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Memory-Based Deep Reinforcement Learning for
Obstacle Avoidance in UAV With Limited

Environment Knowledge
Abhik Singla, Sindhu Padakandla , and Shalabh Bhatnagar

Abstract— This paper presents our method for enabling a UAV
quadrotor, equipped with a monocular camera, to autonomously
avoid collisions with obstacles in unstructured and unknown
indoor environments. When compared to obstacle avoidance in
ground vehicular robots, UAV navigation brings in additional
challenges because the UAV motion is no more constrained to a
well-defined indoor ground or street environment. Unlike ground
vehicular robots, a UAV has to navigate across more types of
obstacles - for e.g., objects like decorative items, furnishings,
ceiling fans, sign-boards, tree branches, etc., are also poten-
tial obstacles for a UAV. Thus, methods of obstacle avoidance
developed for ground robots are clearly inadequate for UAV
navigation. Current control methods using monocular images for
UAV obstacle avoidance are heavily dependent on environment
information. These controllers do not fully retain and utilize the
extensively available information about the ambient environment
for decision making. We propose a deep reinforcement learning
based method for UAV obstacle avoidance (OA) which is capable
of doing exactly the same. The crucial idea in our method is the
concept of partial observability and how UAVs can retain relevant
information about the environment structure to make better
future navigation decisions. Our OA technique uses recurrent
neural networks with temporal attention and provides better
results compared to prior works in terms of distance covered
without collisions. In addition, our technique has a high inference
rate and reduces power wastage as it minimizes oscillatory motion
of UAV.

Index Terms— Unmanned aerial vehicle (UAV) obstacle
avoidance (OA), deep reinforcement learning (DRL), partial
observability, deep Q-networks (DQN).

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) or “drones” are
cyber-physical systems that can be operated either by

remote control or autonomously using onboard computers.
Ranging from crop [1] and infrastructure monitoring [2],
rescue operations and disaster management [3], to more pop-
ular uses like goods delivery and filming [4], [5], UAVs are
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Fig. 1. A UAV encountering stationary as well as moving obstacles in an
indoor environment. Here, the walking human being is a moving obstacle,
whose direction and future intent of motion cannot be predicted.

increasingly finding application in diverse scenarios. Owing to
their small size UAVs can be utilized to penetrate constricted
spaces, which may possibly be beyond the reach of humans.
However, while navigating through constricted spaces, UAVs
face the challenge of avoiding obstacles. Avoiding obstacles
is a difficult task, because in constricted spaces, the obstacles
might be so positioned that avoiding them requires delicate and
dexterous movements. To be able to carry out these dexterous
moves, the UAV needs to perceive the distance between itself
and the obstacles along with other visual cues such as their
shape and height. This crucial visual information enables a
UAV to infer traversable spaces and obstacles (see Fig. 1 for
an illustration).

Classical approaches for inferring visual geometry
include techniques like Simultaneous Localization and
Mapping (SLAM) and Structure from Motion (SfM).
These techniques use measurements from sensors like
Kinect [6], Light Detection and Ranging (LIDAR), Sound
Navigation and Ranging (SONAR), optical flow, stereo and
monocular cameras for computation. SLAM algorithms utilize
measurements from a single sensor [7] or a combination of
sensors [8] to build and update a map of the environment
surrounding the UAV while simultaneously using the same
to estimate the UAV’s position. The SfM approaches use
measurements from sensors like optical flow [9] and/or a
moving monocular camera [10] to determine depth map and
the 3D structure. SLAM and SfM approaches require the
UAV to compute a path and then follow the computed path.
The UAV needs to repetitively hover, compute the depth map
and then find a suitable path. Thus, path planning on the fly
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is not easy in SLAM and SfM approaches. This also means
that SLAM and SfM approaches cannot be used for real-time
obstacle avoidance based on the visual information gathered
about the surroundings. Reference [11] proposes a SLAM
technique which computes a path on the fly. However, such
an enhancement does not avoid dynamic and non-stationary
obstacles whose movements cannot be predicted. Another
disadvantage of using SLAM and SfM methods is that these
do not detect untextured walls. Untextured walls normally
arise in indoor environments and hence being able to
distinguish textures on walls is crucial to obstacle avoidance.

Kinect, LIDAR, SONAR, optical flow, and stereo camera
sensors are widely used for depth estimation (see [12], [13])
and hence these can be potentially used for obstacle avoidance
as well without resorting to computation-intensive approaches
like SLAM and SfM. However, these sophisticated sensors are
expensive and add unnecessary burden to the UAV in terms
of weight as well as consumption of power. Moreover, optical
flow and stereo camera are not suited for long-range obstacle
avoidance. Other sensors, like for example, the monocular
camera, is essential for every UAV application, as it gives
visual information. The monocular camera is a low-cost sensor
which provides RGB images of the UAV’s ambient environ-
ment. In comparison to the heavy-weight sensors mentioned
earlier, a monocular camera is light-weight. The question
then is whether we can use a monocular camera for depth
estimation as well and plausibly for obstacle avoidance.

