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Universality in coalescence of polymeric fluids†
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A pendant drop merging with a sessile drop and subsequently forming a single daughter drop is known

to exhibit complex topologies. But their dynamics are yet to be probed for fluids exhibiting characteristic

relaxation time scales while undergoing the deformation process. Here, we unveil a universal temporal

evolution of the neck radius of the daughter drop during the coalescence of two polymeric drops. Such

a generalization does not rely on the existence of previously explored viscous and inertial dominated

regimes for simpler fluids but is fundamentally premised on a unique topographical evolution with

essential features of interest exclusively smaller than the dominant scales of the flow. Our findings are

substantiated by a theoretical model that considers the drops under coalescence to be partially viscous

and partially elastic in nature. These results are substantiated with high-speed imaging experiments on

drops of polyacrylamide (PAM), polyvinyl alcohol (PVA), polyethylene oxide (PEO), and polyethylene glycol

(PEG). The observations herein are expected to hold importance for a plethora of diverse processes ranging

from biophysics and microfluidics to the processing of materials in a wide variety of industrial applications.

1 Introduction

The process of merging of two or more drops in proximate
contact to merge and form a single daughter drop is ubiquitous
in natural phenomena such as raindrop condensation,1–4 and
industrial phenomena such as spraying,5 coating,6 condensa-
tion of droplets on surfaces7 and even processes linked to life
itself.8–11 In the atmospheric realm, collision and coalescence
of water drops have been identified as key ingredients towards
the growth of raindrops and the evolution of thunderstorms.12

In industrial processes, the coalescence of droplets occurs in a
plethora of diverse applications. For example, in the petroleum
industry, it is associated with dispersed water removal and oil
desalting.13 In the food industry, it holds the key to deciding
the shelf life of emulsion-based products such as salad dressing
and mayonnaise.14 It also occurs in dense spray systems and
combustion.15 In materials processing, sintering of spherical
particles closely mimics the processes of coalescence of complex
fluid droplets.16 In more recent times, droplet coalescence in
liquid crystals,17 emulsions,18–20 particle deposition,21 interfacial

rheology22 and in microfluidic devices23 have opened up new
possibilities in chemistry, biological and materials sciences.
Despite the applications of drop coalescence being fascinating,
rich, and scientifically diverse, a unification of the underlying
physics through universally applicable scaling law, beyond
Newtonian fluids, remains to be an elusive proposition.

The temporal evolution of the liquid neck at the junction of
coalescing drops is initially modulated solely by the Laplace
pressure so that the sudden change in topology when the two
drops become unified may be linked with a unique dynamical
singularity.24 This, besides, is featured with an exclusive separa-
tion of scales as the essential dimensional features of interest
turn out to be significantly smaller than the dominant scales
of the flow.25 For Newtonian drops, the entire dynamical
evolution during coalescence has been identified to be asso-
ciated with a dominating viscous regime at sufficiently early
stages,26 and an inertial regime at later instances.25 Apart from
the inertial and viscous regimes, a new regime of inertially
limited viscous regime27 was demonstrated which highlights
the distinction of the inertial variation25 of R p t0.5 from the
proposed linear variation27 of the neck radius R with time t. Off
late, an additional initial asymptotic regime has been unveiled,
where the inertial, viscous, and surface tension forces are all
important.26 Such a complex interplay of events, however,
makes it extremely difficult, if not impossible, to portray any
universality in the dynamics of coalescing droplets over the
entirety of experimentally meaningful temporal spans.

In the literature, regime-wise universality in droplet
coalescence has been demonstrated, both experimentally and
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analytically24–26,28–42 for Newtonian fluids. For such drops, it
has been established that the kinematics of the phenomenon is
governed by the growth of the liquid bridge that can be typically
characterized by the temporal change of the neck radius. In the
viscous dissipation dominated regime, the neck radius evolu-
tion has been shown to follow: R* B t*ln(t*), where R* (neck
radius non dimensionalized by initial radius of drop Ro) and t*
(normalized time with viscous time scale tv = ZRo/s where Z is
viscosity and s is surface tension) being the relevant dimen-
sionless parameters.32,33,43,44 In the inertia dominated regime
for Newtonian fluids, it has been shown that the radius scales
as R* B (t*)1/2, where t* is the time normalized with inertial

time scale ti ¼
rR3

0

s

� �1
2

,24 r being the density.

