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1. INTRODUCTION

The purpose of the present article is to generalize some classical and recent results on a complemen-

tary triangle inequality in Hilbert spaces and Banach spaces. The study of such inequalities in various

forms has been conducted by several authors [1, 2, 5, 6]. The first instance of such an inequality

was obtained in the celebrated paper of Diaz and Metcalf [2], motivated by a geometric inequality

for complex numbers obtained by Wilf in [11]. The complementary triangle inequality obtained by

Diaz and Metcalf, in Theorem 1 of [2] in the Hilbert space setting, was generalized by Dragomir in

Theorem 3 of [6]. This was further generalized by Mansoori et al. in Theorem 3.1 of [5]. In the
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Gadadhar Misra. The author feels elated to acknowledge the support and the inspiring presence of his parents Dr. Dwijendra
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present article we generalize all the above results, substantially increasing the scope of applying such

a complementary triangle inequality in Hilbert spaces and Banach spaces.

Letters X,Y stand for Banach spaces. We reserve the symbol H for a Hilbert space, and the

symbol 〈, 〉 for the inner product on H. We will consider only spaces of dimension strictly greater

than 1 throughout the article. Unless otherwise specified, we consider the underlying field to be C,

the field of complex numbers. Given a complex number z, we use the notations Re z, Im z, and z̄

to denote the real part of z, the imaginary part of z, and the complex conjugate of z respectively. Let

BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} denote the unit ball and the unit sphere

of X respectively and let X∗ denote the dual space of X. We use the symbol L(X,Y) to denote the

Banach space of all bounded linear operators from X to Y, endowed with the usual operator norm.

For T ∈ L(X,Y), let MT = {x ∈ SX : ‖Tx‖ = ‖T‖} denote the norm attainment set of T. Given

any x ∈ X and any r > 0, let B(x, r) = {y ∈ X : ‖y − x‖ < r} denote the open ball with radius r

and center at x. The symbol θ is used to denote the zero vector of any Banach space, other than the

scalar field. Let us first state the complementary inequality obtained by Diaz and Metcalf in Theorem

1 of [2].

Theorem 1.1 — Let H be a Hilbert space and let a ∈ SH be fixed. Suppose the vectors

x1, . . . , xn ∈ H, whenever xi 6= 0, satisfy

0 ≤ r ≤ Re 〈xi, a〉 , i = 1, . . . , n.

Then

r

n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖,

where equality holds if and only if

n∑

i=1

xi = r

(
n∑

i=1

‖xi‖
)

a.

We would like to note that the above inequality becomes useless if 〈xi, a〉 = 0 for any i =

1, . . . , n. In light of this fact, we would like to considerably increase the scope of such a complemen-

tary triangle inequality. Indeed, we prove that if only some xi satisfy the desired inequality stated in

the above theorem, with r > 0 and the other vectors are of sufficiently small norm, then once again

it is possible to have a generalized complementary triangle inequality. As a matter of fact, applying

this simple idea, we generalize Theorem 1 of [2], Theorem 3 of [6], and Theorem 3.1 of [5]. We

illustrate that the complementary triangle inequality obtained by us can be applied to a larger class of

vectors than those considered before. We also study similar complementary triangle inequalities in
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the setting of Hilbert spaces and Banach spaces. We also give an intrinsic condition, in terms of semi-

inner-products (s.i.p.), on the concerned vectors in a strictly convex Banach space, in order to obtain

a complementary triangle inequality. For the sake of completeness, let us mention the definitions of

s.i.p., strict convexity and smoothness, which are integral to serving our purpose.

Definition 1.1 — Let X be a Banach over the fieldK ∈ {R,C}. A function [ , ] : X×X −→ K is

a semi-inner-product (s.i.p.) if for any α, β ∈ K and for any x, y, z ∈ X, it satisfies the following:

(a) [αx + βy, z] = α[x, z] + β[y, z],

(b) [x, x] > 0, whenever x 6= θ,

(c) |[x, y]|2 ≤ [x, x][y, y],

(d) [x, αy] = ᾱ[x, y].