Extracting the range information (i.e., distance between the
sensor and the various objects in front of the sensor) from
the monocular RGB images is a challenging problem, simply
because the camera captures only the 2-D information of
the surrounding environment. Some recent works [14]–[23]
address the issue of depth prediction using monocular camera
RGB images by leveraging deep learning techniques. Super-
vised and semi-supervised learning approaches ([14]–[18])
collect huge amounts of data consisting of the monocular
images and the corresponding depth maps to train a deep
learning model. Such models are based on convolutional neural
networks (CNN) or their variants (residual networks [14]).
Given a single image, the deep network outputs the predicted
depth map from the monocular image. The proposed
approaches in [14]–[18] however do not tackle the vital
problem of UAV obstacle avoidance and navigation, which is
the problem that we are interested in this paper.

Varied obstacle avoidance techniques in conjunction with
depth prediction are proposed in [19]–[23]. Reference [19]
proposes a behavior arbitration scheme to obtain the yaw and
pitch angles for the UAV to avoid an obstacle and for naviga-
tion in general. Trajectory planning using obstacle bounding
boxes and depth estimation is explored in [20]. This work
designs a CNN architecture that jointly estimates depth and
obstacle bounding boxes. The extracted information is utilized
in the RRT-Connect planner to plan trajectories between start
and end points. Reference [21] proposes two different CNN
architectures - one for depth and surface normal estimation and
the other for trajectory prediction. Both the CNNs use a 3D
cost function for training and evaluation. Reference [22] fol-
lows an unconventional approach, wherein the authors collect

a dataset of UAV crashes. This dataset is labeled and then input
to a CNN model. Given an image obtained from the monocular
camera, the network predicts how the UAV should move in the
next instant to avoid a crash. UAV navigation in the presence of
obstacles is inherently a sequential decision making problem
under uncertainty. This is because an action taken at an instant
affects the path of the UAV in the future instants too. Hence,
it is appropriate to design obstacle avoidance in UAV as a
model-free reinforcement learning (RL) problem (since the
system model is typically unknown). CAD2RL [23] proposes
a Deep RL (DRL) method for obstacle avoidance in indoor
flight. This work trains a UAV for navigation using simulated
3D hallway environments. For this, a large number of 3D
hallway environment images with different lighting, wall tex-
tures, furniture placement are generated and a deep Q-network
learns UAV movement policy on these images. However,
this work requires substantial amount of data concerning the
images of hallway environments and is not efficient. Moreover,
the method proposed in [23] is not intuitive. It does not attempt
to mimic how humans learn to avoid obstacles. The basic
information which helps the human brain to navigate is the
depth information (owing to the binocular vision) and not the
RGB information.

Taking cue from how humans learn to avoid obstacles,
we propose a DRL method which enables the UAV controller
to collect and store relevant observations gathered over time
and utilize the stored observations to avoid obstacles dexter-
ously. We are motivated from how humans decide what to do
next given a scenario. Humans have limited or partial access
to the environment, but still are able to solve challenging prob-
lems in daily lives. All this is possible, because human brain
has memory which is key to summarizing and storing relevant
information for tackling problems. This memory is capable of
effectively storing and recalling relevant information gathered
over time in order to take the next suitable decision in every
scenario. UAV obstacle avoidance also presents a similar
problem of partial observability which requires a notion of
memory. For example, while navigating, a UAV may fly
towards a corner. When it is approaching the corner, the depth
map might indicate more space in the front when compared
to the sides. The lack of temporal information coupled with
limited field of vision of the monocular camera makes the
UAV to move ahead towards the corner and crash onto the
wall. Such scenarios are very common in UAV navigation and
hence require a controller which can utilize the relevant past
information. Our aim is to design a UAV control algorithm
which has the capability to combine information obtained over
a period of time in order to make better navigation and obstacle
avoidance decisions.

We propose a DRL method based on recurrent neural
network (RNN) architecture and Temporal Attention. This
method enables the UAV controller to collect, store relevant
observations gathered over time and use them to make better
obstacle avoidance (OA) decisions.

A. Organization of the Paper

The next section describes the method we have developed
for UAV obstacle avoidance. Section III gives the details of
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experimental settings and the simulation environments used
for highlighting the performance of our method. Sections IV
and V describe the results on a number of simulation settings
and also bring out the advantages as well as limitations of
our approach. Section VI concludes the paper and points out
future improvements for our method.

II. THE METHOD

The objective of our work is to find a suitable policy
(a sequence of actions given states of the environment) for
UAV movement that avoids obstacles (both stationary and
mobile). We propose a general method which can find such
suitable policies. Our method can be integrated with a high-
level planner which takes as input an overall path objective
with a start and a goal position.

A. Problem Definition

In order to safely navigate without colliding against obsta-
cles in an indoor or outdoor environment, the UAV needs
to be aware of the state s of the environment. The state of
the environment is a tuple of properties of the environment
which characterize it and aid the UAV in navigation. Once
the state s is known, the UAV selects an appropriate action
a. The action the UAV chooses affects the visual information
available to the UAV. In the obstacle avoidance problem, this
means the UAV chooses to move in some particular direction
leading to a change in its position, orientation, and visual
feedback. The UAV gets to observe more obstacles or perhaps
more free space in front depending on this change in position
and/or orientation. As noted in Section I, the UAV needs
to choose an action depending on the state at every instant
t when it navigates through the environment. Further, each
action taken affects future states and hence future decisions of
the UAV. Based on the action taken, the realization of the next
state is probabilistic implying that the navigation by avoiding
obstacles is a sequential decision making problem in the face
of uncertainty.

