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We propose IR2Vec, a Concise and Scalable encoding infrastructure to represent programs as a distributed

embedding in continuous space. This distributed embedding is obtained by combining representation learning

methods with flow information to capture the syntax as well as the semantics of the input programs. As our

infrastructure is based on the Intermediate Representation (IR) of the source code, obtained embeddings

are both language and machine independent. The entities of the IR are modeled as relationships, and their

representations are learned to form a seed embedding vocabulary. Using this infrastructure, we propose two

incremental encodings: Symbolic and Flow-Aware. Symbolic encodings are obtained from the seed embedding

vocabulary, and Flow-Aware encodings are obtained by augmenting the Symbolic encodings with the flow

information.

We show the effectiveness of our methodology on two optimization tasks (Heterogeneous device mapping

and Thread coarsening). Our way of representing the programs enables us to use non-sequential models

resulting in orders of magnitude of faster training time. Both the encodings generated by IR2Vec outperform

the existing methods in both the tasks, even while using simple machine learning models. In particular, our

results improve or match the state-of-the-art speedup in 11/14 benchmark-suites in the device mapping task

across two platforms and 53/68 benchmarks in the thread coarsening task across four different platforms.

When compared to the other methods, our embeddings are more scalable, is non-data-hungry, and has better

Out-Of-Vocabulary (OOV) characteristics.

CCS Concepts: • Software and its engineering → Compilers; General programming languages; •

Computing methodologies → Machine learning; Knowledge representation and reasoning;

Additional Key Words and Phrases: LLVM, intermediate representations, representation learning, compiler

optimizations, heterogeneous systems

ACM Reference format:

S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and

Y. N. Srikant. 2020. IR2Vec: LLVM IR Based Scalable Program Embeddings. ACM Trans. Archit. Code Optim.

17, 4, Article 32 (November 2020), 27 pages.

https://doi.org/10.1145/3418463

This research is funded by the Department of Electronics & Information Technology and the Ministry of Communications

& Information Technology, Government of India. This work is partially supported by a Visvesvaraya PhD Scheme under

the MEITY, GoI (PhD-MLA/04(02)/2015-16), an NSM research grant (MeitY/R&D/HPC/2(1)/2014), a Visvesvaraya Young

Faculty Research Fellowship from MeitY, and a faculty research grant from AMD.

Authors’ addresses: S. VenkataKeerthy, R. Aggarwal, S. Jain, M. S. Desarkar, and R. Upadrasta, Dept. of CSE, Indian

Institute of Technology Hyderabad, Sangareddy, Telangana, India 502 285; emails: {cs17m20p100001, cs18mtech11030,

cs15resch11010}@iith.ac.in, {maunendra, ramakrishna}@cse.iith.ac.in; Y. N. Srikant, Indian Institute of Science, Bangalore,

Karnataka, India 560 012; email: srikant@iisc.ac.in.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2020 Copyright held by the owner/author(s).

1544-3566/2020/11-ART32

https://doi.org/10.1145/3418463

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 32. Publication date: November 2020.

https://doi.org/10.1145/3418463
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3418463


32:2 S. VenkataKeerthy et al.

1 INTRODUCTION

With the growth of computing, comes the growth in computations. These computations are nec-
essarily the implementation of well-defined algorithms [20] as programs. Running these programs
on the rapidly evolving diverse architectures poses a challenge for compilers (and optimizations)
for exploiting the best performance. Because most of the compiler optimizations are NP-Complete
or undecidable [44, 48], most of the modern compilers use carefully handwritten heuristics for
extracting superior performance of these programs on various architectures.

Several attempts have been made to improve the optimization decisions by using machine learn-
ing algorithms instead of relying on sub-optimal heuristics. Some of such works include prediction
of unroll factors [53], inlining decisions [54], determining thread coarsening factor [41], Device
mapping [26], vectorization [27, 45], and the like. For such optimization applications, it is crucial
to extract information from programs so that it can be used to feed the machine learning models to
drive the optimization decisions. The extracted information should be in a form that is amenable

to learning so as to improve the optimizations on the input programs.
Primarily, there are two ways of representing programs as inputs to such machine learning

algorithms—Feature-based representations and Distributed representations. Feature-based repre-
sentation involves representing programs using hand-picked features—designed by domain ex-
perts [23, 26, 41]—specific for the particular downstream applications. Examples for the features
could be the number of basic blocks, number of branches, number of loops, and even the de-
rived/advanced features like arithmetic intensity. On the other hand, representation learning in-
volves using a machine learning model to automatically learn to represent the input as a distributed
vector [10]. This learned representation—encoding of the program—is often called program em-

bedding. Such a distributed representation is a real-valued vector whose dimensions cannot be
distinctly labeled, as opposed to that of feature-based representations.

However, most of the existing works on using distributed learning methods to represent pro-
grams use some form of Natural Language Processing for modeling; all of them exploit the statis-
tical properties of the code and adhere to the Naturalness hypothesis [3]. These works primarily
use Word2Vec methods like skip-gram and CBOW [39], or encoder-decoder models like Seq2Seq
[56] to encode programs as distributed vectors.

It can be noted that most of the existing representations of programs have been designed
for software-engineering-based applications. This includes algorithm classification [42, 52], code
search and recommendation [14, 19, 34, 38], code synthesis [50], Bug detection [59], Code summa-
rization [31], and Software maintenance [1, 2, 6, 25]. We, however, believe that a carefully designed
embedding that can encode the semantic characteristics of the program can be highly useful in mak-
ing optimization decisions, in addition to being applied for software engineering.

In this article, we propose IR2Vec, an agglomerative approach for constructing a continuous,
distributed vector to represent source code at different (and increasing) levels of IR hierarchy—
Instruction, Function, and Program. The vectors that are formed lower down the (program ab-
straction) hierarchy is used to build the vectors at higher levels.

We make use of the LLVM compiler infrastructure [35] to process and analyze the code. The
input program is converted to LLVM-Intermediate Representation (LLVM-IR), a language- and
machine-independent format. The initial vector representations of the (entities of the) IR, called
seed embeddings, is learned by considering its statistical properties in a Representation Learning
framework. Using these learned seed embeddings, hierarchical vectors for the new programs are
formed. To represent Instruction vectors, we propose two flavors of encodings: Symbolic and Flow-

Aware. The Symbolic encodings are generated directly from the learned representations. When
augmented with the flow analyses information, the Symbolic encodings become Flow-Aware.
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We show that the generic embeddings of IR2Vec provide superior results when compared to
the previous works like DeepTune [21], Magni et al. [41], and Grewe et al. [26] that were designed
to solve specific tasks. We also compare IR2Vec with NCC by Ben-Nun et al. [13]; both have
a similar motivation in generating generic embeddings using LLVM IR, though using different
methodologies/techniques.

We demonstrate the effectiveness of the obtained encodings by answering the following
Research Questions (RQ’s) in the later sections:

RQ1: How well do the seed embeddings capture the semantics of the entities in LLVM IR?

As the seed embeddings play a significant role in forming embeddings at higher levels of Pro-
gram abstraction, it is of paramount importance that they capture the semantic meaning of the
entities to differentiate between different programs. We show the effectiveness of the obtained
seed embeddings in Section 5.1.

RQ2: How good are the obtained embeddings for solving diverse compiler optimization

applications?