Definition 1.2 — Let X be a Banach over the field K ∈ {R,C}. We say that X is strictly convex

if every point of SX is an extreme point of BX. Given a non-zero x ∈ X, we say that X is smooth at

the point x if there exists a unique supporting hyperplane to BX at the point x
‖x‖ .

We refer the readers to [3, 4, 10] for more information on s.i.p. and its various applications. In

particular, whenever we speak of a s.i.p. [ , ] in a Banach space X, we implicitly assume that the

concerned s.i.p. is compatible with the norm on X, i.e., [x, x] = ‖x‖2 for any x ∈ X. Finally, as an

application of the complementary triangle inequality obtained by us in the present paper, we obtain

an interesting norm inequality for linear operators on a finite-dimensional real Banach space.

2. MAIN RESULTS

As mentioned before, the first complementary triangle inequality for vectors in a Hilbert space was

obtained in Theorem 1 of [2]. This result was generalized in Theorem 3 of [6], and thereafter in

Theorem 3.1 of [5]. Since the equality condition has not been mentioned in Theorem 3.1 of [5] and

we require it for our purpose, let us begin with restating Theorem 3.1 of [5] in an equivalent form,

along with the equality condition. The proof is omitted as it follows rather trivially from the proofs

of the above theorems.

Theorem 2.1 — Let H be a Hilbert space and let a ∈ SH be a fixed vector. Let x1, . . . , xk ∈
H \ {θ} satisfy the following conditions:

(i)

(
k∑

i=1

r1‖xi‖
)2

≤
(

k∑

i=1

Re 〈xi, a〉
)2

, (ii)

(
k∑

i=1

r2‖xi‖
)2

≤
(

k∑

i=1

Im 〈xi, a〉
)2

,



1818 DEBMALYA SAIN

where r1, r2 ≥ 0. Then
(
r2
1 + r2

2

) 1
2

k∑

i=1

‖xi‖ ≤ ‖
k∑

i=1

xi‖.

Moreover, equality holds in the above inequality if and only if

(iii)
k∑

i=1

xi =

(
(
r2
1 + r2

2

) 1
2

k∑

i=1

‖xi‖
)

a, and (iv) inequalities (i) and (ii) are equalities.

We are now ready to state and prove our first complementary triangle inequality in Hilbert spaces.

We note that the following theorem generalizes Theorem 1 of [2], Theorem 3 of [6], and Theorem 3.1

of [5]. We would like to remark that the first part of the argument given in the proof of the following

theorem is from [5].

Theorem 2.2 — LetH be a Hilbert space and let a ∈ SH be fixed. Let x1, . . . , xn ∈ H\{θ} satisfy

the following conditions: (i)
(∑k

i=1 r1‖xi‖
)2

≤
(∑k

i=1 Re 〈xi, a〉
)2

, (ii)
(∑k

i=1 r2‖xi‖
)2

≤
(∑k

i=1 Im 〈xi, a〉
)2

, (iii)
∑n

i=k+1 ‖xi‖ ≤ λ
∑k

i=1 ‖xi‖, where r1, r2 ≥ 0, 1 ≤ k ≤ n, 0 < λ ≤
(r2

1+r2
2)

1
2

1+(r2
1+r2

2)
1
2
. Then

[(
r2
1 + r2

2

) 1
2 − λ

(
1 +

(
r2
1 + r2

2

) 1
2

)] n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Whenever k < n, the above inequality is strict. Moreover, if k = n, then the equality
(
r2
1 + r2

2

) 1
2

∑n
i=1 ‖xi‖ = ‖∑n

i=1 xi‖ holds if and only if

(iv)
n∑

i=1

xi =

(
(
r2
1 + r2

2

) 1
2

n∑

i=1

‖xi‖
)

a, and, (v) inequalities (i), (ii) are equalities.

