10−2 6.4−1.1
+1.4 × 10−6 2.5−0.6

+0.8 × 10−9

Notes. All these simulations have grid resolution 5122 × 768. The columns (2)–(5) have their
usual meanings. For these runs, HP/Hρ = 1.

Figure 6. The ratio between vz and v⊥ versus Fr⊥ for our simulations with
M ≈ 0.01, RPS = 0.67, and Fr⊥ � 0.4. We also show our data points from
Fig. 2 in grey. The low-M data follow the Fr0.7

⊥ scaling for Fr⊥ � 0.4.

do not suffer from fluctuations near the boundaries mentioned in
Sections 2.4.1 and 2.5.1.

In Fig. 6, we show the ratio between vz and v⊥ for these
simulations. The ratio follows the Fr0.7 scaling. In Fig. 7, we show
σ 2

s,scaled and σ 2
ln(P̄ ),scaled, and we find that they also follow the scaling

relation in the low-Fr⊥ regime – σ 2
s,scaled decreases with decreasing

Fr⊥ and σ 2
ln(P̄ ),scaled is independent of Fr⊥.

3.3.6 Comparing the density scaling relation with other studies

In this subsection, we test our scaling relation against data from
SZ19, who study decaying turbulence in a stratified medium, using
a setup similar to ours. We have received the simulation snapshots
from Shi & Zhang and applied our analysis methods to calculate σ 2

s
and Fr⊥.5 We scale these quantities to σ 2

s,scaled with M = 0.25 and
RPS = 2.33, using equation (14a).

In Fig. 8, we show σ 2
s,scaled as a function of Fr⊥, using the same

colour scheme (cyan, green, and orange) and markers as fig. 8 in
SZ19. We have greyed out our data points in the background. SZ19
study decaying turbulence, and therefore all variables are time (t)
dependent in their study. The open symbols in Fig. 8 are for t ≤ 2/N
and the filled symbols are for t > 2/N. The dashed line is the best fit
to the scaled SZ19 data and the solid line is the best fit to our data.

5Our values of Fr⊥ for SZ19 differ by a factor of 2π . This results from the
slightly different definitions of the integral scale l⊥ (see equation 3 in SZ19),
where 2π is the conversion factor from wavenumber space to real space.

Figure 7. The scaled density (σ 2
s,scaled; upper panel) and pressure fluctuations

(σ 2
log P̄ ,scaled

; lower panel) for our simulations with M ≈ 0.01, RPS = 0.67,

and Fr⊥ � 0.4. We also show our data points from Fig. 5 in grey. The low-
M data follows our proposed scaling relation for both density and pressure
fluctuations.

We find that at high Fr⊥, σ 2
s,scaled for SZ19’s data shows a similar

dependence on Fr⊥ as our scaling relation predicts. However, the
exact dependence of σ 2

s,scaled on Fr⊥ is somewhat different, i.e. we
see that σ 2

s,scaled is higher by almost a factor of 2–4 for Fr⊥ � 0.5
becomes independent of Fr⊥ for Fr⊥ � 0.3. We find that the fitting
parameters ζ 2

1 and ζ 2 (see equation 13f) take the values 0.17 ± 0.01
and 0.14 ± 0.02, respectively.

The open data points for t ≤ 2/N in SZ19 correspond to the
moderate-weakly stratified turbulence regime (Fr⊥ � 0.5). In this
limit,

δρ̄2 ≈ δρ̄2
buoy ∝ M2/Fr2

⊥ = N2�2
⊥/c2

s . (15)

For a given stratification profile (fixed HP, Hρ , and corresponding N)
and t ≤ 2/N, δρ̄2 is independent of M, as seen in fig. 8 of SZ19. This
has significant implications for observational studies, which infer
turbulent velocities from surface brightness fluctuations, which are,
in turn, caused by density fluctuations. For t > 2/N, Fr⊥ � 0.5, where
the σ 2

s dependence on Fr⊥ is weak near the peak of the proposed
scaling relation and hence δρ̄2 ∝ M2.

In order to directly compare against SZ19, we conduct two sets
of turbulence decay simulations with Mbin = 0.05 and 0.25, HP =
Hρ = 1.0 with grid resolution 5122 × 768. Once turbulence reaches
a roughly steady state (after ≈3teddy), we switch off external driving.
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Figure 8. The scaled density fluctuations (σ 2
s,scaled) versus Fr⊥ with the

coloured (cyan, green, and orange) data points taken from SZ19 and scaled
(see the main text). We follow the same colour and marker scheme as in
fig. 8 of SZ19, where different colours represent different values of N (which
correspond to simulations with different levels of stratification). The open
symbols are for t ≤ 2/N and the filled symbols are for t > 2/N. We show our
data points from the top panel of Fig. 5 in grey. We have also plotted data
points from our turbulence decay simulations in red and purple. The dashed
line shows the best fit to SZ19’s data and the solid line shows the best fit to
our data. There seems to be a small scaling discrepancy that becomes larger at
smaller Fr⊥. We discuss more about this discrepancy and its possible sources
in the main text.

We simulate five statistically similar instances of decaying turbulence
by changing the random number seed for the turbulent driving.