We show the richness of our embeddings by applying it for different tasks: (a) Heterogeneous
device mapping and (b) Prediction of thread coarsening factor in Sections 5.2 and 5.3, respectively.

RQ3: How scalable is our proposed methodology when compared to other methods?

We discuss various aspects by which our encoding is more scalable than the others in Section 6.
We show that IR2Vec has improved training time, and is non-data-hungry. Also, IR2Vec does not
encounter Out Of Vocabulary (OOV) words. These are the words that have not been exposed during
the training phase, and hence are not part of the seed embedding vocabulary, but are encountered
during test/inference phase.

Contributions: The following are our contributions:

• We propose a unique way to map LLVM-IR entities to real-valued distributed embeddings,
called a seed embedding vocabulary.

• Using the above seed embedding vocabulary, we propose a Concise and Scalable encoding
infrastructure to represent programs as vectors.

• We propose two embeddings: Symbolic and Flow-Aware that are strongly based on classic
program flow analysis theory and evaluate them on two compiler optimizations tasks: Het-
erogeneous device mapping and Thread coarsening.

• Our novel methodology of encodings is highly scalable and performs better than the state-
of-the-art techniques. We achieve an improved training time (up to 8000× reduction), our
method is non-data-hungry, and it does not encounter Out-Of-Vocabulary (OOV) words.

This article is organized as follows: In Section 2, we discuss various related works and categorize
them. In Section 3, we give the necessary background information. In Section 4, we explain the
methodology for constructing the Symbolic and Flow-Aware encodings at various levels. In Sec-
tion 5, we show our experimental setup followed by the discussion of results: first, we discuss the
effectiveness of our seed embeddings, followed by our analysis and discussion on device mapping,
and thread coarsening. In Section 6, we discuss our perspectives of IR2Vec, focusing on training
time, time to generate encodings and OOV issues. Finally, in Section 7, we conclude this article.

2 RELATED WORKS

Modeling code as a distributed vector involves representing the program as a vector, whose indi-
vidual dimensions cannot be distinctly labeled. Such a vector is an approximation of the original
program, whose semantic meaning is “distributed“ across multiple components. In this section,
we categorize some of the existing works that model codes, based on their representations, the
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applications that they handle, and the embedding techniques that they use. Then, we discuss the
details of some specific recent works in this theme.

2.1 Representations, Applications and Embeddings

Representations. Programs are represented using standard syntactic formats like lexical tokens
[2, 6, 21], Abstract Syntax Trees (ASTs) [8, 11, 51], and standard semantic formats like Program
Dependence Graphs [4], and abstracted traces [30]. Then, a neural network model like RNN or its
variants is trained on the representation to form distributed vectors.

We use LLVM IR [37] as the base representation for learning the embeddings in high-dimensional
space. To the best of our knowledge, we are the first ones to model the entities of the IR—Opcodes,
Operands and Types—in the form of relationships and to use a translation-based model [16] to
capture such multi-relational data in higher dimensions.

Applications. In the earlier works, the training to generate embeddings was either application-
specific or programming language-specific: Allamanis et al. [2] propose a token-based neural prob-
abilistic model for suggesting meaningful method names in Java; Cummins et al. [21] propose the
DeepTune framework to create a distributed vector from the tokens obtained from code to solve
the optimization problems like thread coarsening and device mapping in OpenCL; Alon et al. [9]
propose code2vec, a methodology to represent codes using information from the AST paths cou-
pled with attention networks to determine the importance of a particular path to form the code
vector for predicting the method names in Java; Mou et al. [42] propose a tree-based CNN model to
classify C++ programs; Gupta et al. [25] propose a token-based multi-layer sequence to sequence
model to fix common C program errors by students; Other applications like learning syntactic
program fixes from examples [49], bug detection [46, 61] and program repair [63] model the code
as an embedding in a high dimensional space followed by using RNN like models to synthesize
fixes. The survey by Allamanis et al. [3] covers more such application-specific approaches.

On the other hand, our approach is more generic, and both application and programming lan-
guage independent. We show the effectiveness of our embeddings on two optimization tasks (de-
vice mapping and thread coarsening) in Section 5. We believe that the scope of our work can be
extended beyond these applications, including program classification, code search, prediction of
vectorization/unroll factors, and the like.

Embedding Techniques. In encoding, entities are transformed into any numerical form amenable
to learning, while in embedding, it is transformed to real-valued high-dimensional vectors. Sev-
eral attempts [7, 13, 58] have been made to represent programs as distributed vectors in contin-
uous space using word embedding techniques for diverse applications. Henkel et al. [30] use the
Word2Vec embedding model to generate the representation of a program from symbolic traces.
They generate and expose embeddings for the program [13, 30], or the embeddings themselves
become an implicit part of the training for the specific downstream task [9, 46].

Our framework exposes a hierarchy of representations at the various levels of the program—
Instruction, Function, and Program level. Our approach is the first one to propose using seed em-
beddings. More significantly, we are the first ones to use program analysis (flow-analysis)-driven
approaches—not machine learning based approaches—to form the agglomerative vectors of pro-
grams beginning from the base seed encodings.

2.2 Similar Works

The closest to our work is Ben-Nun et al.’s Neural Code Comprehensions (NCC) [13], who repre-
sent programs using LLVM IR. They use skip-gram model [43] on conteXtual Flow Graph (XFG),
which models the data/control flow of the program to represent IR. The skip-gram model is trained
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to generate embeddings for every IR instruction (inst2vec). So as to avoid Out Of Vocabulary (OOV)
statements, they maintain a large vocabulary, one which uses large (>640M) number of XFG state-
ment pairs. A more thorough comparison of our work with NCC [13] (along with DeepTune [21])
is given in Section 6.

The recent work by Brauckmann et al. [11] represents programs as Abstract Syntax Trees and
annotates it with the control and data flow edges. A Graph Neural Network is used to learn the
representation of the program in a supervised manner to solve the specific tasks of device mapping
and thread coarsening. We achieve better performance on both the tasks, whereas they fail to show
improvements in the prediction of the thread coarsening factor.

Another recent work is ProGraML [17], which constructs a flow graph with data and control flow
information from the Intermediate Representation of the program. They use inst2vec embeddings
[13] to represent the nodes of the graph, and use a Gated Graph Neural Network to represent the
program.

3 BACKGROUND

3.1 LLVM and Program Semantics

LLVM is a compiler infrastructure that translates source-code to machine code by performing
various optimizations on its Intermediate Representation (LLVM IR) [35]. LLVM IR is a typed,
well-formed, low-level, Universal IR to represent any high-level language and translate it to a wide
spectrum of targets [37]. Being a successful compiler, LLVM provides easy access to existing con-
trol and data flow analysis and lets new passes (whether analyses or transformations) to be added
seamlessly.

The building blocks of LLVM IR include Instruction, Basic block, Function, and Module. Every
instruction contains opcode, type, and operands, and each instruction is statically typed. A basic
block is a maximal sequence of LLVM instructions without any jumps. A collection of basic blocks
form a function, and a module is a collection of functions. This hierarchical nature of LLVM IR
representation helps in obtaining embeddings at the corresponding levels of the program. Char-
acterizing the flow of information which flows into (and out of) each basic block constitutes the
data flow analysis. We study the impact of using such flow information as a part of the encodings.

