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Quantification of Curcuminoids in Turmeric Using Visible
Reflectance Spectra and a Decision-Tree Based Chemometric
Approach
Hasika Suresh, Amruta Ranjan Behera,z Shankar Kumar Selvaraja, and Rudra Pratap
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For quantification of curcumin content in turmeric, a low-cost multivariate-analysis-based sensing system is desired. It can be
realized by exploiting the spectra in the visible region, which enables the use of off-the-shelf, relatively inexpensive light sources
and detectors. To address this, we propose a novel decision-tree method for improved prediction accuracy. Two sets of models with
PLSR algorithm are developed with the measured reflectance spectra from 66 turmeric samples in the range of 360–750 nm, and
their respective curcuminoids content are quantified by HPLC. A suite of a coarse-model for initial prediction of turmeric samples
in the broad range of 1%–4%, and five finer-models for subsequent prediction (in the ranges 1%–2%, 2%–3%, 3%–4%,
1.5%–2.5%, and 2.5%–3.5%) constitute the proposed decision-tree approach. The method’s efficacy is substantiated from an
improved coefficient of determination (R2) for the finer models (0.90–0.96) as compared to the coarse-model’s 0.92. This is further
corroborated with lower RMSECV of 0.06–0.13 and an RMSEP of 0.15–0.25 for finer models, as compared to 0.219 and 0.45 for
the coarse model, respectively. Testing reveals that the method results in 46% reduction in prediction error. Realization of a robust
prediction approach in the visible range sets the stage for the development of cost-effective field-deployable devices for on-site
measurement of curcumin.
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From modern literature to the books of traditional medicine,
turmeric is hailed as one of the most important medicinal plants.
Botanically, it belongs to the Zingiberaceae family. It is cultivated in
the tropical and sub-tropical belts of the world, including India,
Indonesia, South East Asia and Jamaica. As a food additive, turmeric
imparts colour, flavor and also improves the shelf life of food products.1

In the world of traditional remedies, it is used to alleviate a plethora of
ailments including diabetic wounds, cough, joint pains, anorexia, etc.2

The yellow bioactive compound in turmeric conferring these benefits, is
Curcumin and it is known to show strong pharmacological activity as
an anti-bacterial, anti-inflammatory and anti-cancerous3,4 molecule.
Structurally, it is a symmetrical molecule and has three chemical
entities, two aromatic ring systems containing phenolic groups, con-
nected by a seven-carbon linker. It has three forms based on the
functional groups on the aromatic rings, called curcuminoids, namely
curcumin, demethoxycurcumin and bisdemethoxycurcumin. Among
these, curcumin is the largest contributor of the curcuminoids.

Quantifying these curcuminoids is essential for selecting the right
variety of turmeric for any industry, that are till-date trying to
explore all possible benefits this ancient spice has to offer. Among
them, the nutraceutical industry that has a concomitant connection
with turmeric, has made great advances in enhancing the bio-
availability of curcumin through different nano-carriers and encap-
sulations of curcumin.5 This, in turn, is helping the pharmaceutical
industry that is trying to make intravenous injects of curcumin.6

Monitoring the crucial steps through on going quantification of
curcumin at every stage becomes of paramount importance. At the
grass root level, the ability to quantify curcumin at the different
stages of harvesting and post-harvesting will not only help in
filtering the superior variety, but will also help the farmers get a
better value for their crop.

A variety of analytical methods are used to analyse and quantify
curcuminoids depending on the industrial need and quality obligations.
The most popular ones are High Performance Liquid Chromatography
(HPLC)7 and its coupling to mass spectroscopy (LC-MS),8 Thin Layer
Chromatography (TLC),9 supercritical extraction10 and spectrophoto-
metric techniques11 as well as established techniques by ASTA.12

These traditional laboratory methods have been used as the gold
standard for quality control. However, such analyses are expensive and
time consuming, requiring bulky instruments and usage of a plethora of
chemicals, some even very toxic and hard to dispose. Industries that
rely heavily on these tests for their manufacturing processes lose out on
precious time while also adding to the woes of an already accumulating
problem of waste management. A growing demand for faster, on-site
quality analysis of food and agricultural produce with minimal sample
preparation and chemical usage, has resulted in adoption of chemo-
metric based techniques that have minimal or no sample preparation
involved.