PROOF : It follows from Theorem 2.1 that
(
r2
1 + r2

2

) 1
2
∑k

i=1 ‖xi‖ ≤ ‖∑k
i=1 xi‖. Therefore, we

have,

‖
n∑

i=1

xi‖ ≥ ‖
k∑

i=1

xi‖ − ‖
n∑

i=k+1

xi‖

≥ (
r2
1 + r2

2

) 1
2

k∑

i=1

‖xi‖ −
n∑

i=k+1

‖xi‖

=
(
r2
1 + r2

2

) 1
2

n∑

i=1

‖xi‖ −
(
1 +

(
r2
1 + r2

2

) 1
2

) n∑

i=k+1

‖xi‖
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≥ (
r2
1 + r2

2

) 1
2

n∑

i=1

‖xi‖ − λ
(
1 +

(
r2
1 + r2

2

) 1
2

) k∑

i=1

‖xi‖

≥ (
r2
1 + r2

2

) 1
2

n∑

i=1

‖xi‖ − λ
(
1 +

(
r2
1 + r2

2

) 1
2

) n∑

i=1

‖xi‖

=
[(

r2
1 + r2

2

) 1
2 − λ

(
1 +

(
r2
1 + r2

2

) 1
2

)] n∑

i=1

‖xi‖

This completes the proof of the desired inequality stated in the theorem. We next consider the

condition for equality in the above complementary triangle inequality. First, suppose that k < n.

Since xk+1 6= θ, it follows that
∑k

i=1 ‖xi‖ <
∑n

i=1 ‖xi‖. Consequently, it follows that the above

inequality is strict. Let us now assume that k = n. It follows from Theorem 2.1 and the above

chain of inequalities in the proof of the present theorem, that the equality
(
r2
1 + r2

2

) 1
2
∑n

i=1 ‖xi‖ =

‖∑n
i=1 xi‖ holds if and only if the following holds:

(iv)
k∑

i=1

xi =

(
(
r2
1 + r2

2

) 1
2

k∑

i=1

‖xi‖
)

a, and (v) inequalities (i), (ii) are equalities.

This completes the proof of the theorem.

Our next result illustrates that Theorem 2.2 of the present paper extends the scope of applying a

complementary triangle inequality in Hilbert spaces, to a larger class of vectors than those considered

in either of Theorem 1 of [2], Theorem 3 of [6], and Theorem 3.1 of [5].

Theorem 2.3 — Let H be a Hilbert space and let x1, x2 ∈ SH, with x1 6= −x2. Let n0 ∈ N be

fixed. Then there exists r0 > 0 such that for any non-zero vectors y1, . . . , yn0 ∈ B(θ, r0) \ {θ}, the

following holds:

1 + Re 〈x1, x2〉
2‖x1 + x2‖

(
‖x1‖+ ‖x2‖+

n0∑

i=1

‖yi‖
)

< ‖x1 + x2 +
n0∑

i=1

yi‖.

PROOF : We first note that since x1 6= −x2, it follows that 1+Re 〈x1,x2〉
2‖x1+x2‖ 6= 0. We set r =

1+Re 〈x1,x2〉
‖x1+x2‖ > 0. Let us choose λ = r

2(1+r) > 0. Clearly, r − (1 + r)λ = r
2 > 0. We define

r0 = r(‖x1‖+‖x2‖)
2n0(1+r) . Then for any y1, . . . , yn0 ∈ B(θ, r0), we have the following:

n0∑

i=1

‖yi‖ ≤ n0r0 =
r(‖x1‖+ ‖x2‖)

2(1 + r)
= λ(‖x1‖+ ‖x2‖).

Let us choose a = x1+x2
‖x1+x2‖ ∈ SH. We observe that 〈x1, a〉 =

〈
x1,

x1+x2
‖x1+x2‖

〉
= 1

‖x1+x2‖
[‖x1‖2 + 〈x1, x2〉

]
.
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In particular, this implies that

Re 〈x1, a〉 =
1

‖x1 + x2‖ [1 + Re 〈x1, x2〉] = r.