3.2 Representation Learning

The effectiveness of a machine learning algorithm depends on the choice of data representation and
on the specific features used. As discussed earlier, Representation Learning is a branch of machine
learning that learns the representations of data by automatically extracting the useful features
[10]. Unsupervised models for learning distributed representations broadly fall under two major
categories:

(1) Context-Window-Based Embedding. Methods such as Word2Vec [39], GloVe [47] fall under
this category.

(2) Knowledge Graph Embedding. Methods such as TransE [16], TransR [36], TransD [32],
TransH [62] fall under this category.

The context-window-based models operate on the basis of the surrounding context. The Knowl-
edge graph embedding methods guide the learning of the entity representations based on the re-
lationships that they participate in.

For program representations, we feel that it is important to consider semantic relationships
rather than considering surrounding contexts; the latter could just mean the neighboring
instructions. So, we prefer knowledge graph embedding models over context window embedding
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approaches. These knowledge graph embedding models use relationships to group similar
datapoints together.

Knowledge Graph Representations. A Knowledge Graph (KG) is a collection of (a) entities and (b)
relationships between pairs of entities. Let 〈h, r , t〉 be a triplet from the knowledge graph, where the
entitiesh and t are connected by relationship r , and their representations are learned as translations

from head entity h to the tail entity t using the relation r in a high-dimensional embedding space.
For the same reason, these models are termed translational.

The representations are nothing but the vectors of pre-defined dimensions that are determined
automatically by a learning method. The learning method is based on the principle that: given
(representations of) any two items from the triplet (like 〈h, r 〉, 〈r , t〉, 〈t ,h〉), it should be possible
to compute/predict the third item. Based on the above principle, different representation learning
algorithms for knowledge graphs model the relationships between h, r , and t in the triplets in
different ways.

Using TransE. Of the many varieties available for KG embeddings, we use TransE [16], a trans-

lational representation learning model, which embeds h, r and t on to the same high dimensional
space. It tries to learn the representations using the relationships of the form h + r ≈ t , for a triplet
〈h, r , t〉.

This is achieved by following a margin-based ranking loss L, where the distance between (h +
r , t ) and (h′ + r , t ′) (where, 〈h′, r , t ′〉 are invalid triplets) is at least separated by a margin m. It is
given as:

L =
∑

〈h,r,t 〉

∑

〈h′,r,t ′〉

[
m + distance (h + r , t ) − distance (h′ + r , t ′)

]
+

Here, [x]+ denotes the hinge loss.
Among the other Knowledge Graph models, TransE has relatively much smaller number of

parameters to be learned, and has been used successfully in various algorithms for learning repre-
sentations. Adopting this for our setting ensures that the representations can be learned in a faster
and effective manner that scales well on huge datasets [28, 32].

3.3 Necessity for a LLVM-Based Embedding for Optimizations

Traditionally, machine independent compiler optimizations were always considered to be part of
the “middle-end”[44] of compilers. The most successful design of this language and architecture-
independent representations has been the LLVM IR [35, 37]. Using the LLVM-infrastructure, care-
fully well-crafted heuristics have been implemented in various optimization passes to help in
achieving better performance. As the power of using ML in compilers has been recognized [22],
many ML-driven approaches have also been proposed [33] as alternatives to these heuristics. How-
ever, they have primarily been feature-based, which means that integrating them into the middle-
end is prone to challenges [23], both at modeling as well as engineering level.

Hence, there is a necessity for a language and architecture agnostic embedding based compiler

framework that bridges the gap between the need for ML-based compiler optimizations, and their
adoptability in compiler infrastructures. Our work tries to bridge this particular gap between em-
beddings from representation learning and the LLVM compiler. We believe that our work has a
unique potential to be called as a generic compiler-based embedding.

4 CODE EMBEDDINGS

In this section, we explain our methodology for obtaining code embeddings at various hierarchy
levels of the IR. We first give an overview of the methodology and then describe the process of
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Fig. 1. Overview of IR2Vec infrastructure.

Table 1. Mapping Identifiers to Generic Representation

Identifier Generic representation

Variables VAR
Pointers PTR
Constants CONST
Function names FUNCTION
Address of a basic block LABEL

embedding instructions and basic blocks (BB) by considering the program flow information to
form a cumulative BB vector. We then explain the process to represent the functions and modules
by combining the individual BB vectors to form the final Code Vector. We propose two different
incremental embeddings at the instruction level.

4.1 Overview

The overview of the proposed methodology is shown in Figure 1. Instructions in IR can be rep-
resented as an Entity-Relationship Graph, with the instruction entities as nodes, and the relation
between the entities as edges. A translational learning model that we discussed in Section 3.2 is
used to learn these relations (Section 4.2). The output of this learning is a dictionary containing
the embeddings of the entities and is called Seed embedding vocabulary.

The above dictionary is looked up to form the embeddings at various levels of the input program.
At the coarsest level, instruction embeddings are obtained just by using the Seed embedding vocab-

ulary. We call such encodings as Symbolic encodings. We use the Use-Def and Reaching definition

[29, 44] information to form the instruction vector for Flow-Aware encodings.
The instructions which are live are used to form the Basic block vector. This process of formation

of a basic block vector using the flow analysis information is explained in Section 4.3. The vector
to represent a function is obtained by using the basic block vectors of the function. The Code

vector is obtained by propagating the vectors obtained at the function level with the call graph
information, as explained in Section 4.3.2.

4.2 Learning Seed Embeddings of LLVM IR

4.2.1 Generic Tuples. The opcode, type of operation (int, float, etc.) and arguments are extracted
from the LLVM IR. This extracted IR is preprocessed in the following way: first, the identifier
information is abstracted out with more generic information, as shown in Table 1. Next, the Type
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Fig. 2. Overall schematic of IR2Vec: (a) [Data Collection] Mapping LLVM IR to 〈h, r , t〉 triplets. (b) [Vo-

cabulary training] Learning representations using TransE. (c) [After Training] Obtained Seed Embedding

Vocabulary. (d) [Inference] Formation of instruction vectors for new programs.

information is abstracted to represent a base type ignoring its width. For example, the type i32 of
LLVM IR is represented as int.

4.2.2 Code Triplets. From this preprocessed data, three major relations are formed: (1) TypeOf:
Relation between the opcode and the type of the instruction, (2) NextInst: Relation between the
opcode of the current instruction and opcode of the next instruction; and (3) Argi : Relation between
opcode and its ith operand. This transformation from actual IR to relation (〈h, r , t〉 triplets) is shown
in Figure 2(a). These triplets form the input to the representation learning model.

Example. The LLVM IR shown in Figure 2 corresponds to a function that sums up the two integer
arguments and returns the result. The first store instruction of LLVM IR in Figure 2(a) is of integer
type with a variable as the first operand and a pointer as the second operand. It is transformed into
the corresponding triplets involving the relations TypeOf, NextInst, Arg1, Arg2, as shown.

4.2.3 Learning Seed Embedding Vocabulary. As shown in Figure 2(b), the generated Code
triplets 〈h, r , t〉 are used as input to the TransE learning model (Section 3.2). On training, the model
learns the representations of the entities forming the Seed embedding vocabulary, as shown in
Figure 2(c).