Fortunately, an upsurge in the use of spectroscopy as a non-
destructive tool in both qualitative and quantitative analysis for a
myriad of components is slowly gaining momentum. Spectroscopy
combined with chemometrics is a powerful tool for determining
physical properties and chemical signatures.13,14 It has infiltrated
into several fields including the food and beverage industry for
classifying different food powders,15 identifying adulterants,16

monitoring fermentation of red wine,17 tracking critical pharmaceu-
tical steps,18 and linking the evidence to the suspect in forensic
sciences.19 For our case in point, researchers have used various
spectroscopic methods including diffused reflectance spectroscopy,
Fourier Transform Infrared spectroscopy (FT-IR) and Raman
spectroscopy, to predict the quantity of curcumin in turmeric
samples.20–22 Most of them, if not all, have exploited the NIR range
(wavelength 700–2500 nm) to pick up signatures of specific che-
mical bonds in curcumin, and correlating the measured spectrum
with the reference curcumin value. The reported accuracy for a
predictive model has ranged between 91%–98%. Due to the recent
developments in machine learning and cloud computing, there is a
renewed interest from the spectrometer manufacturers to advance
instrumentation with primary emphasis on miniaturization to exploit
the IoT technologies. This had led to the development of several
micro-spectrometers15,23 with a parallel effort for their cost reduc-
tion. Since the cost for miniaturized light sources and detectors in the
visible region is less than their NIR counterparts, our effort is
directed towards enabling chemometric prediction of curcumin using
the reflectance spectra in the visible range.

There are three critical aspects to a successful practical imple-
mentation of a chemometrics based system: presence of a spectralzE-mail: amruta@iisc.ac.in
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signature from the sample of interest, a reliable instrument for
spectral acquisition, and a robust chemometric prediction model. We
are focussing on the last part, as we see this as the missing element
for curcumin estimation in turmeric. To the best of our knowledge,
there are no reported chemometric models for estimation of
curcumin in turmeric using the reflectance spectra in the visible
range of the electromagnetic spectrum.

In this paper, we have explored curcumin’s signature in the
visible range (360–750 nm) and have used a decision-tree based
chemometric approach through the construction of two kinds of
models to predict curcumin, for improved accuracy. Affordable
silicon detectors and availability of LED light sources in the sub-
1000 nm and a set-up that can incorporate robust chemometric
models can set the stage for the development of cost-effective field-
deployable spectrometers for on-site measurements.

Materials and Methods

Sample collection and processing.—The sample-set for this
study includes commercially procured turmeric powders as well as
samples directly from farmers and traders. Dry turmeric roots were
procured from different parts of India (Salem, Erode, Meghalaya and
Kerala). The roots were first manually cut into small pieces (1 cm ×
1 cm), followed by grinding them to a fine powder with a kitchen
grinder. This powder was passed through a 250 μm industrial sieve
to maintain uniform particle size. The turmeric powders were also
hot air dried at 70 °C for four hours to remove the moisture from
them. All analyses were performed on powders. The standard
curcumin was purchased from SDFCL for HPLC analysis.

HPLC method for quantifying curcumin.—A turmeric sample/
curcumin standard (95% pure) of 5 mg was accurately weighed and
transferred to a 5 ml volumetric flask through a glass funnel. HPLC
grade acetonitrile (SDFCL) was pipetted into the flask and filled up
to the mark by the lower meniscus, making a stock concentration of
1 mg ml−1. The flask capped with a glass screw was vortexed for
2 min at speed 6 (2500 rpm, -maximum speed) in a vortex mixer
(IKA vortex Genius 3 mixer). One ml of this solution was
centrifuged (Hermle-lav centrifuge) at 4000 rpm for 3 min to
separate the supernatant and the undissolved particles. The super-
natant was diluted with the mobile phase and injected into the
HPLC. All samples were analyzed with HPLC (Agilent 1260 Infinity
II with a quaternary pump and in an inbuilt degasser). A diode array
detector (DAD) captured the spectral information at 425 nm. A
stationary column of 4.6 mm × 50 mm and particle size of 2.7 μm
(InfinityLab Porshell 120) were used for separating the mixture into
its individual components. The temperature of the column was
maintained at 40 °C. The mobile phase consisted of 0.2% ortho-
phosphoric acid in de-ionized water and HPLC grade acetonitrile
(55:45: v/v) used in isocratic mode throughout the 6 min run-time at
a flow rate of 0.8 ml min−1. The column was thoroughly purged with
the mobile phase, ensuring a flat baseline before injecting any
sample. The curcumin standard and the turmeric samples were run in
triplicates. On separation, the individual peaks were identified and
quantified by comparing the area under the curve of each turmeric
sample against the area of the curcumin standard. The total
curcuminoids are reported in g/100 g turmeric.