Prior works [23], [24] assume that the monocular image of
the environment is a good indicator of the state of the environ-
ment. However, since the UAV monocular camera has a limited
field of vision, we believe that the UAV controller cannot infer
the full state of the environment using the monocular RGB
image. Moreover, the RGB images do not provide the depth
information. Thus, the UAV controller has only an estimate of
the state and it needs to decide on the next action based on the
RGB image input. With this reasoning, we propose a partially
observable Markov decision process (POMDP) model for the
UAV OA task.

B. Model

We propose a POMDP model �S, A, P, R,�,O, γ � for
the obstacle avoidance problem. Here S is the set of states
of the environment, referred to as “state space”, while A
is the set of feasible actions and referred to as the “action
space”. P is the transition probability function that models
the evolution of states based on actions chosen and is defined

as P : S × A × S → [0, 1]. R is the reinforcement or the
reward function defined as R : S × A → R. The reward
function serves the role of providing a feedback signal to the
UAV for the action chosen. For instance, in a state s, if the
UAV selects an action a which steers it away from an obstacle,
the reward for that state-action pair (s, a) is positive, implying
that the action a is beneficial in the state s, while picking an
action which results in collision will naturally yield a negative
reward. � is the set of observations and an observation o ∈ �
is an estimate of the true state s. O : S × A × � → [0, 1] is a
conditional probability distribution over �, that corresponds to
a distribution on observations, given the state-action tuples and
is explained below. γ ∈ (0, 1) is the discount factor. At each
time t , the environment state is st ∈ S. The UAV takes an
action at ∈ A which causes the environment to transition
to state st+1 with probability P(st+1|st , at ). Based on this
transition, the UAV receives an observation ot ∈ � which
depends on st+1 with probability O(ot |st+1, at ). The aim is to
solve the obstacle avoidance problem, which translates to the
task of finding an optimal policy π∗ : � → A. By determining
an optimal policy, the UAV controller is able to select an
action at each time step t that maximizes the expected sum of

discounted rewards, which is denoted as E

[ ∘∑
t=0

γ t R(st , at )

]
.

We need to define the sets S, �, A and the functions
R, P,O in order to find an optimal policy. The state space
S for our model is the information representing the ambient
environment and which is useful in the OA task. Since it
is impossible to summarize all useful information about the
ambient environment for the OA task, we can only define
the state space S as the collection of RGB-D images of
the ambient environment. RGB-D images are RGB images
with the associated depth information. These images contain
the distance of each object from the UAV along with the
RGB information. At every decision instant, the monocular
camera mounted on the UAV has a limited field of view
and provides only the RGB image and cannot provide the
depth information. Thus, the complete state information is not
available for decision making. So, we need to design a method
which takes as input the monocular RGB image with limited
information and outputs a valid action for UAV movement.

The input to our model is the monocular RGB image which
is of size 84 × 84 × 3 pixels, without any depth information.
Our model extracts the depth map from the RGB image which
is an observation o ∈ � for the UAV controller. The size of the
depth image is 84 × 84 pixels. While ascertaining the shape,
height, and distance of the obstacles, the depth map plays
an important role, since the depth map indicates the distance
between the objects and UAV. Hence we define the depth map
as an observation. Thus, the set of observations � is all possi-
ble depth maps obtained from the RGB images (after extrac-
tion). Given an observation, the feasible actions (A) available
for the UAV are “go straight”, “turn right” and “turn left”. For
“tunr right” and “turn left” actions, the UAV rotates by 5 deg.
It should be noted that, unlike prior works [19], [21], in our
model the actions of the UAV are discrete and do not represent
low-level actions like motor angles, or yaw and pitch angles.
The justification for such a formulation is that our method
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intends to provide a general direction in which the UAV must
move in the next instant. Based on the general direction, these
physical level controls can be appropriately set. The reward
function R is designed using the depth information as

R(s, a) = min

(
1,

ds − rd

σ − rd

)
, (1)

where ds is the distance to the nearest obstacle based on the
RGB image obtained, rd is the radius of the drone and σ is the
threshold distance. The distance ds is obtained from the depth
map of the monocular RGB image and hence is an inference
from the partial state information. The reason for this specific
formulation of the reward function is provided in Section III.

In order to determine the functions P and O, we must be
aware of the structure of the environment and the motion
dynamics of the UAV. In practice, these are impossible to
know. The UAV must be capable of navigating in unknown,
unstructured environments in the presence of other factors
like wind, turbulence, etc. Thus, we propose a reinforcement
learning technique to find an optimal policy for UAV OA.
Reinforcement learning is a learning-based approach to solve
(PO)MDPs when the model information via P, R (and O) is
not available.

C. Algorithm

When model dynamics functions P , R are unavailable (but
S is completely observable), one of the well known approaches
learns an optimal policy using Q-values. The Q-value Qπ (s, a)
corresponding to the policy π is defined as the expected sum
of discounted rewards obtained by taking the action a in
state s and following the policy π thereafter. The optimal
Q-values are defined as Q∗(s, a) = max

π
Qπ(s, a). Once the

optimum Q-values in a state s are obtained, the optimal action
is picked by finding arg max

a∈A
Q∗(s, a). So, the optimal policy

can be computed by finding the optimal action for every state.
Q-learning [27] is a model-free iterative algorithm to learn the
optimal Q-value of every state-action (s, a) pair. The Q-value
update of any such pair is given below:

Q(s, a) := Q(s, a)+α(r +γ max
a� Q(s�, a�)−Q(s, a)). (2)