4.3 Instruction Vector

Let the entities of instruction l , be represented as O (l ) , T (l ) , Ai
(l ) - corresponding to Opcode,

Type and ith Argument of the instruction and their corresponding vector representations from

the learned seed embedding vocabulary be �O(l )�, �T(l )�, �Ai
(l )�. Then, an instruction of format

〈
O (l ) T (l )A1

(l )A2
(l ) · · ·An

(l )
〉

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 32. Publication date: November 2020.



IR2Vec: LLVM IR Based Scalable Program Embeddings 32:9

is represented as a vector which is computed as:

Wo .�O(l )� +Wt .�T(l )� +Wa .
(�

A1
(l )
�
+
�
A2

(l )
�
+ · · · +

�
An

(l )
�)

(1)

Here,Wo ,Wt , andWa are scalars (∈ [0, 1]), the plus (+) denotes the element-wise vector addition
operator, and the dot (.) denotes the scalar multiplication operator. Further, the Wo , Wt , and Wa

are chosen with a heuristic that gives more weightage to opcode than type, and more weightage
to type than arguments:

Wo >Wt >Wa (2)

This resultant vector that represents an instruction is the Instruction vector in Symbolic

encodings.

Example (contd.). For the store instruction shown in Figure 2(d), the representations of opcode
store, type IntegerTy, and arguments VAR, PTR are fetched from the seed embedding vocabulary,
and the instruction is represented as Wo .(�store�) +Wt .(�IntegerTy�) +Wa .(�VAR� + �PTR�).
In the same figure, we also show a similar example of the return instruction.

4.3.1 Embedding Data Flow Information. An instruction in LLVM IR may define a variable or
a pointer that could be used in another section of the program. The set of uses of a variable (or
pointer) gives rise to the use-def (UD) information of that particular variable (or pointer) in LLVM
IR [29, 44]. In imperative languages, a variable can be redefined; meaning, in the flow of the pro-
gram, it has a different set of lifetimes. Such a redefinition is said to kill its earlier definition. During
the flow of program execution, only a subset of live definitions would reach the use of the variable.
Those definitions that reach the use of a variable are called its Reaching Definitions.

We model the instruction vector using such flow analyses information to form Flow-Aware

encodings. Each Aj , which has already been defined, is represented using the embedding of its
reaching definitions. The Instruction Vector for a reaching definition, if not calculated, is computed
in a demand-driven manner.

4.3.2 Instruction Vector for Flow-Aware Encodings. If RD1, RD2, . . . ,RDn are the reaching defi-

nitions of Aj
(l ) , and �RDi� be their corresponding representations, then, the encoding �Aj

(l )� is
calculated by aggregating over all the vectors of the reaching definitions as follows:

�
Aj

(l )
�
=

n∑

i=1

�RDi� (3)

The Σ stands for the vector sum of the operands.
For the cases where the definition is not available (for example, function parameters), the generic

entity representation of “VAR” or “PTR” from the learned seed embedding vocabulary is used.
An illustration is shown in Figure 4(a), where the instructions ISource11 and ISource2 reach IT arдet

as arguments. Here, the definition of ISource11 could reach the argument AT arдet of the instruction
IT arдet either directly or via ISource12 . And, definition ISource2 reaches the argumentAT arдet of the
instruction IT arдet directly. Hence, �ATarget� is computed as �ISource11

� + �ISource2�.
An instruction is said to be killed when the return value of that instruction is redefined. As

LLVM IR is in SSA form [18, 35], each variable has a single definition, and the memory gets (re-)
defined. Based on this, we categorize the instructions into two classes: ones which define memory,
and ones that do not. The first class of instructions is Write instructions, and the second class of
instructions is Read instructions.

For each instruction, the embeddings are formed as explained above. If these embeddings cor-
respond to a write instruction, future uses of the redefined value will take the embedding of the
current instruction, instead of the embedding corresponding to its earlier (killed) definition, until
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Fig. 3. Illustration of generating intra-basic block Instruction Vectors.

Fig. 4. Illustration of generating inter-basic block Instruction Vectors.

the current definition itself gets redefined. This process of Kill and Update, along with the use of
reaching definitions for forming the instruction vectors within (and across) the basic block is illus-
trated in Figure 3 (and Figure 4) for the corresponding Control Flow Graph (CFG), respectively.

Example (contd.). The CFG in Figure 3 corresponds to a function that takes arr and size as its
two arguments. We expand the first basic block of this CFG and show its corresponding LLVM IR.
The values of the two arguments are allocated memory in I1 and I2; this is followed by storing them
to the local variables, ptr and range by the store instructions in I4 and I5. Similarly, memory for
the loop induction variable i is allotted by I3 and is initialized to zero by I6.

Here, we show the process of propagating instruction vectors within the basic block.

Example (contd.). The definition of ptr in I1 reaches the use of ptr in I4. So, the representation
of I1 is used in its place as shown, instead of the generic representation of PTR. Also, the store
instruction kills the definition of ptr in I1, as it updates the value of ptr with that of arr. Hence,
in the further uses of ptr, the representation of I4 is used instead of I1. The same is the case for
other store instructions in I5 and I6.

Similarly, in Figure 4, we show how the propagation of instruction vectors happens across basic
blocks. In this case, more than one definition can reach a use via multiple control paths. Hence, as
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Fig. 5. Control Flow Graph showing circular dependency.

explained in Equation (3), all possible definitions that can potentially reach a use are considered
to represent the argument of that instruction.

Example (contd.). In Figure 4(b), the definitions of j from I2, I3, and I9 can reach argument j
of instruction I4 without being killed. Hence, we conservatively consider all three definitions for
representing the argument j in I4 as shown in Figure 4(c). Figure 4(b) also shows another such
example for instruction I5.

This resulting instruction vector, which is formed by adding the exact flow information on the
Symbolic encodings’ instruction vector, is used in obtaining Flow-Aware encodings.

4.3.3 Resolving Circular Dependencies. While forming the instruction vectors, circular depen-
dencies between two write instructions may arise if both of them write to the same location and
the (re-)definitions are reachable from each other.

Example. To calculate �I4� (the encoding of I4), in the CFG shown in Figure 5,1 it can be seen
that the definitions of i from I3 and I7 can reach the argument i in I4. However, �I5� is needed
for computing �I7� and is yet to be computed. But for computing �I5�, �I7� is needed. Hence, this
scenario results in a circular dependency.

This problem can be solved by posing the corresponding embedding equations as a set of simul-
taneous equations to a solver. For example, the embedding equations of I5 and I7 shown in Figure 5
would be:

�I4� =Wo (�load�) +Wt (�IntegerTy�) +Wa (�I3� + �I7�)

�I5� =Wo (�store�) +Wt (�IntegerTy�) +Wa (�VAR�) +Wa (�I3� + �I7�)

�I7� =Wo (�store�) +Wt (�IntegerTy�) +Wa (�VAR�) +Wa (�I3� + �I5�)
(4)

It can be seen that Equation (4) is a system of linear equations, where �I4�, �I5�, and �I7� are
the unknowns that are to be calculated, while the rest of the values are known. Such embedding
equations form a system of linear equations that can be posed to a solver to find the solution.

Just like any system of linear equations, there are three cases of solutions.

