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Hierarchical stimuli have been widely used to study
global and local processing. Two classic phenomena
have been observed using these stimuli: the global
advantage effect (we identify the global shape faster)
and an interference effect (we identify shape slower
when the global and local shapes are different). Because
these phenomena have been observed during shape
categorization tasks, it is unclear whether they reflect
the categorical judgment or the underlying shape
representation. Understanding the underlying shape
representation is also critical because both global and
local processing are modulated by stimulus
properties.

We performed two experiments to investigate these
issues. In Experiment 1, we show that these phenomena
can be observed in a same-different task, and that
participants show systematic variation in response times
across image pairs. We show that the response times to
any pair of images can be accurately predicted using two
factors: their dissimilarity and their distinctiveness
relative to other images. In Experiment 2, we show that
these phenomena can also be observed in a visual
search task where participant did not have to make any
categorical shape judgments. Here too, participants
showed highly systematic variations in response time
that could be explained as a linear sum of shape
comparisons across global and local scales. Finally, the
dissimilarity and distinctiveness factors estimated from
the same-different task were systematically related to
the search dissimilarities observed during visual search.

In sum, our results show that global and local
processing phenomena are properties of a systematic
shape representation governed by simple rules.

Introduction

Visual objects contain features at multiple spatial
scales (Oliva & Schyns, 1997; Morrison & Schyns, 2001;

Ullman, Vidal-Naquet, & Sali, 2002). Our perception of
global and local shape has been extensively investigated
using hierarchical stimuli, which contain local elements
arranged to form a global shape (Figure 1). Two classic
phenomena have been observed using these stimuli
(Navon, 1977; Kimchi, 1992). First, the global shape
can be detected faster than the local shape; this is known
as the global advantage effect. Second, the global or
local shape can be detected faster in a congruent shape
(e.g. circle made of circles) than in an incongruent
shape (e.g. circle made of diamonds). Although this
interference effect was initially reported as stronger
when reporting the local shape (Navon, 1977; Kimchi,
1992), suggesting stronger global to local interference,
subsequent studies have reported equal interference
in both directions (Navon & Norman, 1983; Kimchi,
1992; Poirel, Pineau, & Mellet, 2008; Sripati & Olson,
2009). Moreover, these effects depend on the size,
position, spacing, and arrangement of the local shapes
(Lamb & Robertson, 1990; Kimchi, 1992; Malinowski,
Hübner, Keil, & Gruber, 2002; Miller & Navon,
2002).

These global/local processing phenomena have since
been extensively investigated for their neural basis
as well as their application to a variety of disorders.
Global and local processing are thought to be localized
to the right and left hemispheres respectively (Fink,
Halligan, Marshall, Frith, Frackowiak, & Dolan,
1996; Han, Weaver, Murray, Kang, Yund, & Woods,
2002, Han, Jiang, & Gu, 2004), and are mediated
by brain oscillations at different frequencies (Romei,
Driver, Schyns, & Thut, 2011; Liu & Luo, 2019).
These phenomena have now been observed in a
variety of other animals, especially during tasks that
require speeded responses (Tanaka & Fujita, 2000;
Cavoto & Cook, 2001; Pitteri, Mongillo, Carnier, &
Marinelli, 2014; Avarguès-Weber, Dyer, Ferrah, &
Giurfa, 2015). Global/local processing is impaired in
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Figure 1. Quantitative models for response times in the same-different task. (A) To elucidate how same-different responses are
related to the underlying perceptual space, consider a hypothetical perceptual space consisting of many hierarchical stimuli. In this
space, nearby stimuli are perceptually similar. (B) We hypothesized that participants make “SAME” or “DIFFERENT” responses to an
image pair based on the dissimilarity between the two images. In the global block, when two images have the same global shape, we
predict that response times are longer when the two images are more dissimilar. Thus, two diamonds made using Xs and Zs evoke a
faster response than two diamonds made of circles or Xs, because the latter pair is more dissimilar than the former. By contrast, when
two images differ in global shape, responses are faster when they are more dissimilar. Thus, dissimilarity can either speed up or slow
down responses. (C) We also hypothesized that shapes that are more distinct (i.e. far away from other shapes) will elicit faster
responses because there are no surrounding distractors. Thus, the diamond made of circles, which is far away from all other stimuli in
the schematic space of panel A, will elicit a faster response than a diamond made of Zs.