We calculate the average value of σ 2
s over time intervals of 2teddy

in the decay phase. We further average these values across the five
runs. The red and purple circles in Fig. 8 represent σ 2

s,scaled for these
decaying turbulence simulations. Both the purple and red data points
agree with our proposed scaling relation. Unlike SZ19’s data, for
Fr⊥ � 0.3, σ 2

s,scaled in decaying turbulence simulations decreases
with decreasing Fr⊥, similar to our steady-state turbulence runs.

The differences in the values of σ 2
s,scaled at low Fr⊥ may arise due

to the spurious sound waves as discussed in Section 2.4.1. Due to
the reflective boundary conditions along the z-direction, they can
form standing waves in pressure (X. Shi, private communication).
If the amplitude of density fluctuations due to the standing waves
is comparable to δρ̄buoy, then the net density fluctuations would
not show a decrease at the low Fr⊥ limit. Our turbulence decay
simulations do not suffer from this because of the new Dirichlet
boundary conditions that we apply to the density and pressure.
These simulations are at low rms Mach number and use an initially
isothermal stratification profile (HP = Hρ = 1.0). Hence, they also
do not suffer from the numerical fluctuations at the upper boundary
discussed in Section 2.5.1.

3.4 Density fluctuations versus velocity power spectra in
strongly stratified turbulence

In the previous subsections, we have investigated the scaling of
rms density fluctuations with the rms Mach number, Fr⊥, and
RPS. Another quantity relevant for observations is the amplitude

Figure 9. The ratio of density fluctuations to velocity power spectra, η2
k ,

defined in equation (16), as a function of the wavenumber k, for our high-
resolution, strongly stratified simulations. In this strongly stratified limit
(which does not necessarily apply to the ICM in general; see fig. 1 in MFS20),
η2

k depends strongly on RPS and weakly on k, M, and Fr⊥.

and spectral scaling of density fluctuations and velocity power
spectra. This is because turbulent velocities are more difficult to
measure directly in observations, and often the surface brightness
fluctuations are used to infer properties of the turbulence (Zhu-
ravleva et al. 2014a, 2015, 2018; Simionescu et al. 2019 for a
review).

The ratio between Fourier one-component density fluctuation
amplitudes δρ̄k and Fourier one-component velocity amplitudes v1, k

is denoted by ηk and it is related to the density fluctuations and
velocity power spectra by

η2
k = (δρ̄k)2/(v1,k/cs)

2 ≈ 3P (δρ̄k)/P (Mk), (16)

where P (δρ̄k) and P (Mk) are the density fluctuations and velocity
power spectra. Density and velocity are normalized with respect to
the stratification profile and the speed of sound, respectively. The
ratio given by ηk is an important parameter for the observational
studies listed above. The Fourier transform of the normalized X-
ray SB fluctuations S̄Bk are used to calculate ρ̄k and then v1, k is
calculated using equation (16).

All the observational studies we mentioned above assume η2
k ≈ 1,

independent of k, M, and Fr⊥. A value of η2
k ≈ 1 was calibrated

using cosmological simulations in Zhuravleva et al. (2014b) and
large cluster scale (1000 kpc) simulations in Gaspari et al. (2014). In
Mohapatra & Sharma (2019), we found η2

k ∝ M2 through idealized
box simulations of unstratified turbulence. We also noted that the
amplitude of η2

k increases by two orders of magnitude on including
cooling. In subsection 3.9.3 of MFS20, we studied the variation
of η2

k for weakly and moderately stratified turbulence (Fr⊥ � 0.5,
M ≈ 0.25, and RPS = 2.33). We showed that η2

k increases with
increasing stratification and reaches η2

k ≈ 1 for Fr⊥ ≈ 0.7. Here we
have extended this study to the strongly stratified turbulence regime
(up to Fr⊥ ≈ 0.1).

In Fig. 9, we show η2
k as a function of wavenumber k for our high-

resolution, strongly stratified simulations. For reference, we show
η2

k for the unstratified turbulence run (Ri0, Fr⊥ −→ ∞) from MFS20.
The quantity η2

k is relatively flat with respect to k, for all of these
simulations, which implies that P (δρ̄k) and P (Mk) follow similar
spectral scaling.
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Figure 10. The scaled density to velocity fluctuation ratio
(
η2

scaled

)
as a

function of Fr⊥ for the high-resolution simulations from this study and from
MFS20. The ratio (η2

k ) is averaged over the inertial range of turbulence (6
≤ k ≤ 15). The fit (solid line) shown is plotted using M = 0.25 and RPS =
2.33, corresponding to the parameters used in MFS20. The ratio (η2

k ) roughly
scales as σ 2

ρ̄ /M2 and is independent ofM in the strongly stratified turbulence

limit. We also show the values of η2
scaled and Fr clusters from Zhuravleva et al.

(2014b) in the olive coloured shaded region. The values seem to be slightly
larger than predicted by our scaling relation at low Fr⊥. We discuss this
discrepancy in the main text.