(1) Unique Solution: In this case, the solution is obtained in a straightforward manner.
(2) Infinitely Many Solutions: In this case, any one of the obtained solutions can be considered

as the result.
(3) No Solution: In this case, to obtain a solution, we perturb the value ofWa asWa =Wa − δ

so that the modified system converges to a solution, with δ chosen randomly. If the system

1Though this CFG is the classic irreducibility pattern [29, 44], it is easy to construct reducible CFGs which have circular

dependencies.
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Procedure getInstrVec(Instruction I, Dictionary seedEmbeddings)

if �I� is already computed then
return �I�

�O� ← seedEmbeddings[Opcode(I)] // Fetch value of Opcode of I from seed embeddings

�T� ← seedEmbeddings[Type(I)] // Fetch value of Type of I from seed embeddings

�A� ← ∅ // Initializing n-d Argument vector to zeroes

for each argument Ai ∈ I do

if Ai is a Function then

�Ai� ← seedEmbeddings[“FUNCTION”]

if Encoding is Flow-Aware and definition of Ai is available then

�Ai� ← getFuncVec(Ai )

else if Ai ∈ {VAR, PTR} then

if Encoding is Symbolic or Ai is not a use of a definition then
�Ai� ← seedEmbeddings[“VAR” or “PTR”]

else

for each reaching definition RD of Ai do

�RD� ← getInstrVec(RD)

if �RD� leads to cyclic dependency then
Resolve and obtain �RD� as shown in 4.3.3

�Ai� ← �Ai� + �RD�
else if Ai is a CONST then

�Ai� ← seedEmbeddings[“CONST”]

else if Ai is a address of Basic block then

�Ai� ← seedEmbeddings[“LABEL”]

�A� ← �A� + �Ai�
return Wo ∗ �O� +Wt ∗ �T� +Wa ∗ �A�

Procedure getFuncVec(Function F, Dictionary seedEmbeddings)

if �F� is already computed then
return �F�

�F� ← ∅ // Initializing n-d Function vector to zeroes

for each basic block BBi ∈ F do

�BBi� ← ∅ // Initializing n-d Basic block vector to zeroes

for each live instruction I ∈ BBi do

�I� ← getInstrVec(I, seedEmbeddings)

�BBi� ← �BBi� + �I�
�F� ← �F� + �BBi�

return �F�

does not converge with the chosen value of δ , another δ could be picked, and the process
can be iterated until the system converges.

In our entire experimentation setup described in Section 5 however, we did not encounter
cases (2) and (3).

4.4 Construction of Code Vectors from Instruction Vector

After computing the instruction vector for every instruction of the basic block, we compute the
cumulative Basic Block vector by using the embeddings of those instructions that are not killed.

For a basic block BBi , the representation is computed as the sum of the representations of live

instructions LI1,LI2, . . . ,LIm in BBi .
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�BBi� =
m∑

k=1

�LIk� (5)

The vector to represent a function F with basic blocks BB1,BB2, . . . ,BBb is calculated as the
sum of vectors of all its basic blocks as:

�F� =
b∑

i=1

�BBi�. (6)

Our encoding and propagation also take care of programs with function calls; the embeddings
are obtained by using the call graph information. For every function call, the function vector for
the callee function is calculated, and this value is used to represent the call instruction. For the
functions that can be resolved only during link time, we just use the embeddings obtained for the
call instruction. The final vector that is obtained encodes the function. The above procedure is
applicable for recursive function calls as well. This process of obtaining the instruction vector and
function vector is outlined in Algorithms 1 and 2.

The procedure getInstrVec (Algorithm 1) computes the vector representation for a particu-
lar instruction I . The representations of the opcode (�O�) and type (�T�) of the instruction are
fetched from the seed embedding vocabulary. For computing the representation of �A�, we iterate
over the list of arguments of the instruction. If the argument corresponds to a function and the
definition of that function is available, we find the representation of that function and use it as the
representation of the argument. If the definition of the function is not available, then the generic
representation of function in the seed embedding vocabulary is used to represent the argument.

If the argument is a variable or pointer, we compute the representation of all its reaching defini-
tions and sum them up to represent the argument, in case of flow aware encodings. For symbolic
encodings, we use a simpler procedure by using the generic representation of variable or pointer
from the seed embedding vocabulary as the representation of the argument.

For the other cases, when the argument is a constant or an address of a basic block (its label),
the corresponding generic representations are used. Finally, representations of all the arguments
(of the instruction) are summed up to compute �A�. And, the instruction vector is computed as
the weighted sum of �O�, �T�, and �A�.

The procedure getFuncVec (Algorithm 2) computes the function vector. First, the representation
of every basic block in the function is calculated. The instruction vectors corresponding to the live
instructions are calculated by making a call to the procedure getInstrVec and the basic block
vector is obtained as the element-wise sum of these instruction vectors, which, when summed up,
forms the function vector.

If �F1�, �F2�, . . . , �Ff � are the embeddings of the functions F1, F2, . . . , Ff in a program, then
the code vector representing the program P is calculated as the sum of the embeddings of all such
functions as:

�P� =
f∑

i=1

�Fi� (7)

5 EXPERIMENTAL RESULTS

We used the SPEC CPU 17 [12] benchmarks and Boost library [15] as the datasets for learning
the representations. The programs in these benchmarks are converted to LLVM IR by varying the
compiler optimization levels (-O[0-3], -Os, -Oz) at random. The 〈h, r , t〉 triplets are created
from the resultant IRs using the relations that were explained in Section 4.2. Embeddings of such
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Fig. 6. Comparison of embeddings of various seed entities.

triplets are learned using an open-source implementation of TransE [28], which was explained in
Section 3.2.

We wrote an LLVM analysis pass to extract the generic tuples from the IR so that they can be
mapped to form triplets. There were ≈ 134M triplets in the dataset, out of which ≈ 8K relations
were unique; from these, we obtain 64 different entities whose embeddings were learnt. The train-
ing was done with SGD optimizer for 1,500 epochs to obtain embedding vectors of 300 dimensions.

These learned embeddings of 64 different entities form the seed embeddings. Additional related
information is listed in Table 5. We heuristically setWo ,Wt , andWa to 1, 0.5, 0.2, respectively. The
vectors at various levels were computed using another LLVM pass.

In this section, we attempt to answer RQ1 by showing the clusters formed by the entities of
seed embedding vocabulary and RQ2 by showing the effectiveness of IR2Vec embeddings on two
different optimization tasks.

5.1 RQ1: Evaluation of Seed Embeddings

The seed embeddings are analyzed to demonstrate whether the semantic relationship between the
entities are effectively captured by forming clusters. These clusters show that IR2Vec is able to
capture the characteristics of the instructions and the arguments.

The entities corresponding to the obtained seed embeddings are categorized as groups based
on the nature of the operations they perform—Arithmetic operators containing the integer- and
floating-point-type arithmetic operations, Pointer operators which access memory, Logical opera-

tors which perform logical operations, Terminator operators which form the last instruction of the
basic block, Casting operators that perform typecasting, Type information, and Arguments.

Clusters showing these groups are plotted using PCA (Principal Component Analysis), a dimen-
sionality reduction mechanism to project the points from the higher- to lower-dimensional space
[60]. Here, to visualize the 300-dimensional data in 2 dimensions, we use 2-PCA, and the resulting
clusters are shown in Figure 6.