The paradigm of a possible universal depiction of collision
dynamics, however, becomes significantly more involved as
rheologically complex fluids are considered to coalesce. For
example, polymeric fluids, which are a distinct sub-set of
viscoelastic fluids, contain macromolecules that can exhibit
strongly non-Newtonian characteristics such as polymer chain
entanglements and molecular relaxations,45 characterized by
the relevant spatial and temporal scales. Polymers for which
water acts as a good solvent such as polyacrylamide (PAM) and
polyethylene oxide (PEO), among others, admit various states of
polymer chain interactions depending on the level of dilution
of the polymer. The co-existence of viscoelastic relaxations
along with dissipative and inertial dynamics introduces addi-
tional complexity so that the constitutive relations may or
may not admit universal solutions. Under such conditions,
the possible existence of universal dynamics characterizing
droplet coalescence phenomenon over experimentally realiz-
able physical scales remains to be an open question.

Here, we demonstrate that for aqueous solutions of poly-
mers, coalescence of a sessile and a hanging pendant drop can
be characterized by a universal scaling relationship. To experi-
mentally depict the underlying universality, we study the coa-
lescence of droplets of four different water-soluble polymers:
polyacrylamide (PAM), polyethylene oxide (PEO), polyvinyl
alcohol (PVA), and polyethylene glycol (PEG). By investigating
coalescence phenomenon for aqueous solutions of the poly-
mers, which we call rheocoalescence, at various concentrations
varying from dilute to semi-dilute entangled regimes, we unveil
a universal temporal evolution of the necking radius of poly-
meric fluid drops. Experimental observation of a universal
regime for these polymeric fluids is also supported by scaling
analysis based on a linear Phan-Thien-Tanner (PTT) model.46

Our results stand in strong contrast to the universality found in

Newtonian fluids and hold enormous promise for opening new
paradigms in rheological measurements.

2 Experiments

Polymer solutions are prepared by dissolving enough quantity
of polymer to distilled water (DI water) to get 0.2%, 0.3%, 0.4%,
0.5% and 0.6% w/v concentrations c of all chosen polymers. For
PAM we have additional concentrations of 0.01%, 0.02%,
0.04%, 0.05%, and 0.06%. We also have PEG with concentra-
tions of 8%, 12%, 16%, 20%, and 24%. All the above solutions
are agitated at 1200 rpm at room temperature for different
durations except PVA. The list of molecular weights, time taken
to prepare the solution, and the suppliers of the polymers used
are provided in Table 1. Concentrations of the polymers are
chosen in a way that the solutions types vary in a range of
dilute, semi-dilute unentangled, and semi-dilute entangled
regimes. The semi dilute unentangled and semi dilute
entangled regimes are differentiated using entanglement
concentration ce which is 5–10 times of critical concentration
c*.47,48 For PAM, the entanglement concentration is given as
ce E 9c*.49 Similarly, the entanglement concentration for PEO
is ce E 6c*.50 Concentrations of 0.5% and 0.6% are chosen for
PEO, and 0.6% for PAM for the experiments are in semi-dilute
entanglement regime.

Coalescence is achieved by dispensing a drop of 2 mm
diameter on a substrate with a pendant drop of the same size,
lowered by a Z-stage with an approach velocity B10�4 m s�1 to
ensure the drops to coalesce in a controlled manner. The
experiments have been performed at standard temperature
and pressure of 25 1C and 1 atm respectively. The schematic
of the experimental setup is shown in Fig. 1a. The coalescence
is imaged with Vision Research v641 high-speed camera
at 90 000 frames per second using Zoom7000 Navitar lens
mounted in front of the droplets with illumination using light-
emitting diode optical source. Image analysis is performed using
MATLAB.