Similarly, we have,

Re 〈x2, a〉 =
1

‖x1 + x2‖ [1 + Re 〈x2, x1〉] = r.

Now, taking r1 = r and r2 = 0 in Theorem 2.2, it is easy to see that λ < r
1+r = (r2

1+r2
2)

1
2

1+(r2
1+r2

2)
1
2
.

Therefore, applying Theorem 2.2, we deduce that

[r − λ(1 + r)]

(
‖x1‖+ ‖x2‖+

n0∑

i=1

‖yi‖
)
≤ ‖x1 + x2 +

n0∑

i=1

yi‖,

which is clearly equivalent to the desired inequality, with a possible equality sign. To see that the

obtained inequality is actually strict, it is sufficient to observe that n0 ≥ 1 and then to apply the

equality condition in Theorem 2.2. This establishes the theorem.

As mentioned in [2], Theorem 1 of [2] has an obvious geometric interpretation. The complemen-

tary triangle inequality stated in the concerned theorem is valid for a certain set of vectors lying within

a cone. In view of this, we present the next figure in connection with Theorem 2.3 of the present ar-

ticle. The vectors y1, . . . , yn can be chosen arbitrarily from the shaded region B(θ, r0), whereas the

vectors x1, x2 can be chosen from SH so that x1 6= −x2. In particular, this illustrates pictorially that

Theorem 2.2 of the present article extends the scope of obtaining a complementary triangle inequality

in Hilbert spaces.

Fig. 1 : Extension of complementary triangle inequality

r0

x1

a = x1+x2

‖x1+x2‖

x2

θ

SH
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In Theorem 2 of [2], the authors have extended Theorem 1 of the same article by considering a

finite number of orthonormal vectors instead of a single unit vector in a Hilbert space. It is possible to

apply the ideas of [5, 6], and the idea developed in the present article, to further generalize Theorem

2 of [2] by removing the orthonormality condition on the unit vectors. We accomplish the goal in the

next theorem.

Theorem 2.4 — Let H be a Hilbert space and let a1, . . . , am ∈ SH be fixed. Let x1, . . . , xn ∈
H\{θ} be such that the following conditions hold true for each l = 1, . . . ,m : (i)

(∑k
i=1 rl‖xi‖

)2
≤

(∑k
i=1 Re 〈xi, al〉

)2
, (ii)

(∑k
i=1 sl‖xi‖

)2
≤

(∑k
i=1 Im 〈xi, al〉

)2
,

(iii)
∑n

i=k+1 ‖xi‖ ≤ λ
∑k

i=1 ‖xi‖,
where 1 ≤ k ≤ n, and for each l = 1, . . . ,m, we have that rl, sl ≥ 0 and 0 < λ ≤ (r2

l +s2
l )

1
2

1+(r2
l +s2

l )
1
2
.

Then for each l = 1, . . . , m,

[(
r2
l + s2

l

) 1
2 − λ

(
1 +

(
r2
l + s2

l

) 1
2

)]∑n
i=1 ‖xi‖ ≤ ‖∑n

i=1 xi‖.

Whenever k < n, the above inequality is strict. Moreover, if k = n, then the equality
(
r2
l + s2

l

) 1
2

∑n
i=1 ‖xi‖ = ‖∑n

i=1 xi‖ holds for some l = 1, . . . , m if and only if (iv)
∑n

i=1 xi =((
r2
l + s2

l

) 1
2
∑n

i=1 ‖xi‖
)

a, and (v) inequalities (i), (ii) are equalities.