In Figure 6(a), we show the relation between various types. It can be observed that vectorTy
being an aggregate type can accept any of the other first-class types and lies approximately
equidistant from integerTy, pointerTy, structTy, and floatTy. And, vectorTy lies farthest
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from voidTy, justifying that it is unlikely that voidTy elements will be aggregated together as
vectors.

In Figure 6(b), we show that all integer-based arithmetic operators are grouped together and
are distinctly separated from floating-point-based operators. It can be said that the analogies be-
tween the operators are captured. For example, the distance between (add, fadd) is similar to that
of the distance between (sub, fsub). From Figures 6(b), 6(e), and 6(f), it can also be seen that the
arithmetic operators are distinctly separated from the arguments, pointer operators and termina-
tor operators. Similarly, from Figure 6(c), we can see that the logical operators are also distinctly
separated from the arguments.

In Figure 6(d), we show the relationship between arithmetic and casting operators. It can be
clearly seen that the integer-based casting operators like trunc, zext, sext, and the like,
are grouped together with integer operators, and the floating-point-based casting operators like
fptrunc, fpext, fptoui, and the like are grouped together with floating-point operators. On
observing Figure 6(d) and Figure 6(e), it can be seen that ptrtoint and inttotpr are closer to
both integer operators and pointer operators. Figure 6(e) also demonstrates that the arithmetic
operators are clearly distinct from pointer operators. Logical operators operate on integers, and
hence they are grouped together with integer operators, as observed in Figure 6(f).

In summary, these clusters show that the obtained seed embeddings are indeed meaningful as
they capture intrinsic syntactic and semantic relationships of LLVM entities.

5.2 RQ2 (a): Heterogeneous Device Mapping

Grewe et al. [26] proposed the heterogeneous device mapping task to map OpenCL kernels to the
optimal target device—CPU or GPU in a heterogeneous system. In this experiment, we use the
embeddings obtained by IR2Vec to map OpenCL kernels to its optimal target.

Dataset. We use the dataset provided by Ben-Nun et al. [13] for this experiment. It consists of
256 unique OpenCL kernels from seven different benchmark suites comprising of AMD SDK, NPB,
NVIDIA SDK, Parboil, Polybench, Rodinia and SHOC. Taking the kernels and varying their two
auxiliary inputs (data size and workgroup size) for each kernel, a dataset is obtained. This leads to
about 670 CPU- or GPU-labeled data points for each of the two GPU devices—AMD Tahiti 7970
and NVIDIA 970.

Experimental Setup. The embeddings for each kernel are computed using IR2Vec infrastructure.
Gradient boosting classifier with a learning rate of 0.5, which allows a maximum depth of up to
10 levels and 70 estimators with ten-fold cross-validation is used to train the model.

We use simpler models like gradient boosting classifier, as our embeddings are generated at
the program/function level directly without forming sequential data that need sequential neural
networks like RNNs or LSTMs. More advantages of our modelling are discussed in Section 6.1.
Similar to the earlier methods, we use the runtimes corresponding to the predicted device, to
calculate the speedup against the static mapping heuristics proposed by Grewe et al. [26].

We compare the prediction accuracy and speedup obtained by IR2Vec across two platforms
(AMD Tahiti 7970 and NVIDIA GTX 970) with the manual feature-extraction approach of Grewe
et al. [26] and the state-of-the-art methodologies of DeepTune [21], and inst2vec [13].

Accuracy. Accuracy is computed as the percentage of correct device mapping predictions for a
kernel by the model over the total number of predictions during test time. In Figure 7, we show
the accuracy of mapping using the encodings generated by IR2Vec and other methods. Flow-Aware

and Symbolic encodings achieve an average accuracy of 91.26% and 88.72% accuracy, respectively.
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Fig. 7. Accuracy for heterogeneous device mapping task on various benchmark suites.

Table 2. Percentage of Improvement in Accuracy Obtained by Flow-Aware Encodings

when Compared to the Other Methods

Architecture

Grewe

et al. [26]

DeepTune

[21]

inst2vec

[13]

inst2vec-imm2

[13]

IR2Vec

Symbolic

AMD Tahiti 7970 26.50% 10.93% 12.12% 5.38% 2.81%
NVIDIA GTX 970 22.96% 11.70% 9.69% 3.54% 2.92%

In Table 2, we show the percentage improvement of accuracy obtained by Flow-Aware encod-
ings over the other methods. It can be observed that the Flow-Aware encodings achieve higher
performance over the other methods [13, 21, 26]. On AMD Tahiti 7970, our Flow-Aware encod-
ings achieve the highest accuracy in all 7 benchmark suites. In addition, our Symbolic encodings
achieve second-highest in 4/7 benchmark-suites. Similarly, in NVIDIA GTX 970, Flow-Aware en-
codings achieve the highest accuracy in 3/7 cases, and Symbolic encodings achieve the highest or
second-highest accuracy in 4/7 cases.

Along with inst2vec encodings, the NCC framework [13] also proposes the inst2vec-imm encod-
ings to handle immediate values. For this, they formulate four immediate value handling methods.
As there is no single consistent winner among these value handling methods, NCC considers the
best result out of them. As the benchmark-wise results are not published, we are unable to compare
our results with inst2vec-imm in detail.

2The numbers are quoted from the paper.
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Fig. 8. Plot showing the speedups corresponding to the device mapping predictions by various methods.

Speedups. In Figure 8, we show the speedups achieved in comparison with static mapping as
the baseline on both the platforms under consideration. With Flow-Aware encodings, we achieve
about 88.38% and 77.65% of the maximum speedup given by the oracle on AMD Tahiti and NVIDIA
GTX resepectively, when compared to the 70.76% on AMD Tahiti, 70.66% on NVIDIA GTX by
inst2vec, 72.90% on AMD Tahiti, and 66.79% on NVIDIA GTX by Deeptune. (With Symbolic en-
codings, we achieve about 80.11% and 72.03% of the maximum speedup on AMD Tahiti and NVIDIA
GTX.)

Flow-Aware encodings achieve a geometric mean of 1.58× speedup on AMD Tahiti 7970 and a
1.26× speedup on NVIDIA GTX 970; in comparison, on the AMD platform, the speedups achieved
by the state-of-the-art models of DeepTune [21] and inst2vec [13] is 1.46× and 1.4×, respectively;
while, on the NVIDIA platform, both DeepTune and inst2vec achieve a comparable 1.21× speedups.
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Fig. 8. (Contd.) Plot showing the speedups corresponding to the device mapping predictions by various

methods.

Table 3. Percentage of Improvement in Speedup Obtained by Flow-Aware Encodings

when Compared to the Other Methods

Architecture Grewe et al. [26] DeepTune [21] inst2vec [13]3 IR2Vec Symbolic

AMD Tahiti 7970 29.65% 7.96% 12.95% 1.43%
NVIDIA GTX 970 13.77% 4.31% 3.93% 1.92%

Symbolic encoding also performs better than the state-of-the-art by achieving a speedup of 1.56×
on AMD Tahiti and 1.24× on NVIDIA GTX.

In Table 3, we show the percentage improvement of speedups obtained by Flow-Aware encodings
in comparison with the earlier methods. It can be seen that the Flow-Aware encodings perform
better on both the platforms when compared to the other works.