a variety of clinical disorders (Bihrle, Bellugi, Delis,
& Marks, 1989; Robertson & Lamb, 1991; Slavin,
Mattingley, Bradshaw, & Storey, 2002; Behrmann,
Avidan, Leonard, Kimchi, Luna, Humphreys, &
Minshew, 2006; Song & Hakoda, 2015), including those
related to reading (Lachmann & Van Leeuwen, 2008;
Franceschini, Bertoni, Gianesini, Gori, & Facoetti,
2017). Finally, individual differences in global/local
processing predict other aspects of object perception
(Gerlach & Poirel, 2018; Gerlach & Starrfelt, 2018).

Despite these insights, we lack a deeper
understanding of these phenomena for several reasons.
First, they have only been observed during shape
detection tasks, which involve two complex steps: a
categorical response made over a complex underlying
representation (Freedman & Miller, 2008; Mohan
& Arun, 2012). It is therefore possible that these
phenomena reflect the priorities of the categorical
decision. Alternatively, they may reflect some intrinsic
property of the underlying shape representation.

Second, these shape detection tasks, by their design,
set up a response conflict for incongruent but not
congruent stimuli. This is because the incongruent
stimulus contains two different shapes at the global and
local levels, each associated with a different response
during the global and local blocks. By contrast there is
no such conflict for congruent stimuli where the global
and local shapes are identical. Thus, the interference
effect might reflect the response conflicts associated
with making opposite responses in the global and local
blocks (Miller & Navon, 2002). Alternatively, again, it
might reflect some intrinsic property of the underlying

shape representation, such as the congruence between
the global and local shape. If shape congruence is
indeed encoded in the underlying shape representation,
it is not clear how it is encoded since we do not know
how shapes combine across hierarchical levels.

Third, it has long been appreciated that these
phenomena depend on stimulus properties, such as
the size, position, spacing, and arrangement of the
local elements (Lamb & Robertson, 1990; Kimchi,
1992; Malinowski et al., 2002; Miller & Navon, 2002).
Surprisingly, hierarchical stimuli themselves have never
been studied from the perspective of feature integration
(i.e. how the global and local shapes combine). A
deeper understanding of how hierarchical stimuli
are organized in perception can elucidate how these
stimulus properties affect global/local processing.

In summary, understanding the global advantage and
incongruence effects will require reproducing them in
simpler tasks, as well as understanding how global and
local shape combine in the perception of hierarchical
stimuli. This is not only a fundamental question but
has clinical significance because deficits in global/local
processing have been reported in a variety of disorders.

Overview of this study

Here, we addressed the above limitations as follows.
In Experiment 1, we devised a simpler shape detection
task, which involves participants indicating whether
two shapes are the same or different at either the global
or local level. This avoids any effects due to specific
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shapes but still involves categorization, albeit a more
general one. It also avoids response conflict because we
can compare trials with either congruent or incongruent
shapes, which elicited a SAME response. Although
global advantage has been previously observed in
a same-different task (Kimchi, 1988; Kimchi et al.,
2005), these studies have not investigated interference
effects. More generally, no previous study has attempted
to explain responses in a same-different task at this
fine-grained image-by-image level.