However, this algorithm suffers from the curse of dimension-
ality, since iteratively learning the Q-values for huge state-
action spaces requires maintaining and updating Q-values for
all unique state-action pairs. For large state-action spaces,
these computations turn out to be infeasible. Deep Q-Networks
(DQN) [28] solve this issue by utilizing a neural network
parametrized by weights (w) to approximate the Q-value
(denoted as Q(s, a|w)) for a given state input. DQN also
uses an experience replay buffer D which stores experience
tuples (s, a, r, s�). The usage of a replay buffer improves the
stability of the algorithm. During training, mini-batches of the
experience are sampled uniformly and input to the network to
calculate the Bellman residual as the loss given by

Li (wi ) = E(s,a,r,s �)∼D[(r + γ max
a� Q(s�, a�; w−

i )

− Q(s, a; wi ))
2]. (3)

Here, w− represents weights of the target network which is an
older copy of network weights lagging behind a few iterations.
To achieve a better approximation, the weights are updated
using mini-batch gradient descent.

We can adapt the DQN method for POMDP models too.
However, it should be noted that in a POMDP model, only
observations in � are received. Thus, one cannot directly
utilize the DQN to solve the OA task. We need a mechanism
which can infer the state based on the observations obtained.
For this, we augment a recurrency to DQN. The recurrent
layer integrates the observations over time to better estimate
the underlying state. The memory augmented convolutional
neural network architecture to approximate the Q-values from
the observations is presented next.

D. Deep Recurrent Q-Network With Temporal Attention

The architecture for approximating Q-values is based on
deep recurrent Q-network with attention. This approach essen-
tially keeps track of the past few observations. In the UAV
obstacle avoidance application, we keep track of the depth
maps obtained from the RGB images. The recurrent network
possesses the ability to learn temporal dependencies by using
information from an arbitrarily long sequence of observations,
while the temporal attention weighs each of the recent obser-
vations based on their importance in decision-making.

At time t , the proposed model utilizes a sequence of
recent L observations ot−(L−1), . . . , ot . Each observation
ot−(L−i), 0 ≤ i ≤ L is a depth map which is processed
by convolutional layers of the network, followed by a fully
connected layer augmented with LSTM [31] recurrent network
layer. The DRQN model with LSTM estimates the Q-value
Q(ot , ht−1, at ), where ht−1 is the hidden state of the recurrent
network and is determined as ht−1 = LST M(ht−2, ot−1). The
hidden state represents the information gathered over time.

Following the LSTM layer, we propose the use of Temporal
Attention [30] (see Fig. 2) in our model for evaluating the
informativeness of each observation in the sequence. Temporal
attention optimizes a weight vector with values depicting
the importance of observations at the previous instants. This
increases the training speed and provides better generalizabil-
ity over the training dataset. Let (vt−(L−1), vt−(L−2), . . . , vt )

�
be the vector of feature vectors obtained from the convolu-
tional layers, over the past L observations. For each 1 ≤
i ≤ L, vt−(L−i) is a feature vector in R

m×1. The vector
of weights (et−(L−1), et−(L−2), . . . , et )

�, for the L feature
vectors, is computed using the obtained hidden state values
and the feature vector given by:

et−(L−i) = w� tanh
(
Waht−1 + Uavt−(L−i) + ba

)
(4)

in which w, ba ∈ R
a×1, Wa ∈ R

a×r , Ua ∈ R
a×m are all

learnable parameters and ht ∈ R
r×1. In (4), tanh(·) is an

activation function which is computed for every element of the
vector given by Waht−1 + Uavt−(L−i) + ba . Here, we assume
that r is the size of an RNN hidden state, m is the encoding
size of CNN and a is the attention matrix size. The tanh
activation function is applied pointwise on the vector obtained
from Waht−1 + Uavt−(L−i) + ba .
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Fig. 2. Control Network: Architecture of Deep Recurrent Q-Network with
Temporal Attention. Number of filters, stride and output size are mentioned
for each convolutional layer.

These weights are normalized using the softmax function:
at−(L−i) = exp(et−(L−i))

L∑
j=1

exp(et−(L− j ))

. (5)

Further, to predict the Q-values, a context vector is computed
using the above calculated softmaxes and hidden states as:

φ(t) =
L∑

j=1

(at−(L− j )vt−(L− j )). (6)

The obtained context vector is input to a single fully connected
layer with ReLU [35] activation functions that outputs approx-
imated Q-value for each action. The complete architecture is
trained by minimizing a loss function as described in [29].
The importance of appropriate weightage of past observations
can be understood from a simple example scenario where
the UAV flies towards a corner. When it is approaching the
corner, the depth map might indicate more space in the front
when compared to the sides. The lack of temporal informa-
tion coupled with limited field of vision of the monocular
camera makes the UAV to move ahead towards the corner and
crash onto the wall. Using past temporal relevant information,
the UAV can safely avoid crashing into the corner. Since
UAV navigation involves many such scenarios, we believe the
temporal attention layer will give an additional fillip to the
UAV OA method.