We also show η2, the amplitude of η2
k averaged over 6 ≤ k ≤ 15

as a function of Fr⊥ in Fig. 10 for the high-resolution simulations
(10242 × 1536) of this study and MFS20.6 For the two simulations
with RPS �= 2.33, we show η2

scaled = η2 × (2.33/RPS). We fit the data
using the expression for σ 2

ρ̄ /M2 from equation 13e and M = 0.25
and RPS = 2.33, with ζ 1 and ζ 2 as fit parameters. The fitted factor
of (3.4 ± 0.1) is close to the expected factor of 3 from the 3D to 1D
conversion; see equation 16. We have also plotted η2

scaled for cluster
simulations from Zhuravleva et al. (2014b) in the olive coloured
shaded region in Fig. 10, which are slightly higher than our values
and scaling relation. The differences in values of η2

scaled may arise
from the choice of averaging regions, in this case 500-kpc regions
in the clusters of Zhuravleva et al. 2014b. The density fluctuations
in their study are also calculated as deviations from a beta-profile fit
to these 500-kpc regions and thus are expected to be higher than our
instantaneous z-slice averaging (described in Section 2.3). In addition
to this, since turbulence in these cosmological simulations is driven
more naturally by galaxy mergers and in-falls, they may include
compressive components (which are excluded in our simulations),
increasing the value of the turbulence driving parameter b and
generating larger density fluctuations. The cosmological simulations
may also suffer from a lack of resolution on small scales and
have a higher numerical viscosity compared to our idealized box
simulations.

The amplitude of η2
k has the same dependence onM, Fr⊥, and RPS,

as the ratio of the rms fluctuations δρ̄2/M2. Since δρ̄2
buoy is the main

component of δρ̄2 for Fr⊥ ≈ 0.1, η2 scales similar to δρ̄2
buoy/M2.

Hence, η2 is roughly independent of M, weakly dependent on Fr⊥
(since σ s versus Fr⊥ peaks at around Fr⊥ ≈ 0.1), and linearly
dependent on RPS, in agreement with equation (13d).

6All simulations in MFS20 had RPS = 2.33 and M ∼ 0.25.

Combining the results of this work with those of Mohapatra &
Sharma (2019) and MFS20, we have studied the variation of η2

k with
M, Fr⊥, and RPS, scanning the parameter space relevant for the ICM.
We find that the ratio η2

k is almost invariant with the wavenumber
k.7 The amplitude of η2

k varies as δρ̄2/M2. Based on equation (13e)
and the fit in Fig. 10, we propose a new scaling relation for η2:

η2 = (3.4 ± 0.1)

[
b2M2 + (0.11 ± 0.01)RPS(

Fr⊥ + (0.19 ± 0.02)/
√

Fr⊥
)2

]
. (17)

For Fr⊥ � 1, η2 approaches 1 and is independent ofM, which was the
limit studied in Zhuravleva et al. (2014b) and Gaspari et al. (2014).
However, as we showed in fig. 1 of MFS20 (also in fig. 2 of SZ19),
the ICM can have Fr⊥ between 0.1 and 100. Thus, we suggest that
observational studies use equation (17) to obtain a more accurate
estimate of turbulent velocities from density (surface brightness)
fluctuations. Since Fr⊥ � 1 also marks the onset of large-scale density
anisotropy (see lower panels of fig. 1 and also fig. 10 in MFS20), one
could use the peak value of η2, where it varies slowly with Fr⊥ for
relating the ICM density and velocity fluctuations.

4 C AV E AT S A N D F U T U R E WO R K

In this section, we discuss possible shortcomings of our work and
possible methods to address some of them.

The buoyancy Reynolds number Rbuoy for stratified turbulence is
given by Re⊥Fr2

⊥, where Re⊥ is the turbulent Reynolds number in the
transverse direction. When Rbuoy � 1, viscous forces can be ignored
on the integral scale �⊥ (Davidson 2013). The ratio Re⊥ scales as
n4/3 in numerical simulations where n is the number of resolution
elements (Frisch 1995; Haugen & Brandenburg 2004; Benzi et al.
2008; Federrath et al. 2011). Hence, for low Fr⊥ simulations, �buoy ≈
4096 × Fr2

⊥ ≈ 10 for Fr⊥0.05, using n = 512. Thus, we approach
the limit Rbuoy ≈ 1 for our strongly stratified simulations, implying
that viscous forces are almost of the same order as the inertial forces
on the integral scale for Fr⊥ ≈ 0.05. Using higher grid resolution is
one of the ways to avoid this issue.

In Section 2.5.1, we mentioned that the positive z boundaries
(at z = 0.75) are unstable for steep pressure profiles (HP < 0.25).
This happens because for the steepest pressure profiles with HP ≈
0.1, the initial pressure varies by more than a factor of 106 across
the entire domain. These steep gradients could possibly make the
code numerically unstable near the low-pressure positive z boundary,
especially when turbulent pressure becomes comparable to the
thermal pressure. Using smaller box sizes (so that pressure values at
the positive box boundary are higher) and/or higher resolution along
the z-direction is a possible solution to this problem. This method has
been used by many fluid mechanics studies to study strongly stratified
turbulence (Lindborg 2006; Brethouwer & Lindborg 2008).

In this paper, we have only studied solenoidally-driven stratified
turbulence. The driving parameter b is also part of the scaling relation
(Federrath et al. 2008, 2010). Compressively-driven turbulence is
expected to generate larger density fluctuations and its effect is
supposed to be captured by the driving parameter b, which we
have not varied in any of our simulations. In nature, turbulence
is supposed to be a mixture of compressive and solenoidal mode.
Galaxy infall and mergers could possibly drive some compressive
modes (Churazov et al. 2003; Federrath et al. 2017) in the ICM.