Spectra acquisition.—The spectra were acquired with JAZ
spectrometer (from Oceanoptics, GMBH, Germany) in diffused
reflectance mode and an external light source for increased probing
intensity, and viewed in Ocean view (v. 1.6.7). The measurement
set-up is depicted in Fig. 1. The range of measurement was from
360 nm to 1030 nm. For obtaining a smooth spectrum by reducing
the noise associated with the measurement, some of the setting in the
spectrometer were as follows: the averaging was set at 35 (number
of scans internally taken to compute the mean spectrum), and
boxcar-width (analogous to moving average) as 5. A single
reflectance probe with two connectors (one for the light source

and one for the spectrometer) was used for both illuminating the
sample and collecting the reflected light from the sample. Integration
time was set as per a white reference standard of barium sulphate,
w.r.t. which, all the spectra were normalized after correcting for the
dark spectra. The parameters that could potentially affect the
reflected intensity from a sample were consistently maintained—
the distance from the sample to the measuring probe, degree of
compaction, and particle size distribution. Since the turmeric powder
were already dried, variations in the scanned spectra due to the
presence of moisture was minimized. With these measures in place,
it is fair to assume that the sample-to-sample variations in reflected
intensity represents the chemical distinctions to the best possible
extent for each of the 15 scans taken per sample.

Data analysis.—The acquired spectra were analyzed with
UnscramblerTM software (v.11). Data sorting and arranging was
done using MathematicaTM (v.12) for easier and convenient im-
porting. The samples were divided into training data (n = 66) and
test data (n = 10). The correlation between the processed spectra and
the curcumin content from HPLC analysis was examined by the
partial least squared regression (PLSR) algorithm through the
construction of two kinds of models (coarse and fine, as described
later), for accurate prediction of curcumin content. The models were
cross-validated on the test data sets. The model performance is
reported with coefficient of determination (R2) and root-mean-
squared error of cross validation (RMSECV) and prediction
(RMSEP) for the coarse and fine models.

Results and Discussion

Reference HPLC method.—Figure 2 shows the separation of the
three curcuminoid fractions in the curcumin standard—95%
(Fig. 2a) and a representative turmeric sample (Fig. 2b). As seen
in the figure, there is good separation of each fraction in both the
curcumin standard and the turmeric sample with the elution time
being under 5 min. The retention time for Bisdemethoxycurcumin,
Demethoxycurcumin and Curcumin were 2.937 ± 0.21, 3.365 ±
0.026, and 3.853 ± 0.032 min, respectively. For estimating the total
curcumin content of each turmeric sample, the sum of all the three
curcuminoids are considered.

Spectral analysis.—The spectra for all samples were recorded in
diffused reflectance mode and converted to absorbance equivalents
using Kubelka-Munk equation24 for improved co-relation to the
concentration of the analyte (as per Beer–Lambert’s law). The
spectra are recorded over the range of 360 nm–1030 nm. For this
study, we have used the turmeric spectra in the visible range
(360 nm–750 nm), as shown in Fig. 3a to build a regression model
in order to quantify curcumin. The spectra of these 7 samples are a
representative of all the samples in this data set. The spectra showed
overlapping patterns beyond 750 nm and did not have any useful
information to work with in this case. The visible spectrum of
turmeric is mainly due to electronic transitions in bonding or lone-
pair orbital and an unfilled non-bonding or anti-bonding orbitals.25

The spectra have a broad peak between 400–500 nm, which is
around the same wavelength range reported for liquid mode
measurements of curcumin in solvents as well.11

The spectra from the instrument are often noisy, scattered, and
sometimes might not show any visible peaks that can be used as
features for the models in its raw form, as shown in Fig. 3a. Pre-
processing steps enhance the data by correcting baseline offsets and
surfacing hidden information through their derivatives. Here we
describe the effect of each pre-processing steps applied to the data,
in sequence.

• Multiplicative scatter correction (MSC)—MSC removes base-
line shifts caused by both amplification (multiplicative) and off-set
(additive) arising due to particle size or light scattering conditions.
As seen in Fig. 3b, the MSC corrected spectra show a significant
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reduction in scattering from 400–700 nm. The MSC method is
believed to be the best suited for correction of spectra where the
scatter variation is large in comparison to the chemical variation. In
addition, the spectra should have relatively broad and strongly
nonselective peaks.26

• Orthogonal scatter correction (OSC)—OSC minimizes the co-
variance between X (wavelength) and Y (intensity) to maximize the
orthogonality between X and Y.27 As seen in Fig. 3c, OSC corrected
data has features that are not present in the original spectrum,
facilitating better interpretation of the models.