E. Obtaining Depth Maps From RGB Images

The UAV on-board sensor is limited to providing monocular
RGB image data. Effective depth prediction from an RGB
image is essential when operating in the physical world.
Learning a mapping for image translation X → Y , given

image pairs {x ∈ X, y ∈ Y }, is a challenging task in the
computer vision community. In this work, we propose the use
of conditional generative adversarial network (cGAN) [34]
for this image-to-image translation. This approach uses two
separate ConvNets (called as Generator and Discriminator)
with BatchNorm layers and ReLU activation layers. The
Generator (G) ConvNet is an encoder-decoder structure with
skip connections, designed to generate realistic fake images
taking x ∈ X and a noise vector Z as inputs. The Discriminator
(D) network classifies randomly picked images as fake or real
with a cross-entropy loss. Let θD and θG represent the weights
of the Discriminator and Generator networks, respectively.
The Generator is expected to produce images close to the
ground truth, while the discriminator is supposed to distinguish
between fake images and the real images. Hence in a sense,
the objectives of these two networks are opposed to each other.
The loss function LcG AN (θG, θD) defined below reflects these
objectives:

LcG AN (θG , θD)

= Ex,y∼pdata [log D(x, y)]
+ Ex∼pdata(x),z∼pz(z)[log(1 − D(x, G(x, z)))]. (7)

In the above equation, the variable x is the RGB image and y is
its true depth map. The depth map generated by G is denoted
as G(x, z). D(x, y) and D(x, G(x, z)) are the probabilities
of the image belonging to the real class of images. Training
a cGAN involves a few steps. Initially, the discriminator is
trained on real and fake depth images with the correct labels
for few epochs. Following this, the generator is trained using
the real/fake predictions from the trained discriminator as its
objective. This procedure is repeated for few epochs until the
generated fake depth maps are difficult to distinguish from the
real depth maps. The cGAN architecture is illustrated in Fig.3.
The approach also incorporates L1 constraint that is then taken
together with the cGAN loss via a Lagrangian formulation to
generate better near ground truth images. Thus, let

LL1(θG) = Ex,y∼pdata,z∼pz(z)[� y − G(x, z) �1]. (8)

Then, the final objective of the model can be analytically
represented as

min
θG

max
θD

{LcG AN (θG, θD) + λLL1(θG)}, (9)

where λ is the Lagrange parameter that is an adjustable hyper-
parameter. In contrast to previous methods ( [14]–[17]) our
approach learns a loss function adaptable to the input data,
making it domain independent and suitable for our problem
of intermediate depth prediction for obstacle avoidance.

F. Remarks

1) It must be noted that the depth maps generated from
cGANs as described above still provide limited infor-
mation with respect to the visual geometry of the envi-
ronment surrounding the UAV (a similar problem when
monocular camera images are used). This issue of partial
information was highlighted in Section I. The limited
information obtained in stages from cGAN can be stored
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Fig. 3. Depth Network: Conditional GAN architecture.

and collected to make a better navigation decision. The
task of using all the relevant partial information obtained
in the past is done by the LSTM network architecture
as described earlier in this Section.

2) The deep RL method we propose in this section learns
optimal Q-values and the optimal policy for the obstacle
avoidance task. There are also other policy improve-
ment approaches for learning a good policy. Recently
proposed methods like the Asynchronous Advantage
Actor-Critic (A3C) [36], deep deterministic policy gra-
dient (DDPG) [37], and dueling network architecture for
double deep Q-networks (D3QN) [38] can also be used
with our proposed method. For using these methods,
one has to change the loss function (3) for the network
architecture. Our method involving temporal attention
can be easily integrated with A3C, DDPG, and D3QN.
However, in this paper, our objective is to highlight
the need for using LSTM architecture for partially
observable scenarios in UAV obstacle avoidance.

III. EXPERIMENTAL SETUP

A. cGAN Training to Obtain Depth Images

The proposed conditional GAN is initially trained on a
dataset consisting of 90, 000 RGB-D image pairs. This dataset
is collected from simulated environments in Gazebo [39].
We designed 22 different simulated indoor environments in
Gazebo, of which few are inspired from [19]. The environ-
ments consist of broad and narrow hallways, small and large
enclosed areas with floorings ranging from asphalt to artificial
turf. The simulated environments also contain structured and
unstructured obstacles like humans, traffic cones, tables, etc.,
placed at random positions and with random orientation. The
walls and obstacles with diverse shapes, textures, and colours
provide abundant visual information for effective learning.
Fig. 4 shows example snapshots of the environment.

The RGB-D image pairs are collected using a Kinect
sensor mounted on the flying drone in simulation, covering
all possible viewpoints. Further, the dataset is augmented off-
line by random flipping, adding random jitter and random
alteration to the brightness, saturation, contrast, and sharpness.
The cGAN network is trained on the entire collected dataset
for 20 epochs in batches of size 4 on an NVIDIA Titan
X machine. We require the depth network (trained on the
simulated images) to predict depth from the unseen real-world
images. Predicting depth from either simulated images or real-
world images are similar tasks. Thus, it is intuitive to leverage

Fig. 4. Screenshots of some environments designed in Gazebo. We cover a
large range of colors, textures, sizes, and shapes for obstacles and walls.

the low-level features learned during training in one task for
a different, yet similar task. The basic idea in fine-tuning of
depth architecture is exactly this. Once a neural network has
been trained on simulated images, the lower layers of the
neural network are frozen (so that features learned are kept
intact). Then, using the real images, one can just re-train the
output layer. By freezing the lower layers, we are using the
same features learned earlier to predict depth on the real-world
images. The major benefit of this approach is that the network
works effectively on similar tasks without the need for training
from scratch and also requires substantially low data. In our
problem, the network is fine-tuned using 8, 000 and 16, 000
augmented pairs from RGBD-human-explore data [33] and
NYU2 dataset [32], respectively.