PROOF : For each l = 1, . . . , m, it follows from the Cauchy-Schwarz inequality that
∣∣∣
〈
al,

∑k
i=1 xi

〉∣∣∣ ≤
‖al‖‖

∑k
i=1 xi‖ = ‖∑k

i=1 xi‖. Therefore, we have,

‖
k∑

i=1

xi‖ ≥
∣∣∣∣∣

〈
al,

k∑

i=1

xi

〉∣∣∣∣∣

=

∣∣∣∣∣
k∑

i=1

Re 〈xi, al〉+ i
k∑

i=1

Im 〈xi, al〉
∣∣∣∣∣

=




(
k∑

i=1

Re 〈xi, al〉
)2

+

(
k∑

i=1

Im 〈xi, al〉
)2




1
2

≥

r2

l

(
k∑

i=1

‖xi‖
)2

+ s2
l

(
k∑

i=1

‖xi‖
)2




1
2

=
(
r2
l + s2

l

) 1
2

k∑

i=1

‖xi‖.
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From here we can follow the arguments given in the proof of Theorem 2.2 to obtain the desired

inequality

[(
r2
l + s2

l

) 1
2 − λ

(
1 +

(
r2
l + s2

l

) 1
2

)] n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Now, following the arguments given in the proof of Theorem 2.2, we deduce that the above

inequality is strict whenever k < n. Moreover, the necessary and sufficient conditions for the equality(
r2
l + s2

l

) 1
2
∑n

i=1 ‖xi‖ = ‖∑n
i=1 xi‖, for some l = 1, . . . , m, follows quite easily. This completes

the proof of the theorem.

We would like to note that it is possible to obtain a weaker version of the above theorem, com-

pletely in the spirit of Theorem 2 of [2]. The next result is stated with only a sketch of the correspond-

ing proof, since it follows easily from the above theorem.

Theorem 2.5 — Let H be a Hilbert space and let a1, . . . , am ∈ SH be fixed. Let x1, . . . , xn ∈
H \ {θ} be such that for each i = 1, . . . , n and for each k = 1, . . . , m, the following holds:

0 ≤ rk ≤ Re 〈xi, ak〉
‖xi‖ .

Then (∑m
k=1 rk

m

) n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Moreover, equality holds in the above inequality if and only if for each k = 1, . . . , m, and for

each i = 1, . . . , n,we have that rk = Re 〈xi,ak〉
‖xi‖ and

∑n
i=1 xi = (rk

∑n
i=1 ‖xi‖) ak.

PROOF : For each k = 1, . . . , m, we have, |〈ak,
∑n

i=1 xi〉| ≤ ‖∑n
i=1 xi‖. This gives us the

following chain of inequalities:

‖
n∑

i=1

xi‖ ≥
∣∣∣∣∣

〈
ak,

n∑

i=1

xi

〉∣∣∣∣∣

≥ Re

〈
ak,

n∑

i=1

xi

〉

=
n∑

i=1

Re 〈ak, xi〉

≥ rk

n∑

i=1

‖xi‖.



ON A GENERALIZATION OF A COMPLEMENTARY TRIANGLE INEQUALITY 1823

Since the above inequality is true for each k = 1, . . . , m, adding these relations we obtain:

(∑m
k=1 rk

m

) n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Moreover, equality holds in the above inequality if and only if for each i = 1, . . . , n and for each

k = 1, . . . ,m, the following conditions are satisfied:

(i)
∑n

i=1 xi = µkak, where µk ≥ 0, (ii)
∑n

i=1 Im 〈xi, ak〉 = 0, (iii) rk = Re 〈xi,ak〉
‖xi‖ .

The given equality condition in the statement of the theorem follows directly from the above

conditions. This completes the proof of the theorem.

Remark 2.1 : We note that the inequality obtained in the above theorem is certainly weaker than

the inequality obtained in Theorem 2 of [2]. On the other hand, this is compensated by the fact that

we no longer require the orthonormality condition on the unit vectors a1, . . . , am.

We next extend the scope of complementary triangle inequality in Banach spaces by generalizing

Theorem 3 of [2]. We would like to mention that Theorem 3 of [2] is valid for both real and complex

Banach spaces. On the other hand, the following result is stated only for complex Banach spaces.

However, we observe that it can also be applied for real Banach spaces by removing the Condition

(ii) in the statement of the theorem and by taking r2 = 0.