Surface tension values, s, of the polymeric solutions are
measured using Optical contact angle measuring and contour
analysis systems (OCA25) instrument from Dataphysics by the
pendant drop method. Density r of the solutions was obtained
by measuring the mass and volume and was found to be very
close to that of water with a value of 1000 � 50 kg m�3. This
leads us to assume the density of the polymeric solutions to be
1000 kg m�3 throughout the present work.

Characterization of the viscoelastic behaviour of the solu-
tions is done by conducting rheology experiments on Anton

Table 1 Molecular weight of the polymers and time taken to prepare the solutions

Polymer Supplier Molecular weight (g mol�1) Stirring time

PAM Himedia chemical Co. 5 000 000 12 h
PEO Sigma-Aldrich chemical Co. 4 000 000 24 h
PVA Sigma-Aldrich chemical Co. 90 000 0.5 h at 90 1C and 6 h at 40 1C
PEG Sigma-Aldrich chemical Co. 10 000 6 h
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Paar MCR 302 rheometer using a cone and plate 40 mm, 11
geometry. Parameters governing viscoelastic behaviour such as
shear viscosity Z, critical concentration c*, intrinsic viscosity [Z]
and relaxation time l are obtained by using the relations51–54

for the polymer solutions and are given Table 2 with detailed
calculations in ESI.†

3 Results

Coalescence of a hanging pendant drop with a sessile drop
proceeds via the formation of a liquid bridge, where the neck
radius R varies with time; see Fig. 1b. The kinematics of such a
configuration is similar to hanging drop coalescence and
proceeds with a radially symmetric liquid bridge. It is different
from the coalescence of spreading drops in which the substrate
plays an important role leading to a radially asymmetric liquid
bridge. Such evolution of the liquid bridge during coalescence
of an aqueous solution of 0.5% w/v PEO and DI water at
different time instants are shown in Fig. 1c. These figures are
accompanied by a schematic of the neck region, depicting the
geometric parameters H and R as the two pertinent length
scales associated with neck geometry, Ro being the radius of the
drop. As a representative scenario, the temporal evolution of
the neck radius during coalescence is shown for the chosen
polymeric liquids at 0.5% w/v concentration, along with that for
DI water as a control case, as depicted in Fig. 2. For PAM and
PEO solutions, the Weissenberg number, which is defined as

the ratio of elastic forces and viscous forces given by Wi = lU/R
(l is relaxation time of the fluid, U is scaled as the neck velocity

Fig. 1 (a) Schematic of the experimental setup, (b) Schematic of neck
region during coalescence, (c) neck radius evolution of 0.5% w/v concen-
tration of PEO on the left compared with DI water on the right at different
instants.

Table 2 Characterization of fluid properties using Anton-Paar MCR-302
with cone and plate 40 mm, 11 geometry for viscosity. Surface tension
values are obtained using Dataphysics OCA25 Optical contact angle
measuring and contour analysis systems using pendant drop method

Polymer c (%w/v) c* (%w/v) c/c* l (ms) Z (Pa s) s (mN m)

PAM 0.01% 0.06% 0.17 1.1 0.006 71 � 2
0.02% 0.33 1.1 0.013 71 � 2
0.04% 0.67 1.1 0.028 71 � 2
0.05% 0.83 1.1 0.035 71 � 2
0.06% 1 1.1 0.043 71 � 2
0.2% 3.3 1.67 0.146 71 � 2
0.3% 5 1.93 0.258 71 � 2
0.4% 6.7 2.14 0.329 71 � 2
0.5% 8.3 2.315 0.439 71 � 2
0.6% 10 55.13 0.509 71 � 2

PEO 0.2% 0.071% 2.82 1.833 0.009 62 � 2
0.3% 4.23 2.28 0.015 62 � 2
0.4% 5.63 2.63 0.018 62 � 2
0.5% 7.04 52 0.038 62 � 2
0.6% 8.45 74 0.052 62 � 2