B. DQN Training With LSTM and Temporal Attention

For RL algorithms to learn an effective collision avoidance
policy, the UAV learning agent must have enough experience
of undesirable events like collision. Training a learning
algorithm on a fragile drone in a physical environment is
expensive and hence the performance of DRL algorithms
is usually demonstrated on simulated environments. In this
work, we build and test our UAV collision avoidance
algorithms on the aforementioned simulated environments.
Our method initially trains the UAV by starting off with
simple hallway environments free of obstacles. Gradually the
environment complexity is increased by narrowing down the
pathways, enclosing the free space and increasing the density
of obstacles.

The proposed control network is trained to learn the
observation-action value over the last L observations.
As explained in Section II, observations are the depth
images received from the simulated Kinect sensor aboard
the UAV. The action-value function is learnt for all states
and corresponds to the three actions viz., “go straight”,
“turn left”, and “turn right”, respectively. It should be
noted that the window size L used in the experiments is
also a hyperparameter, which needs to be fixed correctly.
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TABLE I

HYPER-PARAMETER VALUES OF THE PROPOSED CONTROL NETWORK

In Section IV, we show results for different values of L,
which provides us a guideline to fix the value of L.

The agent receives a reward according to the function
defined in (1). We set the radius of drone, rd to 0.292m and σ
is set to 1.5m. The reward function (1) penalizes the action of
the controller when it is at a distance less than σ −rd from the
obstacle. If the agent collides, the episode ends with a penalty
of −10. Otherwise, the episode continues until it reaches the
maximum number (1000) of steps and terminates with no
penalty. The agent also receives an additional +0.5 reward if it
chooses the “go straight” action. The bias for the “go straight”
action helps the UAV to always move forward and turn only
when there are obstacles in its clear view. Additionally, to cope
with the exploration-exploitation tradeoff, a linear annealed
policy is utilized during training with initially chosen value
of 
 = 1 that drops eventually to 0.05 as the final value. The
network hyper-parameter values are as shown in Table I.

For the proposed control network to be applicable for
robotic applications, the learned policy should be effectively
transferable to the real-physical systems. However, this is
highly challenging because of the huge gap in visual infor-
mation available in the real and simulated worlds. Moreover,
the depth maps produced by the proposed depth network are
too noisy when compared to depth images obtained from
the simulated kinect sensor. To overcome this, we degrade
the sensor images with Gaussian blurring, random jitter, and
superpixel replace (replacement probability 0.5) at the time
of training. This additional noise is crucial for non-linear
function approximators like neural networks to learn and
generalize well, making them robust and transferable to real-
world systems.

IV. SIMULATION RESULTS

A. Depth Network Performance on Monocular RGB Images

The depth network is trained as mentioned in the previous
section. Once trained, we evaluate the performance of the
depth network for two measures - the inference speed and
the depth prediction quality, respectively. The inference rate
of deep learning models is critical when applied to robotic
applications, especially when solving for effective collision
avoidance models in flying robots. We tested our model on
an NVIDIA GeForce GTX 1050 mobile GPU with 8 GB
RAM and Intel core i7 processor machine and observed a
sufficient enough data rate of 20Hz on average. In addition,
we also implemented previously used depth network in robotic
applications [14] and noted an inference rate of 1.4Hz on the
same machine configuration.

Fig. 5. Example of depth maps generated by the proposed network (trained
on simulated data) for completely unseen real world data with variable
illumination, color and texture (Red: far, Blue: near).

To assess depth prediction quality of the cGAN architecture,
we evaluate the network on unseen simulated data and the
fine-tuned data (real-world images) (5, 000 and 2, 500 samples
respectively). For evaluation, we compute the L1 and cGAN
loss as in (9) which has been demonstrated to be a better loss
function to generate near ground truth images [34]. Table II
depicts the network performance in various scenarios.

The first row of values depicts the training and testing
loss on manually collected data (data collection is explained
in Section III-A). The second row depicts training loss on
our simulated dataset, while the testing loss is on a mix of
images from the NYU2 [32] and RGBD-human-explore [33]
datasets. The third row of values corresponds to the case where
the network was trained entirely on the simulated data with
fine-tuning. The results in the third row show that such a
trained network possesses the ability to generalize well on
real-world data. Fig. 5 showcases some samples of the depth
maps generated by the cGAN network. The sample images
have been taken at the Department of Computer Science and
Automation, Indian Institute of Science (IISc) and consist
of humans (imitating obstacles) and hallways with varying
illumination, colour, and texture which the network has never
seen before. The quantitative and qualitative evaluation depicts
that the proposed model provides a remarkable boost to the
data cycle rate which is essential in robotic applications and
can be effectively transferred to real-world systems.

B. Control Network Evaluation

We evaluate the performance of the proposed control
network, i.e., Deep Recurrent Q-network with Temporal
Attention, and compare it with the baseline DQN previously
proposed [23]. We also implement two other policies -
random and straight. The random policy picks an action with
equal probability for each observation, while the straight
policy always picks the “go straight” action. The metric used
for performance evaluation is the average number of steps
taken until collision with an obstacle. Both the DQN and
our proposed model are trained in 12 different simulated
indoor environments comprising of hallways and rooms with
obstacles of varying structures and sizes. Some snapshots of
these environments were illustrated in the earlier section.