Theorem 2.6 — Let X be a complex Banach space and let f ∈ SX∗ . Suppose the vectors

x1, . . . , xn ∈ X \ {θ} are such that the following conditions are satisfied: (i)
(∑k

i=1 r1‖xi‖
)2

≤
(∑k

i=1 Re f(xi)
)2

, (ii)
(∑k

i=1 r2‖xi‖
)2
≤

(∑k
i=1 Im f(xi)

)2
,

(iii)
∑n

i=k+1 ‖xi‖ ≤ λ
∑k

i=1 ‖xi‖,
where r1, r2 ≥ 0, 1 ≤ k ≤ n, and 0 < λ ≤ (r2

1+r2
2)

1
2

1+(r2
1+r2

2)
1
2
. Then

[(
r2
1 + r2

2

) 1
2 − λ

(
1 +

(
r2
1 + r2

2

) 1
2

)] n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Moreover, equality holds in the above inequality if and only if (iv) k = n, (v) f (
∑n

i=1 xi) =

‖∑n
i=1 xi‖, and (vi) the inequalities in (i) and (ii) are equalities.

PROOF : We begin the proof with the following chain of inequalities:
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∣∣∣∣∣

∣∣∣∣∣
k∑

i=1

xi

∣∣∣∣∣

∣∣∣∣∣

2

≥
∣∣∣∣∣f

(
k∑

i=1

xi

)∣∣∣∣∣

2

=

∣∣∣∣∣
k∑

i=1

Re (fxi) + i
k∑

i=1

Im (fxi)

∣∣∣∣∣

2

=




{
k∑

i=1

Re (fxi)

}2

+

{
k∑

i=1

Im (fxi)

}2



≥ (
r2
1 + r2

2

)
(

k∑

i=1

||xi||
)2

.

From the above inequalities, we obtain

∣∣∣∣∣

∣∣∣∣∣
k∑

i=1

xi

∣∣∣∣∣

∣∣∣∣∣ ≥
(
r2
1 + r2

2

) 1
2

k∑

i=1

||xi|| .

Now we employ the same method, as outlined in the proof of Theorem 2.2 of the present article

to obtain the desired inequality

[(
r2
1 + r2

2

) 1
2 − λ

(
1 +

(
r2
1 + r2

2

) 1
2

)] n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Moreover, it is easy to see that for equality to hold in the above inequality, a necessary and

sufficient condition is that (iv), (v), (vi) must hold true. This establishes the theorem. 2

It is possible to obtain an intrinsic description of Theorem 2.6 in a strictly convex Banach space,

that resembles Theorem 2.5, by using the notion of s.i.p. in a real Banach space instead of referring to

bounded linear functionals on the space. In order to achieve this goal, we require the following easy

proposition. The proof is omitted as it is rather easy and can be found in Theorem 12 of [7].

Proposition 2.7 — Let X be a strictly convex Banach space. Let x ∈ X be non-zero and let

y ∈ SX. Let [ , ] be a s.i.p. on X. Then |[x, y]| = ‖x‖ if and only if x = λy, for some λ ∈ R \ {0}.

We are now in a position to obtain an analogous result of Theorem 2.5 in the setting of Banach

spaces.

Theorem 2.8 — Let X be a strictly convex real Banach space and let [ , ] be a s.i.p. on X. Let

a ∈ SX be fixed and let x1, . . . , xn ∈ X \ {θ} be such that the following conditions are satisfied:
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(i)
∑n

i=1 xi 6= θ, (ii) r ≤ [xj ,a]
‖xj‖ , for each j = 1, . . . , k, (iii)

∑n
i=k+1 ‖xi‖ ≤ λ

∑k
i=1 ‖xi‖,

where r ≥ 0, 1 ≤ k ≤ n, and 0 < λ ≤ r
1+r . Then

{r − λ(1 + r)}
n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Moreover, equality holds in the above inequality if and only if (iv) k = n, (v)
∑n

i=1 xi = µa,

for some µ 6= 0, and (vi) each inequality in (ii) is an equality.