7Except for the heating and cooling simulations in Mohapatra & Sharma
(2019), where switching on radiative cooling led to a steepening.
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Effects of different levels of compressively-driven turbulence would
be an interesting follow-up study.

We have ignored the effects of radiative cooling, thermal
conduction, and magnetic fields in this work. Radiative cooling
(Mohapatra & Sharma 2019; Grete et al. 2020) and thermal
conduction (Gaspari & Churazov 2013; Gaspari et al. 2014) have
been shown to affect the δρ̄–M scaling relation. However, this
additional physics is beyond the scope of this paper and will be
addressed in a follow-up study.

5 C O N C L U S I O N S

We have studied the parameter space relevant to subsonic, stratified
turbulence in the ICM through idealized high-resolution hydrody-
namic simulations. We have covered the parameter regime 0.05 <

Fr⊥ < 12.0, 0.05 ≤ M ≤ 0.4, and 0.33 ≤ RPS ≤ 2.33 through 96
simulations. The main results of this study are as follows:

(i) We have extended the scaling relation between the rms
density fluctuations (denoted in log-scale by σ s), the rms Mach
number (M), the perpendicular Froude number (Fr⊥), and the
ratio between pressure and entropy scale heights (RPS) to the
strong stratification limit (Fr⊥ � 1). The new scaling relation is
σ 2

s = ln[1 + b2M4 + 0.10M2RPS/(Fr⊥ + 0.25/
√

Fr⊥)2]. The den-
sity fluctuations increase with decreasing Fr⊥ for Fr⊥ � 0.2, saturate
and then decrease slowly for Fr⊥. We have shown that the density
fluctuations in all of our 100 simulations follow this scaling relation.
Our results also qualitatively agree with the turbulence decay study
in SZ19.

(ii) We have also extended the scaling of pressure fluctuations to
the limit Fr⊥ � 1. We find that σln P̄ is independent of the stratification
parameters and depends only on M. The scaling relation remains
σln P̄ = ln[1 + b2γ 2M4]. Since pressure fluctuations are unaffected
by stratification, they can be used to obtain fairly accurate estimates
of turbulent velocities through tSZ observations.

(iii) The ratio ηk between normalized one-dimensional Fourier
density (ρ̄k) and velocity amplitudes (v1, k/cs) approximately scales
as σρ̄/M and saturates to ≈1 at Fr⊥ ≈ 0.2. The square of its amplitude
is given by η2 = 3.4[b2M2 + 0.11RPS/(Fr⊥ + 0.19/

√
Fr⊥)2].

(iv) The ratio between velocity components parallel and perpen-
dicular to gravity (vz/v⊥) is roughly constant with respect to Fr⊥ for
Fr⊥ � 1, as expected for weak stratification. For 0.5 � Fr⊥ � 2, the
ratio weakly decreases with decreasing Fr⊥, and for Fr⊥ � 0.5, it
varies as Fr0.7

⊥ .

A D D I T I O NA L L I N K S

Movies of projected density and density fluctuations of different
simulations are available at the following links on YouTube:

(i) Movie of the representative simulations used in Fig. 1.
(ii) Movie of low-M, low-Fr⊥ simulations listed in Table 2.
(iii) Movie of two sample stratified turbulence decay simulations

used in Section 3.3.6.
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Brüggen M., Eckert D., 2020, MNRAS, 495, 864
Banerjee N., Sharma P., 2014, MNRAS, 443, 687
Bautz M. W. et al., 2009, PASJ, 61, 1117
Beattie J. R., Federrath C., Seta A., 2020, MNRAS, 498, 1593
Benzi R., Biferale L., Fisher R. T., Kadanoff L. P., Lamb D. Q., Toschi F.,

2008, Phys. Rev. Lett., 100, 234503
Biffi V. et al., 2016, ApJ, 827, 112
Billant P., Chomaz J.-M., 2001, Phys. Fluids, 13, 1645
Bolgiano R. J., 1959, J. Geophys. Res., 64, 2226
Bolgiano R. J., 1962, J. Geophys. Res., 67, 3015
Bouchut F., Klingenberg C., Waagan K., 2007, Numer. Math., 108, 7
Bouchut F., Klingenberg C., Waagan K., 2010, Numer. Math., 115, 647
Brethouwer G., Lindborg E., 2008, Geophys. Res. Lett., 35, L06809
Carnevale G. F., Briscolini M., Orlandi P., 2001, J. Fluid Mech., 427, 205
Cavaliere A., Lapi A., Fusco-Femiano R., 2011, A&A, 525, A110
Churazov E., Sunyaev R., Forman W., Böhringer H., 2002, MNRAS, 332,
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Figure A1. The spread in ln ρ (σ 2
s ) as a function of the width in ρ (σ 2

ρ̄ ) for
all our runs. The symbol shape corresponds to RPS, the colour to the Mach
number, and the shading to Fr⊥. The data are fit well by σ 2

s = ln(1 + σ 2
ρ̄ ), as

discussed in the last paragraph of Section 3.3.2.

APPENDI X A :

Fig. A1 shows the relation between σ 2
s and σ 2

ρ̄ . The relation σ 2
s =

ln(1 + σ 2
ρ̄ ) holds for lognormal distributions of density and/or small

density fluctuations (σρ̄ � 1; Price, Federrath & Brunt 2011). We
use this relation to explain the scaling of σ 2

s based on the turbulent
and buoyant components of σ 2

ρ̄ in our study.