On benchmarks like ep (embarrassingly parallel), where mapping them to GPUs gets the optimal
performance [26], we map to GPU—in all the turns of 10 fold cross-validation—and hence achieve
the highest possible speedup. Similarly, for LU, which gives an optimal performance when mapped
to CPUs [26], we map the kernels that ought to be mapped to CPU correctly, with very high
confidence (of about 95%) in various turns of 10 fold cross-validation. In comparison, DeepTune
and inst2vec map LU to CPUs with a confidence of 77% and 85%, respectively.

Slowdown. Our predictions using Flow-Aware encodings result in the least number of slowdowns
both at the level of benchmarks and benchmark-suites. Our predictions result in a slowdown in
18/142 of benchmarks across two platforms; in comparison, inst2vec and DeepTune result in a
slowdown in 33 and 32 benchmarks, respectively. Also, at an aggregate benchmark-suite level,
the prediction using Flow-Aware encodings leads to a slowdown in 3/14 cases across platforms, in
comparison inst2vec and DeepTune result in slowdowns in three and six cases, respectively.

3The inst2vec-imm results given in their paper [13] are based on arithmetic mean, whereas our results are based on geomet-

ric mean. inst2vec-imm is reported to achieve a (arithmetic mean) speedup of 3.47× and 1.44×; whereas our Flow-Aware

encodings achieve a speedup of 3.51× and 1.47× on AMD Tahiti and on NVIDIA GTX respectively.
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Fig. 9. Plot showing the speedups achieved by predicted coarsening factors by various methods.

5.3 RQ2 (b): Prediction of Optimal Thread Coarsening Factor

Thread coarsening [57] is the process of increasing the work done by a single thread by fusing
two or more concurrent threads. Thread coarsening factor corresponds to the number of threads
that can be fused together. Selection of an optimal thread coarsening factor can lead to signifi-
cant improvements [40] in the speedups on GPU devices and a naive coarsening would lead to a
substantial slowdown.

A thread coarsening factor of a kernel that gives the best speedup on a GPU could give the worst
performance with the same coarsening factor on another device (either within or across vendors)
because of the architectural characteristics of the device [41, 55]. For example, nbody kernel, which
has a higher degree of Instruction Level Parallelism, can be better exploited by VLIW-based AMD
Radeon than SIMD-based AMD Tahiti [41].

Dataset. In this experiment, we follow the experimental setup proposed by Magni et al. [41] to
predict the optimal thread coarsening factor—among {1, 2, 4, 8, 16, 32}—for a given kernel specific
to a GPU device. Even for this experiment, we use the dataset provided by Ben-Nun et al. [13]. It
consists of about 68 datapoints from 17 OpenCL kernels on 4 different GPUs—AMD Radeon 5900,
AMD Tahiti 7970, NVIDIA GTX 480, and NVIDIA Tesla K20c. These kernels are collectively taken
from AMD SDK, NVIDIA SDK and Parboil benchmarks. A datapoint consists of the kernel and its
runtime corresponding to each thread coarsening factor on a particular GPU device.

Experimental Setup. Even for this task, we use gradient boosting classifier instead of LSTMs and
RNNs to predict the coarsening factor for the four GPU targets. For this experiment, we set the
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Table 4. Percentage of Improvement in Speedup Obtained by Flow-Aware Encodings

When Compared to the Other Methods

Architecture
Magni et al.

[41]
DeepTune

[21]
DeepTune-TL

[21]
inst2vec

[13]4
IR2Vec

Symbolic

AMD Radeon 5900 27.66% 5.26% 5.26% 4.35% –

AMD Tahiti 7970 25.41% 29.37% 36.56% 18.17% 2.08%

NVIDIA GTX 480 45.31% 25.21% 18.89% 23.89% 3.98%

NVIDIA Tesla K20c 52.84% 15.41% 11.98% 11.98% 0.18%

learning rate as 0.05 with 140 decision stumps with 1 level, as the number of datapoints in the
dataset is very low. We use ten-fold cross-validation for measuring the performance.

Speedups. In Figure 9, we show the speedups achieved by our encodings and earlier works on
four different platforms—AMD Radeon HD 5900, AMD Tahiti 7970, NVIDIA GTX 480, and NVIDIA
Tesla K20c.

On AMD Radeon, both of our encodings achieve a speedup of 1.2×when compared to the state-
of-the-art speedup of 1.15× and 1.14× achieved by inst2vec [13] and DeepTune model with transfer
learning (DeepTune-TL) [21]. In AMD Tahiti, Flow-Aware encodings achieve a speedup of 1.23×;
Symbolic encoding achieves a speedup of 1.2×, whereas the earlier works by DeepTune-TL and
inst2vec achieve a speedup of 0.9× and 1.04× respectively. In Table 4, we show the percentage
improvement of speedup obtained by Flow-Aware encodings over other methodologies. From the
table, we can infer that Flow-Aware gives better results for every architecture when compared to
the other methods.

We are the first ones to achieve a positive speedup on NVIDIA GTX 480; our Flow-Aware and
Symbolic encodings obtain a speedup of 1.18× and 1.13×, respectively, when compared to 0.95×
and 0.99× speedup achieved by inst2vec and DeepTune-TL. We get a speedup of 1.13× with both
of our proposed encodings on NVIDIA Tesla K20c. In contrast, DeepTune-TL and inst2vec obtain
a speedup of 1.01× on this platform.

On average, it can be seen that both encodings outperform the earlier methods for prediction
of the thread coarsening factor on all the four platforms under consideration.

Slowdown. Magni et al. [41] observe that spmv and mvCoal kernels have irregular dependences
that causes a poor response to coarsening, and hence no performance improvement for them is
possible. For these kernels, IR2Vec obtains the baseline speedup without resulting in a slowdown.
In contrast, the earlier models result in negative speedups (DeepTune results in a slowdown up
to 0.36× in AMD Radeon and inst2vec results in a slowdown of up to 0.63× in AMD Radeon and
NVIDIA GTX). The same argument applies for stencil kernel (an iterative Jacobi stencil on 3D-
grid), where the coarsening leads to slowdown (except in NVIDIA GTX), while IR2Vec still obtain
the baseline speedup.

When compared to the other methods, we obtain the best speedup on about 70% of the ker-
nels on all platforms. It can be observed that the Flow-Aware encodings rarely lead to slowdowns;
this happens in only 8/68 cases (17 benchmark-suits, across 4 platforms), even on these eight
cases, the speedup is still close—within 10%—of the baseline. Whereas, predictions by inst2vec

4As per the results given in the NCC paper [13], inst2vec-imm achieves a (arithmetic) mean of 1.28×, 1.18×, 1.11×, and

1× speedup on AMD Radeon, AMD Tahiti, NVIDIA GTX and NVIDIA Tesla; whereas our Flow-Aware encodings achieve a

(arithmetic) mean of 1.25×, 1.3×, 1.26×, and 1.16×, respectively.
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and DeepTune-TL result in a slowdown in 18 and 21 cases. We believe that this is because of the
flow information associated with the obtained vectors.

6 RQ3: IR2Vec-PERSPECTIVES

We discuss some perspectives on IR2Vec. We answer RQ3 by doing a scalability study.