As mentioned in Section III-B, we need to select the size
of L, which is important for the control network evaluation.
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TABLE II

QUANTITATIVE ANALYSIS OF THE DEPTH NETWORK

Fig. 6. Performance of DRQN+Attention with different values of L for (a) a straight hallway indoor environment with no obstacles (b) a caffe environment
with mobile obstacles.

L is a hyperparameter which needs to be chosen appropriately,
such that the relevant information for OA can be utilized.
The plots in Fig. 6 show the performance in simulated
environments for different values of L. The first plot shows
performance for an environment consisting of long straight
hallways. As can be observed, for this environment, L = 7,
L = 10 or L = 15, does not make a huge difference in
the performance. This is because, the ambient environment
surrounding the UAV does not provide much information for
OA, since it is just a straight hallway which the UAV needs
to navigate. However, for the indoor environment filled with
mobile obstacles, we see that with L = 10, the performance
is greatly enhanced (see Fig. 6(b)), when compared to smaller
values of L. Hence, based on these observations, in our
experiments, we fix L = 10.

Figures 7 and 8 show the learning curves during training
for both the algorithms for three different environments. These
graphs depict the number of steps the UAV takes until colli-
sion. Fig. 8 also shows the performance of DRQN for one
such environment. As can be observed, partial observability
of the environment hinders the performance of DQN in the
obstacle avoidance problem. However, the graph shows that
augmenting a memory network with attention is beneficial
as it retains crucial information gathered over time and this
gives an additional fillip to the learning when compared to the
no-attention counterpart.

1) Testing in Simulated Environments: The trained models
are tested on six randomly selected simulated environments
out of the twelve environments used for training. The network
takes the noisy depth map and outputs the UAV control signal.

The output control signal is expected to safely navigate the
UAV within the environment for longer duration. Out of the
six environments used for testing, three comprise of enclosed
areas with randomly scattered static obstacles of varying sizes
and structures (named as Env-1, Env-2, and Env-3 in Table III).
The fourth environment (Env-4) is a maze like structure
with narrow pathways and no scattered obstacles. The fifth
environment (Env-5) is a small enclosed area having poles in
between. The sixth environment (Env-6) simulates a cafe-like
environment and has 7 human actors randomly walking inside
the cafe. The actors are not programmed to avoid the moving
UAV and their movement paths are completely random. For
this cafe-like environment, the model is initially trained with
3 human actors (randomly moving, not designed to avoid
the UAV), but tested with 7 moving actors. We analyze the
model performance for 200 episodes in each environment and
Table III indicates the average number of steps the UAV takes
until collision as well as the standard error. From Table III,
it can be seen that using our approach, the UAV flies for the
maximum number of time instants until collision.

2) Results: A snapshot of the testing setup is demonstrated
in Fig. 9, depicting the learned UAV model maneuvering
in Env-6, effectively avoiding the randomly moving human
actors inside a cafe. The proposed DRL model also observes
a notable inference rate of 60 Hz on NVIDIA GeForce GTX
1050 mobile GPU, essential for robotic applications.

Fig. 10 illustrates the weights attributed to a sequence of
10 images over the recent past used to find the next move of
the UAV. It can be analyzed from the images that in an envi-
ronment consisting of non-stationary obstacles, predicting the
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TABLE III

RESULTS INDICATING THE AVERAGE NUMBER OF STEPS TAKEN BY UAV (ALONG WITH STANDARD DEVIATION) UNTIL COLLISION

Fig. 7. Training learning curve of the proposed network and DQN for two different environment settings: (a) An open area with scattered static obstacles
of varying sizes and structures. (b) Maze like environment with narrow pathways and no scattered obstacles.

Fig. 8. Training learning curve of the proposed network and DQN for an
environment consisting of an enclosed area with scattered static obstacles of
varying sizes and structures.

direction of the next step based only on the recent observation
(for instance Frame (i) in Fig. 10) is a complicated task. Pos-
sessing a memory facilitates an agent to infer the direction of
the moving obstacle (such as a human actor walking right) and
thereby performing an appropriate action (“turn left”) to avoid
collision. It is important to note that our proposed algorithm
outperforms DQN on different environments. The advantages
of the policy learnt by our method are: (i) the UAV smoothly
follows a path while avoiding static obstacles, and (ii) in the
presence of dynamic obstacles which obstruct the view of the

UAV, the UAV skillfully chooses actions to avoid collisions
with the dynamic obstacles as well. Video results from these
experiments can be seen at https://bit.ly/2PNgWsk.

A UAV is a power-constrained system. Thus, a navigation
and obstacle avoidance method must be designed in such a
manner that it uses the available battery power judiciously.
We say that a UAV wobbles when it takes a long sequence
of consecutive left and right turns which do not lead to
displacement in its position. Thus, the UAV does not cover
any distance when it wobbles, but still, power is consumed
in this sequence of right-left movements. This motion without
displacement is minimized by our method, which naturally
leads to a reduction in power wastage. In order to test for
energy efficiency, we designed a simulation environment and
tested the proposed method as well as the previously proposed
algorithm D3QN [24] over it. The simulated environment
consists of straight hallway with two 45◦ turns in between.
The navigation task considered is episodic, wherein the UAV
starts at a pre-specified initial position. An achievable desti-
nation point after the second turn is also specified and the
episode terminates when the UAV reaches this destination
point. Based on the drop in the battery level and the distance
covered, we compute the energy consumption per meter values
for both methods by using the power rating of the battery.
We observed that for this simulated environment, the aver-
age energy consumption over several runs is 0.0571 Wh/m
for our approach and 0.0743 Wh/m for D3QN. Thus, this
shows that our method achieves a lower value of energy
consumption per unit distance traveled when compared to the
D3QN method.
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Fig. 9. Snapshots of UAV avoiding randomly moving human actors. The yellow arrows show the path the UAV selects in order to avoid the obstacle.