• Deresolve—A smoothening filter that allows to reduce the
noise in the data (Fig. 3d).

• Savitzky-Golay filter—The application of the first derivative
with Savitzky-Golay further highlights the spectral features as
observed between 500–600 nm in Fig. 3e.

Decision-tree approach.—The curcumin value in turmeric varies
from 1%–8% in dried fingers and bulbs and can go up to 10%–12%
in mother samples.28 To build a model to cater to the entire range
requires extensive sample collection and a uniform spread of values

over the entire range. For this study, we have undertaken to build a
model for curcumin values ranging from 1%–4%, due to the
predominant availability of samples in this range. The training
model consists of 66 samples with 15 scans each (total—990
spectra), subjected to a combination of pre-processing steps of
MSC, OSC, Deresolve and a Savitzky-Golay derivative filter
(Fig. 3). For a qualitative data analysis, principal component analysis
(PCA) is applied to the pre-processed data to visualize and remove
evident outliers (Fig. 4). Each dot in the PCA scores plot represents
the mean spectra of 15 scans per sample. The first two principal
components explain 95% (PC1 + PC2) of the variation among the
samples with respect to the wavelength range. There is subtle
clustering when the spectra are divided into 1% curcumin slabs;
indicating the similarities between those samples in terms of the
principal components. The Hotelling’s T2 ellipse29 is used to identify
and remove outliers. Any point outside the ellipse is considered a
potential outlier and can be removed to improve the model.

For quantitative data analysis, PLSR algorithm was used to
construct a coarse model to quantify total curcuminoids in powdered
turmeric samples using the HPLC data as the reference data. The
model yielded a coefficient of determination (R2) of 0.92 at PLS

Figure 1. Measurement set up for spectra acquisition from powdered turmeric samples.

Figure 2. (a) HPLC chromatogram of standard curcumin (95%) showing three peaks representing the three fractions, namely, Bisdemethoxycurcumin (peak 1),
Demethoxycurcumin (peak 2) and Curcumin (peak 3). (b) HPLC chromatogram of a representative turmeric sample.
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factor 7 with an RMSECV of 0.219 and an RMSEP of 0.45 on cross-
validation with a test set of 29 samples, that were not a part of the
training model. These samples had uniformly distributed curcumin
values, over the 1%–4% range.

Owing to the diversity in the range of values and the need for
poignant accuracy in quantifying the total curcuminoids through
their spectrum, another set of models covering smaller curcumin
ranges were constructed. The first set of fine models covered the
range of 1%–2%, 2%–3% and 3%–4%, while the second set
comprised models in the range of 1.5%–2.5% and 2.5%–3.5%.
These two sets of models are depicted in Fig. 5. The numbers along
the line designate the percentage curcumin content. The first and
second set of fine models are represented by the green bands above
and below the line, respectively. The second set of models are offset
by d (=0.5%) w.r.t. the first set, where d is half of a model’s span
(=1%), to deal with boundary cases as will be described below.
Once the initial prediction from the coarse model is obtained along
with the error (Y±ΔY), the decision rules for choosing the

Figure 3. Images representing the transformation of the turmeric spectra when subjected to a sequence of pre-processing steps. (a) Raw turmeric spectra from
the instrument. (b) MSC corrected spectra. (c) Spectra after applying OSC pre-treatment. (d) Application of Deresolve filter to smoothen the data (e) Spectra after
the application of Savitzky-Golay filter.

Figure 4. Scores corresponding to the first two principal components from
the PCA along with the Hotelling’s T2 ellipse.
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appropriate fine model for final assessment based on the predicted
range (Y-ΔY, Y+ΔY), are as follows:

If the range completely fits within the scope of one fine model,
then that model is chosen. Two such example cases are described
here: (i) Case 1: The range predicted by the coarse model is
1.25%–1.69% (sample 10), which implies that the appropriate fine
model is 1%–2%. (ii) Case 2: The range predicted by the coarse
model is 2.73%–3.17% (sample 8), therefore, the appropriate fine
model is 2.5%–3.5%, and not 2%–3% or 3%–4%. If the range
completely fits within the scope of two fine models, then the average
of both model’s prediction is used. An example is sample 3 (case 3),
for which the coarse-model-predicted range is 2%–2.44%. Both fine
models 2%–3% and 1.5%–2.5% should be used for prediction and
their average value should be considered as the final value.