PROOF : Since ‖a‖ = 1, using the properties of s.i.p., we obtain the following:

∣∣∣∣∣

∣∣∣∣∣
k∑

i=1

xi

∣∣∣∣∣

∣∣∣∣∣ ≥
∣∣∣∣∣

[
k∑

i=1

xi, a

]∣∣∣∣∣

≥
[

k∑

i=1

xi, a

]

=
k∑

i=1

[xi, a]

≥
k∑

i=1

r‖xi‖.

We now apply the same arguments as given in the proof of Theorem 2.2 of the present article to

obtain the desired inequality

{r − λ(1 + r)}
n∑

i=1

‖xi‖ ≤ ‖
n∑

i=1

xi‖.

Moreover, it follows from the earlier arguments and Proposition 2.7 that a necessary and sufficient

condition for equality in the above inequality is that (iv), (v), (vi) must hold true. This completes the

proof of the theorem. 2

Remark 2.2 : In the above theorem, the inequality {r − λ(1 + r)}∑n
i=1 ‖xi‖ ≤ ‖∑n

i=1 xi‖ can

be obtained without the strict convexity ofX. The equality condition in the above theorem is of course

dependent on strict convexity of X.

As an application of the generalized complementary triangle inequalities obtained in the present

article, we next present an interesting operator norm inequality in the setting of real Banach spaces as

our final result in this article.
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Theorem 2.9 — Let X be a finite-dimensional real Banach space and Y be any smooth real

Banach space of dimension strictly greater than 2. Let T1, T2 ∈ L(X,Y) be smooth points of unit

norm inL(X,Y) such that T1 6= −T2. Then there exists l > 0 such that ‖T1+T2‖ ≥ l (‖T1‖+ ‖T2‖) .

Moreover, we can choose l = min
{

[T1,A]
‖T1‖ , [T1,A]

‖T1‖
}

, where A ∈ L(X,Y) is of unit norm, Ti 6⊥B

A (i = 1, 2), and [ , ] is any s.i.p. on L(X,Y). Furthermore, given any n0 ∈ N, there exists r0 > 0

such that whenever T3, . . . , Tn0 ∈ L(X,Y) satisfy ‖Ti‖ < r0 for all i = 3, . . . , n0, it follows that

l

2

n0∑

i=1

‖Ti‖ <

∣∣∣∣∣

∣∣∣∣∣
n0∑

i=1

Ti

∣∣∣∣∣

∣∣∣∣∣ .

PROOF : Since T1 6= −T2, the existence of an l such that ‖T1 + T2‖ ≥ l (‖T1‖+ ‖T2‖) is

guaranteed. We next prove that there exists A ∈ L(X,Y) such that ‖A‖ = 1 and Ti 6⊥B A (i = 1, 2),

where [ , ] is any s.i.p. on L(X,Y). As T1, T2 ∈ L(X,Y) are smooth, it follows from Theorem 3.3

of [8] that for each i = 1, 2, we have that MTi = {±ui}, for some ui ∈ SY. Given any y ∈ Y, let

y⊥ = {z ∈ Y : ‖y + λz‖ ≥ ‖y‖ for each scalar λ}. Now, it is immediate that y is a smooth point in

Y if and only if y⊥ is a subspace of codimension 1 in Y. Since the dimension of Y is strictly greater

than 2, it follows that
⋃2

i=1(Tiui)⊥ ( Y. In particular, it is possible to choose w ∈ Y \⋃2
i=1(Tiui)⊥.

Let A ∈ L(X,Y) be such that Aui = w, i = 1, 2. It follows from Theorem 2.1 of [9] that Ti 6⊥B

A (i = 1, 2). Now a combination of Remark 2.2 and the norm inequality technique used in the last

part of Theorem 2.3 yields the desired result. This establishes the theorem completely. 2
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