Fig. 10. Temporal Attention weights over the most recent L = 10 observations.

V. DISCUSSION

Our method has multiple advantages as well as some
limitations that we list below:

• Our approach of adopting cGAN architecture for depth
prediction in autonomous aerial systems is novel.
Notably, the proposed approach is trained entirely on sim-
ulated data and with little fine-tuning on the NYU2 and
RGBD-human-explore dataset. The results validate that
the model is highly generalizable and qualifies to be
adopted in real world applications. As demonstrated by
our results, the remarkably high inference rate and trans-
ferability of the approach makes it a suitable candidate
for intelligent robotic applications.

• We show in our experiments that augmenting DRL with
memory networks and temporal attention facilitates the
agent to retain vital information gathered from the past
observations. This aids the agent towards making better
and informed decisions. This learning ability benefits
the autonomous agent to maneuver safely in environ-
ments without prior knowledge of the surroundings,
as well as in environments with moving obstacles. Fur-
thermore, the agent is competent to move deftly near
corners (refer supplementary video) which has been found
to be a challenging task for the previously proposed
controllers ([19], [23]).

• The reward function is designed by considering the
energy constraints on aerial systems and time factor in
navigation tasks. The bias towards the “go straight” action

in the reward function ensures that the UAV maintains
its course except when avoiding obstacles in its field of
view. In addition, when compared to the D3QN approach,
the proposed controller gives smoother trajectories and
UAV wobbling is minimized that would otherwise cause
a lot of energy to be wasted which is highly undesirable
in UAV applications. Our control method minimizes this
power wastage and yields considerable power savings.
The bias towards the “go straight” action might be
problematic at intersections, where the UAV has to turn
right or left. However, we would like to emphasize that
our proposed method handles only obstacle avoidance and
can be easily integrated with a high-level path planner
that handles the computation of the path from start to
goal position.

• Although the proposed depth prediction network learnt
to predict depth maps from the unseen physical world
images, the results are noisy. The control network trained
with the manually-added noise generalizes and adapts to
the noise. However, there is scope for improvement as
far as the depth network is concerned. Training depth
network on visually high-fidelity simulated data can yield
smoother depth predictions.

• For Env-1 and Env-2 which consist of open spaces with
scattered obstacles, the number of steps covered before
collision is as shown in Table III of the EV. In the
evaluation of learnt policy, we observed that both DQN
and our approach accrue total reward equal to the number
of steps these controllers cover in every simulation run.
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When averaged across multiple simulation runs, this
then gives same mean and standard deviation as shown
in Table III. From this it can be concluded for these
simulation environments that both policies seem to be
conservative, i.e., at each step, the respective controllers
dont let the UAV move very near the obstacle. More
extensive experiments and simulations will require to be
carried out in order to validate this observation for other
environments as well.

VI. CONCLUSIONS AND

FUTURE WORK

In this paper, we design and analyze the performance of a
Deep Recurrent Q-Network with Temporal Attention which is
utilized by a deep RL robotic controller for effective obstacle
avoidance of UAV in cluttered and unseen environments. The
proposed method first utilizes the cGAN network to predict the
depth map from a monocular RGB image which is then used to
decide the optimal action. The method addresses the problem
of partial observability in obstacle avoidance by retaining
crucial information over the long sequence of observations.
Experimental results over various settings exhibit significant
improvements over Deep Q-Network (DQN) and D3QN
algorithms. A potential future direction for our work would
be to improve the visual quality of images generated by the
cGAN architecture. In GAN architectures, the discriminator
block captures the class-specific content from images without
imposing constraints on the visual quality of the generated
images. The cGAN architecture can be made to generate good
quality images by suitably modifying the loss function. Some
similarity indices which guarantee structural integrity (e.g.,
multiscale structural-similarity MS-SIM) can be used for
this purpose (see [40]). Another future enhancement would
be to use different GAN architectures for depth prediction
(see [41], [42]).

The proposed obstacle avoidance method is seen to work
well in avoiding obstacles in indoor environments (see
Section IV). However, we would also like to test its per-
formance in real outdoor environments. For this, it will be
fruitful to include altitude control as an action space vari-
able in the POMDP formulation. This is because, controlling
altitude will also help in OA, since some obstacles can
be avoided by just changing the height of the UAV from
the ground (for e.g., signboards, traffic signs etc.). How-
ever, since the action space in our formulation is discrete,
the altitude variable should also be suitably discretized to
fit into the same POMDP formulation. Further, the reward
function needs to be also redesigned to encourage the UAV
controller to change altitude while avoiding obstacles. This
extension will require more experimentation in real outdoor
environments.

In the experiments, we fix start and destination points for
the movement of the UAV. However, the path that the UAV
takes is not pre-fixed using SLAM or other path following
methods. Thus, if the OA algorithm is used along with these
methods, then the UAV will avoid obstacles along the pre-
fixed path. An extension of our work in this direction will be
to intergrate SLAM with our OA method.
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