These conditional steps form the basis of the proposed decision-
tree approach. It must be noted here that there is a relation between
the acceptable error for the coarse model (ΔY) and the staggered
offset (d) between the boundaries of two sets of fine models. For the
logical approach described in the above three cases, it is assumed
that the coarse model error (ΔY) is less than 0.25, which is the case
in this study (ΔY = 0.219). However, if the error is larger than 0.25,
then an ambiguous situation may arise (shown as case 4) when the

range overlaps into the scope of 4 finer models. The present set of
finer models is not suitable for such scenarios. Thus, it leads to
defining a rule-of-thumb of 2ΔY<d for specifying the boundaries of
fine models in a decision-tree approach like the one proposed here.

Each of these finer models were also subjected to a combination
of four pre-processing steps, i.e., OSC, MSC, Deresolve, and
Savitzky-Golay first derivative, with the exception for the curcumin
range 3%–4%, where OSC was not used, as this sample set did not
need an additional feature extraction step. The coefficient of
determination (R2) and RMSECV for each of the fine models
constructed with the PLSR algorithm is reported in Fig. 6. The
two model parameters, R2 ranged from 0.90 to 0.96 (Fig. 6a) and the
RMSECV varied from 0.06 to 0.13 (Fig. 6b), showing better
performance than the corase model. Each of the fine models was
also cross validated with a test data set and the RMSEP was in the
range of 0.15–0.25 (Fig. 6c).

Ten samples out of the 29 test samples were chosen to
demonstrate this approach. The results from all the steps of the
decision-tree approach are summarized in Table I, along with the
final predicted value of curcumin from the inferred fine model.
Figure 7 shows the diagrammatic representation of the final
validation results for test samples that were not included in the

Figure 6. Bar charts illustrating model parameters for each of the fine models: (a) Coefficient of determination (R2), (b) Root-mean-squared error of cross-
validation (RMSECV), (c) Root-mean-squared error of prediction (RMSEP).

Figure 5. Representation of the decision- tree approach for selection of the suitable fine.
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Table I. Results from the decision-tree approach followed to choose the suitable fine model for 10 test samples, and the final prediction of curcumin content.

Sample ID Actual curcumin content (x %) Coarse model predicted value (y %)
y

−0.219 y + 0.219 Inferred fine model Final predicted value of curcumin (z %)

1 2.75 2.82 2.60 3.04 2.5%–3.5% 2.7
2 2.21 1.90 1.68 2.12 1.5%–2.5% 2.03
3 2.13 2.22 2.00 2.44 2%–3% 2.15
4 2.19 2.47 2.25 2.68 2%–3% 2.4
5 2.75 2.85 2.63 3.07 2.5%–3.5% 2.83
6 3.64 3.92 3.70 4.14 3%–4% 3.8
7 3.02 2.76 2.54 2.98 2.5%–3.5% 3.04
8 3.27 2.95 2.73 3.17 2.5%–3.5% 3.24
9 1.76 1.27 1.05 1.49 1%–2% 1.31
10 1.24 1.47 1.25 1.69 1%–2% 1.39
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calibration model. The higher the coefficient of determination (R2),
the better the correlation between the actual curcumin value and
the predicted value (quantities x and z from Table I, respectively).
These values are depicted in Fig. 7a and R2 was found to be 0.96.
The points correspond to the mean, and the error-bars represent the
variations among the predicted curcumin values corresponding to the
15 scans of a particular sample. Based on the mean and the standard-
deviation of the 15 predicted values for a sample, the variation was
found to be in the range of 1%–5%, which shows reasonable
repeatability. To further strengthen our claim of improved accuracy
with the decision tree approach, the deviations in both the predicted
values from the coarse model(y) and from the inferred fine model(z),
w.r.t. the actual values(x) were analyzed. As seen in Fig. 7b, there is
an evident decrease in the deviation in the fine model predictions as
compared to the coarse model, for all the 10 samples, which
indicates closer prediction to the actual value of curcumin content
in these turmeric samples. The prediction errors from a fine model
for 10 samples was found to be 46% less as compared to the coarse
model prediction errors.

Conclusions

This study shows that visible spectroscopy coupled with chemo-
metrics can be used as a non-destructive tool to quantify total
curcuminoids in a diverse variety of powdered turmeric samples.
The samples used here represent the most prevalent varieties with
1%–4% curcumin content. A decision-tree approach for improved
accuracy is also established through the construction of a coarse and
fine model for curcumin prediction, which is shown to result in an
average of 46% reduction in the prediction error. The coefficient of
determination for the validation set was 0.96, showing a strong
correlation. The repeatability error for prediction was within 5%.
Realization of a robust prediction approach in the visible range sets
the stage for the development of cost-effective field-deployable
devices for on-site measurement of curcumin in turmeric samples.
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