In Experiment 2, we devised a visual search task
in which participants had to report the location of
an oddball target. This task avoids any categorical
judgment and the accompanying response conflicts.
It also does not involve any explicit manipulation of
global versus local attention unlike the global/local
processing tasks. If global advantage and interference
are present in visual search, it would imply that they
reflect properties of the underlying shape representation
of hierarchical stimuli. If not, they must arise from
the categorization process. Although previous studies
have shown a global advantage in that searching for a
target differing in global shape is easier than searching
for a target differing in local shape (Kimchi, 1998;
Kimchi, Hadad, Behrmann, & Palmer, 2005), they
have not investigated with a large set of shapes using a
common task. More generally, previous studies have
not investigated how global and local shapes combine
in visual search.

For both Experiments 1 and 2, we devised
quantitative models to explain systematic variation in
the response times, as detailed below.

Quantitative model for the same-different task
(Experiment 1)

We hypothesized that response times in the
same-different task might be driven by two possible
factors: dissimilarity and distinctiveness, as illustrated
in Figure 1. Consider shapes in perceptual space as
depicted in Figure 1A – nearby items in this space
indicate perceptually similar items. In the global block
of the same-different task, participants have to indicate
whether two shapes are the same or different at the
global level. We hypothesized that two potential factors
that could influence response times: dissimilarity and
distinctiveness. First, we reasoned that participants
will find it easier to make a SAME response if the two
shapes are similar, whereas they will find it harder to
make a DIFFERENT response if the two shapes are
similar (Figure 1B). Thus, the dissimilarity between the
two images will have opposite effects on the response.
Second, a shape that stands distinct from other shapes
will experience less interference from other shapes
and therefore elicit faster responses. In the schematic
shown in Figure 1A, the diamond made of circles is
more distinctive compared with the diamond made of

Zs – and therefore is shown as eliciting faster responses
(Figure 1C). We denote this factor as distinctiveness.
We show that response times across image pairs can be
accurately predicted using these two factors.

Quantitative models for shape integration in
visual search (Experiment 2)

In Experiment 2, we asked how search difficulty for
a target differing in both global and local shape from
the distractors can be understood in terms of global
and local shape differences. Search reaction time (RT)
is the natural measurement during any search task and
it is proportional to the similarity between the target
and distractor (Duncan & Humphreys, 1989; Wolfe,
Cave, & Franzel, 1989; Vincent, 2011; Alexander &
Zelinsky, 2012). Recently, we have shown that reciprocal
of reaction time (1/RT) is the more useful measure
for understanding visual search (Arun, 2012; Pramod
& Arun, 2014). The reciprocal of search time can be
thought of as the dissimilarity between the target
and distractors in visual search, and has the intuitive
interpretation as the underlying salience signal that
accumulates to threshold (Arun, 2012). Models based
on 1/RT consistently outperform models based directly
on search time (Vighneshvel & Arun, 2013; Pramod &
Arun, 2014; Pramod & Arun, 2016; Sunder & Arun,
2016). We therefore asked whether the net dissimilarity
(1/RT) between a target differing in global and local
shape from the distractors can be explained as a linear
sum of multiscale comparisons between and within
shapes. This approach has proved effective in our
previous studies involving multiple object attributes
(Pramod & Arun, 2014; Pramod & Arun, 2016). We
show that visual search performance can be accurately
predicted using this simple model.

Experiment 1: Same-different task

In Experiment 1, participants had to indicate (in
separate blocks) whether a given pair of shapes are same
or different at the global or local levels. Of particular
interest to us were two questions: (1) Are the classic
global advantage and interference effects present in this
more general same-different task? (2) Do responses
across image pairs vary systematically and can they be
predicted using dissimilarity and distinctiveness?

Methods

Here and in all subsequent experiments, participants
had normal or corrected-to-normal vision and gave
written informed consent to an experimental protocol
approved by the Institutional Human Ethics Committee
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of the Indian Institute of Science, Bangalore,
India. Participants were naive to the purpose of the
experiment and received monetary compensation for
their participation.

Participants. There were 16 human participants (11
men, aged 20–30 years) in this experiment. We chose
this number of participants based on our previous
studies of object categorization in which this sample
size yielded consistent responses (Mohan & Arun,
2012).