APPENDI X B:

Table B1 provides a long version of Table 1, listing all the simula-
tions, including all input parameters and relevant calculated/output
variables.
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Table B1. Full list of simulations.

Mbin Hρ HP Resolution Fr⊥ M σ 2
s σ 2

ln P̄

0.01 8.00 8.00 5122 × 768 3.4−0.3
+0.3 × 10−1 0.0087 ± 0.0003 1.1−0.1

+0.2 × 10−5 1.4−0.3
+0.4 × 10−9

0.01 4.00 4.00 5122 × 768 1.8−0.2
+0.2 × 10−1 0.0089 ± 0.0005 1.1−0.1

+0.2 × 10−5 1.4−0.3
+0.3 × 10−9

0.01 2.00 2.00 5122 × 768 9.4−1.3
+1.5 × 10−2 0.0098 ± 0.0008 7.4−1.2

+1.5 × 10−6 1.6−0.4
+0.6 × 10−9

0.01 1.00 1.00 5122 × 768 4.4−0.6
+0.7 × 10−2 0.010 ± 0.001 6.4−1.1

+1.4 × 10−6 2.5−0.6
+0.8 × 10−9

0.05 17.32 13.86 2562 × 384 9.5−2.2
+2.9 × 100 0.053 ± 0.005 1.7−0.5

+0.8 × 10−6 2.0−0.4
+0.5 × 10−6

0.05 5.48 4.38 2562 × 384 2.7−0.6
+0.9 × 100 0.053 ± 0.005 9.1−4.3

+8.1 × 10−6 2.0−0.5
+0.6 × 10−6

0.05 1.73 1.39 2562 × 384 4.8−0.6
+0.7 × 10−1 0.047 ± 0.005 1.4−0.3

+0.3 × 10−4 1.3−0.3
+0.5 × 10−6

0.05 0.55 0.44 2562 × 384 1.6−0.4
+0.5 × 10−1 0.050 ± 0.008 1.3−0.2

+0.2 × 10−4 1.1−0.2
+0.3 × 10−6

0.05 21.33 21.33 2562 × 384 1.1−0.3
+0.4 × 101 0.053 ± 0.005 2.1−0.7

+1.1 × 10−6 2.2−0.5
+0.6 × 10−6

0.05 6.39 6.39 2562 × 384 3.0−0.7
+0.8 × 100 0.053 ± 0.005 1.5−0.7

+1.4 × 10−5 2.2−0.4
+0.5 × 10−6

0.05 3.00 3.00 2562 × 384 9.8−1.8
+2.2 × 10−1 0.051 ± 0.005 1.2−0.4

+0.6 × 10−4 1.8−0.4
+0.5 × 10−6

0.05 1.96 1.96 2562 × 384 4.9−0.7
+0.8 × 10−1 0.048 ± 0.005 2.5−0.5

+0.6 × 10−4 1.2−0.3
+0.5 × 10−6

0.05 0.62 0.62 5122 × 768 1.6−0.4
+0.5 × 10−1 0.050 ± 0.008 2.5−0.4

+0.4 × 10−4 1.0−0.3
+0.3 × 10−6

0.05 0.62 0.62 10242 × 1536 1.6−0.2
+0.2 × 10−1 0.050 ± 0.004 2.4−0.4

+0.4 × 10−4 1.1−0.2
+0.3 × 10−6

0.05 0.28 0.28 5122 × 768 7.2−1.1
+1.3 × 10−2 0.057 ± 0.010 1.9−0.3

+0.3 × 10−4 2.0−0.5
+0.7 × 10−6

0.05 21.87 26.25 2562 × 384 1.1−0.2
+0.3 × 101 0.053 ± 0.005 2.5−1.0

+1.8 × 10−6 2.1−0.5
+0.6 × 10−6

0.05 7.14 8.57 2562 × 384 3.1−0.7
+0.9 × 100 0.053 ± 0.005 1.7−0.8

+1.6 × 10−5 2.1−0.4
+0.6 × 10−6

0.05 3.00 3.60 2562 × 384 9.5−1.7
+2.1 × 10−1 0.051 ± 0.005 2.0−0.6

+0.9 × 10−4 1.9−0.4
+0.4 × 10−6

0.05 2.00 2.40 2562 × 384 5.0−0.7
+0.8 × 10−1 0.048 ± 0.005 3.5−0.7

+0.9 × 10−4 1.3−0.3
+0.5 × 10−6

0.05 0.60 0.72 5122 × 768 1.5−0.4
+0.6 × 10−1 0.051 ± 0.008 3.7−0.6

+0.7 × 10−4 1.1−0.2
+0.3 × 10−6

0.05 0.20 0.24 5122 × 768 5.2−0.8
+0.9 × 10−2 0.061 ± 0.011 3.6−0.5

+0.6 × 10−4 4.4−1.1
+1.4 × 10−6

0.05 17.78 26.67 2562 × 384 8.8−2.2
+2.9 × 100 0.053 ± 0.005 4.2−1.9

+3.7 × 10−6 2.1−0.5
+0.6 × 10−6

0.05 7.14 10.71 2562 × 384 3.2−0.7
+0.9 × 100 0.053 ± 0.005 2.5−1.2

+2.5 × 10−5 2.1−0.4
+0.6 × 10−6

0.05 3.20 4.80 2562 × 384 1.1−0.2
+0.3 × 100 0.051 ± 0.005 2.3−0.8

+1.2 × 10−4 1.9−0.4
+0.6 × 10−6

0.05 2.00 3.00 2562 × 384 5.0−0.6