PVA 0.2% 1.21% 0.17 1.5 � 10�3 0.00128 54 � 2
0.3% 0.25 1.5 � 10�3 0.00154 52 � 2
0.4% 0.33 1.5 � 10�3 0.00171 48 � 1
0.5% 0.42 1.5 � 10�3 0.00182 48 � 2
0.6% 0.5 1.5 � 10�3 0.00192 48 � 2

PEG 0.2% 5.3% 0.037 30 � 10�6 0.00124 63 � 1
0.3% 0.057 30 � 10�6 0.00127 62 � 1
0.4% 0.075 30 � 10�6 0.00131 61 � 1
0.5% 0.094 30 � 10�6 0.00135 59 � 1
0.6% 0.113 30 � 10�6 0.00141 59 � 1
8% 1.51 34.65 � 10�6 0.0048 56 � 1
12% 2.26 39.91 � 10�6 0.0097 54 � 1
16% 3.01 44.11 � 10�6 0.0125 53 � 1
20% 3.77 48.95 � 10�6 0.0178 52 � 1a

24% 4.52 52.34 � 10�6 0.0241 51 � 1

a Represents interpolated value.

Fig. 2 Temporal evolution of neck radius with time during the merging of
0.5% w/v concentration of polymer solutions: PAM, PEO, PVA, PEG, and DI
Water with shades representing the standard deviation.
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and R as the neck radius), is of Oð1Þ, suggesting that both
elastic and viscous forces are comparable and are governing the
coalescence phenomenon, resulting in the slope of temporal
neck radius evolution as 0.36� 0.02 as observed in Fig. 2. In the
same figure, PVA and PEG follow an altered slope of neck
radius evolution as 0.39 � 0.02, wherein the Weissenberg
number is of Oð10�3�10�4Þ, suggesting the dominance of
viscous forces. This signifies a shift towards Newtonian beha-
viour which has a slope of 0.5. Such comparison of elastic
forces and viscous forces is shown in the form of a variation in
storage modulus G0 and loss modulus G00 with shear strain g for
0.3% w/v PEO and 24% w/v PEG in Fig. S3a (see ESI†). We also
demonstrate a similar variation of G0 and G00 with angular
frequency o for two typical concentrations 0.4% w/v and 0.6%
w/v for PEO in Fig. S3b (see ESI†). The higher difference
between G0 and G00 values for PEG as contrasted with PEO
further strengthens the claim of increased Newtonian beha-
viour with a reduced elastic component.

To explore a possible universality in the coalescence
dynamics, one may first appeal to the intrinsic rheology of
the polymeric fluids. The elastic behaviour of these polymer
solutions is quantified by the relaxation time l that may be
estimated by employing the Zimm model.45 The values of the
relaxation time of the chosen polymeric solutions are listed in
Table 2. The polymeric fluids are characteristically shear thin-
ning in nature.45 Fig. 3a shows the variation of Z as a function
of shear rate _g for PAM, PEO, and PEG solutions for concen-
tration values such that c/c* 4 1, and indicates shear thinning
behaviour for PAM and PEO. However, a weak dependence of
viscosity on the shear rate is observed for PEG. Fig. 3b brings
out similar trends as Fig. 3a for PAM, PVA and PEG solutions
for concentration values such that c/c* o 1, and shows the
shear-thinning behaviour for PAM, whereas weak dependence
of viscosity on the shear rate is observed for PVA and PEG.
This can be extended for all the concentrations of the above
polymers which have c/c* o 1. The viscosity curves for all the
solutions are provided in Fig. S2 of ESI.†

Similarity in trends of temporal variation of neck radius, as
portrayed in Fig. 2, suggested a universal scaling. To determine
the functional form of the dynamic evolution of the normalized
neck radius, we first note that the characteristic length scale
Rc and the characteristic time scale tc obtained from scaling
of surface tension, inertial and elastic forces as represented
in eqn (1) and (2). Here, the effect of gravitational force is
neglected on the basis of Bond number: Bo = rgRo

2/s, which is
of Oð10�1Þ in the present study.

lZA _g2 B sRo (1)

rAU2 B sRo (2)