Stimuli. We created hierarchical stimuli by placing
eight local shapes uniformly along the perimeter of a
global shape. All local shapes had the same area (0.77
squared degrees of visual angle), and all global shapes
occupied an area that was 25 times larger. We used
seven distinct shapes at the global and local levels to
create 49 hierarchical stimuli (all stimuli can be seen
in Supplementary Section S5). Stimuli were shown as
white against a black background.

Procedure. Participants were seated approximately
60 cm from a computer monitor under the control of
custom programs written in MATLAB with routines
from PsychToolbox (Brainard, 1997). Participants
performed two blocks of the same-different task,
corresponding to global or local shape matching. In
both blocks, a pair of hierarchical shapes were shown
to the participant and the participant had to respond
if the shapes contained the same or different shape at a
particular global/local level (key “Z” for same, and “M”
for different). Each block started with a practice block
with eight trials involving hierarchical stimuli made
of shapes that were not used in the main experiment.
Participants were given feedback after each trial during
the practice block.

In all blocks, each trial started with a red fixation
cross (measuring 0.6 degrees by 0.6 degrees) presented
at the center of the screen for 750 ms. This was
followed by two hierarchical stimuli (with local elements
measuring 0.6 degrees along the longer dimension and
longest dimension of global shapes are 3.8 degrees)
presented on either side of the fixation cross, separated
by 8 degrees from center to center. The position of
each stimulus was jittered by ± 0.8 degrees uniformly
at random along the horizontal and vertical. These two
stimuli were shown for 200 ms followed by a blank
screen until the participant made a response, or until 5
seconds, whichever was sooner.

Stimulus pairs. To avoid any response bias, we
selected stimulus pairs in each block such that the
proportion of same- and different-responses were equal.
Each block consisted of 588 stimulus pairs. These pairs
were divided equally into four groups of 147 pairs
(Figure 2A): (1) pairs with both global and local shape
different (GDLD); (2) pairs with same global shape but
different local shape (GSLD); (3) pairs with different
global shape but same local shape (GDLS), and (4)
pairs with same global and local shape (GSLS; i.e.

identical shapes) Because there were different numbers
of total possible pairs in each category we selected pairs
as follows: for GSLS pairs, there are 49 unique stimuli
and therefore 49 pairs, so we repeated each pair three
times to obtain 147 pairs. For GSLD and GDLS pairs,
there are 147 unique pairs, so each pair was used exactly
once. For GDLD pairs, there are 882 possible pairs, so
we selected 147 pairs that consisted of 21 congruent
pairs (i.e. each stimulus containing identical global and
local shapes), 21 incongruent pairs (in which global
shape of one stimulus was the local shape of the other,
and vice-versa), and 105 randomly chosen other pairs.
The full set of 588 stimulus pairs were fixed across all
participants. Each stimulus pair was shown twice. Thus,
each block consisted of 588 × 2 = 1176 trials. Error
trials were repeated after a random number of other
trials.

Participants were highly accurate in the task
overall, but slightly more so in the global block (mean
and standard deviation [SD] of accuracy across
participants: 91% ± 4% in the global block; 88% ± 7%
in the local block, Z = 2.13; p < 0.05, sign-rank test on
participant-wise accuracy in the two blocks).

We removed inordinately long or short response
times for each image pair using an automatic outlier
detection procedure (isoutlier function, MATLAB
2018). We pooled the reaction times across participants
for each image pair, and all response times greater than
three scaled median absolute deviations away from
the median were removed. In practice this procedure
removed approximately 8% of the total responses.

Estimating data reliability. To estimate an upper
limit on the performance of any model, we reasoned
that the performance of any model cannot exceed the
reliability of the data itself. To estimate the reliability
of the data, we first calculated the average correlation
between two halves of the data. However, doing
so underestimates the true reliability because the
correlation is based on two halves of the data rather
than the entire dataset. To estimate this true reliability,
we applied a Spearman-Brown correction on the
split-half correlation. This Spearman-Brown corrected
correlation (rc) is given by rc = 2r/(1+r) where r is the
correlation between the two halves. This data reliability
is denoted as rc throughout the text to distinguish it
from the standard Pearson’s correlation coefficient
(denoted as r).