+0.7 × 10−1 0.047 ± 0.004 4.8−1.0

+1.2 × 10−4 1.2−0.3
+0.4 × 10−6

0.05 0.62 0.93 5122 × 768 1.6−0.4
+0.6 × 10−1 0.050 ± 0.008 5.8−0.9

+1.1 × 10−4 1.1−0.3
+0.3 × 10−6

0.05 0.20 0.30 5122 × 768 5.5−0.8
+1.0 × 10−2 0.063 ± 0.011 5.8−0.8

+0.9 × 10−4 3.8−0.8
+1.0 × 10−6

0.05 20.00 39.99 2562 × 384 1.0−0.2
+0.3 × 101 0.053 ± 0.005 4.1−1.8

+3.3 × 10−6 2.1−0.4
+0.5 × 10−6

0.05 6.67 13.33 2562 × 384 3.1−0.7
+0.9 × 100 0.052 ± 0.005 4.3−2.0

+3.6 × 10−5 2.0−0.5
+0.6 × 10−6

0.05 2.75 5.50 2562 × 384 8.8−1.4
+1.7 × 10−1 0.050 ± 0.005 4.5−1.3

+1.8 × 10−4 1.8−0.4
+0.5 × 10−6

0.05 1.25 2.50 2562 × 384 3.1−0.3
+0.4 × 10−1 0.046 ± 0.005 9.6−1.6

+1.9 × 10−4 1.1−0.3
+0.4 × 10−6

0.05 0.58 1.16 5122 × 768 1.5−0.5
+0.7 × 10−1 0.050 ± 0.008 9.2−1.5

+1.8 × 10−4 1.2−0.3
+0.4 × 10−6

0.05 0.58 1.16 10242 × 1536 1.5−0.2
+0.2 × 10−1 0.051 ± 0.007 9.2−1.3

+1.7 × 10−4 1.2−0.3
+0.4 × 10−6

0.05 0.20 0.40 5122 × 768 5.9−1.0
+1.3 × 10−2 0.064 ± 0.011 9.2−1.2

+1.4 × 10−4 4.3−0.9
+1.1 × 10−6

0.10 8.66 6.93 2562 × 384 9.5−2.3
+3.1 × 100 0.104 ± 0.012 1.7−0.4

+0.5 × 10−5 3.0−0.7
+1.0 × 10−5

0.10 2.74 2.19 2562 × 384 2.6−0.6
+0.8 × 100 0.103 ± 0.011 5.0−2.0

+3.3 × 10−5 2.8−0.7
+0.9 × 10−5

0.10 0.87 0.69 2562 × 384 4.9−0.7
+0.8 × 10−1 0.096 ± 0.009 5.6−1.0

+1.2 × 10−4 2.2−0.5
+0.7 × 10−5

0.10 0.27 0.22 5122 × 768 1.6−0.3
+0.3 × 10−1 0.102 ± 0.017 6.0−1.0

+1.2 × 10−4 2.6−0.6
+0.8 × 10−5

0.10 9.59 9.59 2562 × 384 9.8−2.3
+3.0 × 100 0.105 ± 0.010 2.1−0.6

+0.8 × 10−5 3.2−0.7
+0.9 × 10−5

0.10 3.75 3.75 2562 × 384 3.4−0.8
+1.0 × 100 0.105 ± 0.008 5.6−2.1

+3.4 × 10−5 3.1−0.5
+0.7 × 10−5

0.10 1.56 1.56 2562 × 384 1.0−0.2
+0.2 × 100 0.100 ± 0.010 4.6−1.4

+2.0 × 10−4 2.7−0.6
+0.8 × 10−5

0.10 0.98 0.98 2562 × 384 5.0−0.7
+0.8 × 10−1 0.094 ± 0.009 1.0−0.2

+0.3 × 10−3 2.0−0.5
+0.6 × 10−5

0.10 0.22 0.22 5122 × 768 1.2−0.2
+0.2 × 10−1 0.114 ± 0.021 1.1−0.2

+0.2 × 10−3 3.6−1.0
+1.4 × 10−5

0.10 11.18 13.41 2562 × 384 1.1−0.3
+0.4 × 101 0.105 ± 0.011 2.1−0.6

+0.8 × 10−5 3.2−0.7
+1.0 × 10−5

0.10 3.76 4.51 2562 × 384 3.2−0.7
+0.9 × 100 0.105 ± 0.011 8.3−3.2

+5.3 × 10−5 3.3−0.8
+1.0 × 10−5

0.10 1.50 1.80 2562 × 384 9.0−1.5
+1.8 × 10−1 0.100 ± 0.008 7.8−2.2

+3.0 × 10−4 2.9−0.6
+0.7 × 10−5

0.10 1.00 1.20 2562 × 384 5.0−0.7
+0.8 × 10−1 0.094 ± 0.008 1.4−0.3

+0.3 × 10−3 1.9−0.4
+0.6 × 10−5

0.10 0.22 0.26 5122 × 768 1.2−0.2
+0.2 × 10−1 0.114 ± 0.020 1.4−0.2

+0.3 × 10−3 2.8−0.7
+0.9 × 10−5

0.10 10.61 15.92 2562 × 384 1.1−0.3
+0.4 × 101 0.105 ± 0.010 2.4−0.8

+1.2 × 10−5 3.1−0.7
+0.8 × 10−5

0.10 3.75 5.62 2562 × 384 3.3−0.7
+0.8 × 100 0.104 ± 0.009 1.0−0.4

+0.8 × 10−4 3.0−0.6
+0.7 × 10−5

0.10 1.50 2.25 2562 × 384 9.1−1.4
+1.6 × 10−1 0.100 ± 0.007 1.0−0.3

+0.4 × 10−3 3.0−0.5
+0.7 × 10−5
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Table B1 – continued