Here, U represents the characteristic velocity, A represents
characteristic area in which flow is predominant. The charac-

teristic length scale Rc ¼
ffiffiffiffiffiffiffiffi
nol
p

and characteristic time scale
tc = Ohl (where, no is the kinematic viscosity, l is the relaxation
time of the solution and Oh ¼ Z=

ffiffiffiffiffiffiffiffiffiffiffi
Rors
p

is the Ohnesorge
number) are obtained from eqn (1) and (2) from a competitive

balance of pertinent forces. By representing the experimental
data in terms of these normalized variables, the variation

of dimensionless radius R� ¼ Rffiffiffiffiffiffiffiffi
nol
p

� �
with dimensionless

time t� ¼ t

l
Oh�1

� �
assumes the following generic functional

form given in eqn (3). The concentration ratio c/c* is empirically
added in the form of (c/c*)�1.2 to the non-dimensional time, by
observing R* vs. t* variation, to get the universal scaling.

R� ¼ f
t

l
Oh�1;

c

c�

� �
(3)

The collapse of data into a universal characteristic is
depicted in Fig. 4. Following this figure, it can be inferred that

when the dimensionless radius is scaled with
t

l
Oh�1

� � c

c�

� ��1:2

Fig. 3 Rheological behaviour of (a) PAM, PEO and PEG of concentrations
0.5% w/v, 0.5% w/v and 8% w/v respectively having c/c* 4 1, (b) PAM,
PVA and PEG of concentrations 0.05% w/v, 0.6% w/v and 0.2% w/v
respectively such that c/c* o 1 with representation of standard deviation
using shades.
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one may arrive at a universal correlation given in eqn (4)

R� � t

l

� �0:36 c

c�

� ��0:432
Oh�0:36 (4)

The scaling law proposed above may be verified from a
rigorous theoretical perspective as well. For illustration, without
sacrificing generality, one may take the example of the special

case of
c

c�
¼ 1: We appeal to the linear Phan-Thien-Tanner (PTT)

model for viscoelastic rheology as represented in eqn (5) to obtain
the relation between stress and rate of deformation,

l s
r þ s 1þ kl

Z
TrðsÞ

� �
¼ 2ZD (5)

where, s is the stress tensor, k is a constant and D is deformation
rate tensor.

Assuming the flow as quasi-steady and quasi-radial, the
conservation of mass and momentum equation in the radial
direction are reduced to eqn (6) and (7) respectively.

@nr
@r
þ @nz
@z
þ nr

r
¼ 0 (6)

rnr
@nr
@r
¼ �@p

@r
þ trr

r
þ @trr

@r
þ @trz

@z
(7)

Various parameters appearing in eqn (5)–(7) are scaled as,

s - Wi�s; p - Wi%p; R! �R=
ffiffiffiffiffiffiffi
Wi
p

; U !
ffiffiffiffiffiffiffi
Wi
p

�U (p is pressure,
U is average velocity of neck radius and the quantities repre-
sented with bars are scaled parameters and Wi is the Weissen-
berg number). Using the approximations given in eqn (8) and
(9), the scaled stresses are estimated as eqn (10) and (11)

lWi2 { 1 (8)

1þ klWi

Z
�s � klWi

Z
�s (9)

trr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z2=kl

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@nr=@r

p
(10)

trz ¼ trr
@nr
@z

� �	
2
@nr
@r

� �
: (11)

By introducing the scaling arguments: nr B U, r B R, z B R
into the momentum equation, considering the characteristic
differential pressure DP as the Laplace pressure, along with the
geometric constraint eqn (12) obtained from Fig. 1a, one may
obtain eqn (13) with c1 and c2 as scaling constants.