6.1 Training Characteristics

By design, training with IR2Vec embeddings takes lesser training time. This is because our frame-
work has the flexibility to model the embeddings as non-sequential data at program or function
level. Whereas, other methods are limited to modeling the input programs only as sequential data,
and hence are bound to using sequential models like LSTMs and RNNs. Using such models will
involve training more number of parameters than non-sequential models like Gradient Boosting.

Device Mapping. Training for the device mapping task by IR2Vec takes ≈ 5 seconds on a P100
GPU, when compared to about 10 hours and 12 hours of training time taken by DeepTune [21] and
NCC [13], respectively. This results in a reduction of about ≈ 7200×–8640× in training time without

a reduction in performance.
The earlier works take much time for training because they involve training a large number

of parameters: DeepTune [21] uses ≈ 77K parameters, while NCC [13] uses ≈ 69K parameters. In
contrast, the IR2Vec predictions use Gradient Boosting, which is a collection of a small number
of shallow decision trees. This reduction in time is primarily possible because the embeddings ob-
tained by IR2Vec enable us effectively use the Gradient boosting algorithm instead of the compute-
intensive and data-hungry neural networks (LSTM in this case) that do not fit well in the cache
hierarchy.

Thread Coarsening. Even for the thread coarsening task, our model takes lesser time of ≈10 sec-
onds for training when compared to ≈11 hours of training time needed by DeepTune-TL and
≈1 hour of training time needed (and 77K and 69K parameters used) by DeepTune and NCC
approaches. This results in ≈360×–3960× reduction of training time, and again, achieving good
speedups.

6.2 Symbolic vs. Flow-Aware

The seed embedding vocabulary captures intrinsic syntactic and semantic relations at the entity
level of the LLVM IR (Section 5.1). Hence, we believe that the primary strength of our encodings
comes from the seed embedding vocabulary. This directly leads to the Symbolic encodings that
achieve better performance than the other earlier methods on average. When the Symbolic en-
codings are augmented with flow information of the program, it results in Flow-Aware encodings.
These encodings result in much more informative representation and hence lead to better accuracy
and speedup than all other methods. This is evident from the results shown in Section 5.

However, this improvement in accuracy comes with a minimal overhead. Generating the Flow-

Aware encodings take more time than Symbolic encoding, as it accounts for the time taken to
generate and propagate the program flow information and to resolve circular dependencies in this
process. We did an analysis of time taken by both of these encodings on a sample set of straightfor-
ward programs involving the family of sorting, searching, dynamic and greedy programs obtained
from an online collection of programs [24].

The comparison of time taken to generate the Symbolic and Flow-Aware encodings from the
Seed Embedding Vocabulary on the sample set is shown in Figure 10. It can be observed that, on
an average, Flow-Aware encodings take 1.86 times more than that of Symbolic encodings. Their
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Fig. 10. Comparison of time taken to generate the Symbolic and Flow-Aware encodings from Seed Embedding

Vocabulary.

memory representations are of the same size, as both of them result in a floating-point vector in
the same n-dimensions (300 dimensions for our setting).

6.3 Exposure to OOV Words

For learning the representations of programs, the training phase of any method often involves
learning a vocabulary that contains the embeddings corresponding to the input. When an unseen
combination of underlying input constructs is encountered during inference, it would not be a
part of the vocabulary and leads to Out Of Vocabulary (OOV) data points. In such cases, most of
the models treat all the OOV words in a similar manner by assigning a common representation
ambiguously, which may result in performance degradation.

Hence, to avoid OOV points, it is important to expose various and large (all possible) com-
binations of the underlying entities during the training phase. For example, for generating the
embeddings at a statement-level of IR, all combinations of opcodes, types and arguments that
can potentially form a statement should be exposed during training. Similarly, for generating
token-based embeddings, all possible tokens that can possibly be encountered must have been
exposed at the training time. But, both of these approaches would lead to a huge training space
of O ( |opcodes | × |types | × |arдuments |) and O ( |tokens |) (where |tokens | can potentially be un-
bounded, with tokens being used more in the sense of a lexeme [5]), respectively. As can be seen,
covering such a huge intractable space is infeasible, and hence undesirable.

Consequently, the methods that learn statement-level representations like NCC [13] face OOV

issues. However, DeepTune [21] uses a Token and Character based hybrid approach to overcome
this issue. DeepTune’s method involves usage of the embeddings corresponding to the token if it is
present in vocabulary. Else, they break the token as a series of characters and use the corresponding
embeddings of the character.

On the other hand, IR2Vec forms embeddings at the entity level of the IR, and hence it is suffi-
cient to expose a training space of only O ( |opcodes | + |types | + |arдuments |) to avoid OOV points.
With this insight, it can be seen that IR2Vec can avoid the OOV issue even on exposure to a smaller
number of programs at training time, when compared to the other approaches. Consequently, this
results in a smaller vocabulary, and hence achieving better performance than the other methods. A
comparison of IR2Vec with DeepTune and NCC with respect to training and vocabulary is shown
in Table 5.
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Table 5. Comparison Matrix: DeepTune vs. NCC vs. IR2Vec

Comparison metric DeepTune [21] NCC [13] IR2Vec

Primary embedding Token and Character level Instruction level Entity level

Files examined Handpicked vocabulary 24,030 13,029

Vocabulary size 128 symbols 8,565 statement embeddings 64 entity embeddings

Entities examined Application specific ≈640M XFG Statement Pairs ≈134M Triplets

Vocabulary training Task dependent 200 hrs on a P100 20 mins on a P100

time

Fig. 11. Comparison of the number of OOV entities encountered by NCC and IR2Vec.

A comparison of the number of OOV entities encountered by NCC and IR2Vec on the same set
of programs used in Section 6.2 is shown in Figure 11. It can be seen that our method does not
encounter any OOVs even when exposed to lesser training data, thereby achieving good scalability.

7 CONCLUSIONS AND FUTURE WORK

We proposed IR2Vec, a novel LLVM-IR based framework that can capture the implicit character-
istics of the input programs in a task-independent manner. The seed embeddings were formed by
modelling IR as relations, and the encoding was obtained by using a translational model. This en-
coding was combined with liveness, use-def, and reaching definition information, to form vectors
at various levels of the program abstraction like instruction, function and module. Overall, this
results in two encodings, which we term as Symbolic and Flow-Aware.

When compared to earlier approaches, our approach of representing programs is non-data-

hungry, takes less training time of up to 8640×, while maintaining a small vocabulary of only 64 enti-

ties. As we use entity level seed embeddings, we do not encounter any OOV issues. We demonstrate
the effectiveness of the obtained encodings on two different tasks and obtain superior performance
results while achieving high scalability when compared with various similar approaches.

We envision that our framework can be applied to other applications beyond the scope of this
work. IR2Vec can be extended to classify whether a program is malicious or not by looking for
suspicious and obfuscated patterns. It can also be applied for detecting codes with vulnerabilities,
and to identify the patterns of code and replace them with its optimized equivalent library
calls. It can even be extended to aide in key optimizations like the prediction of vectorization,

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 32. Publication date: November 2020.



32:24 S. VenkataKeerthy et al.

interleaving, and unrolling factors. We also plan to extend the device mapping and thread
coarsening experiments with more datasets and on newer platforms.

The source code and other relevant material are available in http://www.compilers.cse.iith.ac.
in/research/ir2vec.
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