Mbin Hρ HP Resolution Fr⊥ M σ 2
s σ 2

ln P̄

0.10 0.98 1.47 2562 × 384 4.8−0.5
+0.6 × 10−1 0.096 ± 0.008 2.2−0.4

+0.5 × 10−3 2.0−0.5
+0.7 × 10−5

0.10 0.22 0.33 5122 × 768 1.2−0.2
+0.3 × 10−1 0.114 ± 0.021 2.5−0.4

+0.4 × 10−3 3.2−0.8
+1.1 × 10−5

0.10 10.00 20.00 2562 × 384 1.1−0.3
+0.4 × 101 0.105 ± 0.010 2.8−1.0

+1.5 × 10−5 3.2−0.7
+0.9 × 10−5

0.10 3.50 7.00 2562 × 384 3.3−0.7
+0.9 × 100 0.104 ± 0.009 1.6−0.7

+1.3 × 10−4 3.1−0.7
+0.9 × 10−5

0.10 1.50 3.00 2562 × 384 9.7−1.6
+1.9 × 10−1 0.099 ± 0.009 1.5−0.4

+0.6 × 10−3 3.1−0.7
+0.9 × 10−5

0.10 0.92 1.83 2562 × 384 4.7−0.5
+0.5 × 10−1 0.097 ± 0.008 3.2−0.5

+0.6 × 10−3 2.2−0.5
+0.7 × 10−5

0.10 0.20 0.40 5122 × 768 1.1−0.2
+0.3 × 10−1 0.114 ± 0.019 4.7−0.7

+0.8 × 10−3 5.1−1.3
+1.7 × 10−5

0.25 3.46 2.77 2562 × 384 8.9−1.9
+2.5 × 100 0.244 ± 0.025 4.3−0.9

+1.2 × 10−4 8.8−2.0
+2.6 × 10−4

0.25 1.10 0.88 2562 × 384 2.4−0.6
+0.7 × 100 0.244 ± 0.024 8.5−2.0

+2.6 × 10−4 8.9−1.7
+2.1 × 10−4

0.25 0.35 0.28 2562 × 384 5.1−1.6
+2.4 × 10−1 0.238 ± 0.024 4.2−0.7

+0.9 × 10−3 1.1−0.3
+0.4 × 10−3

0.25 0.12 0.10 5122 × 768 1.6−0.2
+0.2 × 10−1 0.206 ± 0.034 2.5−0.4

+0.5 × 10−3 5.3−1.5
+2.0 × 10−4

0.25 6.40 6.40 2562 × 384 1.1−0.2
+0.3 × 101 0.248 ± 0.023 5.0−0.8

+0.9 × 10−4 9.8−1.8
+2.3 × 10−4

0.25 2.00 2.00 2562 × 384 3.2−0.6
+0.7 × 100 0.250 ± 0.028 1.1−0.2

+0.3 × 10−3 1.1−0.2
+0.3 × 10−3

0.25 0.75 0.75 2562 × 384 1.2−0.2
+0.3 × 100 0.236 ± 0.023 2.4−0.6

+0.9 × 10−3 8.0−1.8
+2.4 × 10−4

0.25 0.39 0.39 2562 × 384 5.1−2.1
+4.5 × 10−1 0.233 ± 0.021 6.6−1.4

+1.8 × 10−3 8.1−1.8
+2.3 × 10−4

0.25 0.12 0.12 5122 × 768 1.8−0.2
+0.2 × 10−1 0.266 ± 0.043 8.5−1.5

+1.9 × 10−3 1.2−0.3
+0.3 × 10−3

0.25 0.12 0.12 10242 × 1536 1.8−0.2
+0.2 × 10−1 0.267 ± 0.009 8.5−1.4

+1.6 × 10−3 1.2−0.2
+0.3 × 10−3

0.25 7.00 8.40 2562 × 384 1.2−0.2
+0.2 × 101 0.248 ± 0.020 5.1−0.8

+0.9 × 10−4 9.7−1.7
+2.1 × 10−4

0.25 2.00 2.40 2562 × 384 3.1−0.5
+0.7 × 100 0.248 ± 0.023 1.4−0.3

+0.3 × 10−3 1.0−0.2
+0.2 × 10−3

0.25 0.75 0.90 2562 × 384 1.1−0.2
+0.3 × 100 0.237 ± 0.024 3.5−0.9

+1.3 × 10−3 8.4−2.0
+2.7 × 10−4

0.25 0.40 0.48 2562 × 384 5.1−2.1
+4.1 × 10−1 0.232 ± 0.021 9.3−1.8

+2.5 × 10−3 7.7−1.9
+2.6 × 10−4

0.25 0.10 0.12 5122 × 768 1.9−0.2
+0.2 × 10−1 0.362 ± 0.043 2.3−0.4

+0.5 × 10−2 4.4−1.0
+1.4 × 10−3

0.25 6.40 9.60 2562 × 384 1.1−0.2
+0.3 × 101 0.252 ± 0.022 5.9−1.0