H

R
� R

2Ro
(12)

rU2 ¼ c1
2sRo

R2
� c2

ffiffiffiffiffiffiffi
2Z2

kl

s ffiffiffiffi
U
pffiffiffiffi
R
p (13)

Towards arriving at this, the inside and the outside pressures,

P1 and P2 respectively, are estimated as: P1 � P1 ¼
2s
Ro
; P2 �

P1 ¼ s
1

H
þ 1

R

� �
(PN being the atmospheric pressure). Further,

introduction of the dimensionless parameters: R� ¼ R

 ffiffiffiffiffiffiffiffi
nol
p

and
t* = t/Ohl, leads to

dR�

dt�

� �2

þ A1ffiffiffiffiffiffi
R�
p dR�

dt�

� �1
2�A2

R�2
¼ 0 (14)

where, A1 ¼
ffiffiffi
2
p
ffiffiffi
k
p c2Oh

3
2 and A2 ¼

2c1sRo

rno2
Oh2: We obtain the

solution of eqn (14) using the initial condition R*(0) = F, where
F - 0+ is a sufficiently small value enabling the convergence of
the numerical solution and emulate the radius of the nascent
droplet bridge. The numerical solution of eqn (14) fits to the
following functional form: R* p (t*)0.34. This theoretically
obtained characteristic is compared with the experimental varia-
tion: R* p (t*)0.36 in Fig. 4. This close agreement clearly rationa-
lizes the experimental data from a fundamental theoretical
perspective.

For a Newtonian fluid, the nondimensional neck radius
R1* = R/OhDo and nondimensional time t1* = ts/ZOhDo results
in the scaling of R1* p t1*0.5 in the inertial regime.42 Such
scaling for DI water is shown in Fig. S1 in ESI,† for the inertial
regime. However, for the polymeric fluids the neck radius
growth has been delayed compared to water which is repre-
sented by the exponent 0.36 in contrast to the Newtonian fluid.
The empirically added concentration ratio in t* leads to the
overall dependency of R* with c/c* with an exponent of �0.432.

4 Conclusions

The unveiling of a hitherto unknown dynamical map for
coalescing polymeric fluids, which we term rheocoalescence,
opens up a new outlook in understanding the governing
law behind neck-radius evolution of such a phenomenon,
which in turn, can give cues to answering complex questions

Fig. 4 Scaling of non-dimensionalized neck radius as function of non-
dimensional time with legend representing the values of c/c* of all the
polymer solutions used in the study.
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in physiological fluid dynamics. These studies can be extended
to wider varieties of viscoelastic fluids bearing further implica-
tions to emerging industrial applications on emulsion-based
technologies and microfluidics. The scaling laws proposed by
previous studies of drop coalescence for Newtonian fluids are
not valid here. In ref. 28, it has been reported that Rc = Z2/rs
and tc = Z3/rs2, whereas tc = ZRo/s was postulated in ref. 24. In

ref. 31, it has been reported that tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZRo

3=s
p

: We have also
confirmed that42 Rc = OhDo and tc = ZOhDo/s taking DI water as
a Newtonian fluid. We have extended the importance of Oh
as an important non-dimensional number for polymeric
fluids through the inclusion of l in the characteristic scales
to hallmark the distinction of a polymeric fluid. This shows the
stark difference from the scaling laws for Newtonian droplets.
The present scaling law elegantly captures the universality of
coalescence of simple polymeric fluids with surrounding fluid
as air through the accretion of the liquid bridge as it expands
radially. From a broader perspective, the exploration of how the
topographical evolutions and the relevant spatio-temporal
scales mediate droplet coalescence dynamics for complex fluids
represents an important advance in our understanding of their
dynamical characteristics, which will enable the rationalization
and emergence of a plethora of applications guided by the unified
scaling law. This, however, requires further exploration on the
domain of it’s applicability. The inclusion of other non-Newtonian
fluids, such as polymeric blends and polymer melts, into the
ambit of the postulated scaling law needs further investigation.

5 Summary

In summary, we have experimentally and analytically investi-
gated the coalescence of polymeric liquid drops. It has been
observed that the scaling laws proposed by previous studies on
drop coalescence for Newtonian fluid are not valid in the
coalescence of viscoelastic liquids. We showed that the varia-
tion of non-dimensional neck radius depends on non-
dimensional time, where both the relaxation time scale and
concentration of the polymer play a role. Finally, we proposed a
universal scaling for neck radius, which depends on viscoelastic
properties of the polymer solutions.
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