+1.2 × 10−4 1.0−0.2
+0.2 × 10−3

0.25 2.00 3.00 2562 × 384 3.2−0.5
+0.7 × 100 0.249 ± 0.024 1.6−0.4

+0.6 × 10−3 9.9−1.8
+2.2 × 10−4

0.25 0.82 1.24 2562 × 384 1.4−0.3
+0.3 × 100 0.236 ± 0.025 3.6−1.0

+1.4 × 10−3 8.4−2.2
+3.0 × 10−4

0.25 0.39 0.59 2562 × 384 4.9−1.8
+3.2 × 10−1 0.231 ± 0.023 1.3−0.3

+0.4 × 10−2 7.6−1.7
+2.2 × 10−4

0.25 0.10 0.15 5122 × 768 2.2−0.2
+0.3 × 10−1 0.449 ± 0.053 6.7−1.1

+1.4 × 10−2 1.2−0.3
+0.3 × 10−2

0.25 6.00 12.00 2562 × 384 1.1−0.2
+0.2 × 101 0.251 ± 0.023 6.4−1.1

+1.3 × 10−4 1.0−0.2
+0.2 × 10−3

0.25 2.00 4.00 2562 × 384 3.3−0.5
+0.6 × 100 0.247 ± 0.021 2.0−0.5

+0.7 × 10−3 9.7−1.6
+2.0 × 10−4

0.25 0.75 1.50 2562 × 384 1.3−0.2
+0.3 × 100 0.235 ± 0.024 5.9−1.6

+2.3 × 10−3 7.8−2.1
+2.8 × 10−4

0.25 0.37 0.73 2562 × 384 5.2−1.4
+2.0 × 10−1 0.232 ± 0.022 1.7−0.4

+0.5 × 10−2 8.0−1.7
+2.2 × 10−4

0.25 0.10 0.20 5122 × 768 2.9−0.5
+0.7 × 10−1 0.536 ± 0.070 1.4−0.3

+0.3 × 10−1 3.0−0.7
+0.9 × 10−2

0.25 0.10 0.20 10242 × 1536 2.9−0.3
+0.3 × 10−1 0.550 ± 0.083 1.4−0.3

+0.4 × 10−1 3.2−0.7
+0.9 × 10−2

0.40 1.75 1.75 5122 × 768 7.4−1.4
+1.7 × 100 0.365 ± 0.069 2.4−0.9

+1.5 × 10−3 4.3−1.8
+3.2 × 10−3

0.40 0.70 0.70 5122 × 768 2.7−0.6
+0.8 × 100 0.371 ± 0.065 4.9−1.6

+2.5 × 10−3 5.4−2.0
+3.2 × 10−3

0.40 0.30 0.30 5122 × 768 7.3−2.5
+4.7 × 10−1 0.400 ± 0.067 2.2−0.4

+0.6 × 10−2 1.3−0.3
+0.5 × 10−2

0.40 0.15 0.15 5122 × 768 3.3−0.4
+0.5 × 10−1 0.402 ± 0.079 3.2−0.8

+1.0 × 10−2 1.1−0.3
+0.4 × 10−2

0.40 1.75 2.10 5122 × 768 7.8−1.4
+1.7 × 100 0.367 ± 0.071 2.6−1.0

+1.8 × 10−3 4.4−1.8
+3.2 × 10−3

0.40 0.70 0.84 5122 × 768 2.8−0.6
+0.8 × 100 0.378 ± 0.065 5.5−2.0

+3.3 × 10−3 5.9−2.1
+3.4 × 10−3

0.40 0.30 0.36 5122 × 768 7.7−2.3
+4.0 × 10−1 0.402 ± 0.068 2.3−0.5

+0.7 × 10−2 1.2−0.3
+0.5 × 10−2

0.40 0.17 0.20 5122 × 768 4.2−0.7
+0.9 × 10−1 0.436 ± 0.090 4.5−1.0

+1.3 × 10−2 1.7−0.5
+0.7 × 10−2

0.40 1.37 2.06 5122 × 768 6.8−1.3
+1.7 × 100 0.365 ± 0.075 2.9−1.1

+1.7 × 10−3 4.3−1.9
+3.3 × 10−3

0.40 0.60 0.90 5122 × 768 2.6−0.6
+0.7 × 100 0.383 ± 0.069 7.1−2.6

+4.2 × 10−3 6.6−2.3
+3.7 × 10−3

0.40 0.30 0.45 5122 × 768 9.0−2.2
+3.0 × 10−1 0.400 ± 0.070 2.5−0.6

+0.8 × 10−2 1.2−0.4
+0.6 × 10−2

0.40 0.14 0.21 5122 × 768 4.7−0.8
+1.1 × 10−1 0.543 ± 0.080 9.0−1.5

+1.8 × 10−2 4.1−0.8
+1.1 × 10−2
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