Results

Here, participants performed a same-different task
in which they reported whether a pair of hierarchical
stimuli contained the same/different shape at the global
level or at the local level in separate blocks. We grouped
the image pairs into four distinct types based on whether
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Figure 2. Same-different task for global-local processing. In the global block, participants had to indicate if a pair of images
presented contain the same shape at the global level. Likewise, in the local block, they had to make same-different judgments about
the shape at the local level. Block order was counterbalanced across participants. (A) Example image pairs from four image-pair types
with its response in global and local block (GSLS = global same local same; GDLD = global different local different, etc.). Image pairs
with identical response in both blocks are shown on a white background and pairs with opposite responses in the two blocks are
shown on a grey background. (B) Average response times for GDLD and GSLS pairs in the global and local blocks. Error bars indicate
SEM of average response times across participants. Asterisks indicate statistical significance of the main effect of interference in a
linear mixed effects model on inverse response times (**** indicates p < 0.00005; see text for details). (C) Global-local Interference
effects. Left: Average response times comparing GSLS (n = 49) and GSLD (n = 147) pairs in the global block, measuring how the
presence of a local shape difference interferes with the SAME response. Right: Average response times comparing GSLS (n = 49) and
GDLS (n = 147) pairs in the local block, measuring how the presence of an irrelevant global shape difference interferes with the SAME
response. In both panels, asterisks indicate statistical significance (**** indicates p < 0.00005 for main effect of congruence in a
linear mixed effects model on inverse response times; see text). (D) Top Row: Example congruent and incongruent image pairs which
elicit the DIFFERENT response in both global and local blocks. Bottom row: Example congruent and incongruent pairs that elicit the
SAME response in both blocks. (E) Average response times to congruent and incongruent stimuli in both global and local blocks for
GDLD pairs (left panel) and GSLS pairs (right panel). Error bars indicate SEM across participants. Asterisks indicate statistical
significance using linear mixed effects model on inverse reaction times (**** is p < 0.00005; see text).

the shapes were same/different at the global/local levels.
The first type comprised pairs in which both global
and local shapes were different, denoted by GDLD
(see Figure 2A, top row left column). The second type
comprised pairs with no difference at the global or
local levels (i.e. identical images, denoted by GSLS; see
Figure 2A, bottom row right column). These two types
of pairs (GDLD and GSLS) elicited identical responses
in the global and local blocks. The third type comprised
pairs with the same global shape but different local
shapes, denoted by GSLD (see Figure 2A, top row right
column). The fourth type comprised pairs differing in
global shape but with identical local shapes, denoted by
GDLS (see Figure 2A, bottom row left column). These
two types of pairs (GSLD and GDLS) elicited opposite

responses in the global and local blocks. Because both
global and local blocks consisted of identical image
pairs from these two types, the responses in the two
blocks are directly comparable and matched for image
content as well as the eventual response type.

Statistical comparisons using linear mixed
effects models

We set out to investigate the statistical significance
of the differences in RT across blocks and conditions.
For comparing GDLD pairs, we had data from 16
participants who made two responses for each of 147
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image pairs, and we are interested in knowing whether
their response times are systematically different between
the global and local blocks.

A naïve approach might be to compare the average
response times (averaged across repeats and image
pairs) for each subject in the two blocks using a paired
t-test. However, such a test ignores the complexity
of the data and might hide many confounding
effects: for instance, a faster response in the global
block might vary by subject or vary with image
pair. A more appropriate statistical test would be an
analysis of variance (ANOVA), but it is based on
three assumptions: independence of observations,
normality of errors, homogeneous variance across all
conditions, and balanced data across all conditions.
Violations of these assumptions leads to incorrect
estimates of effect size and their statistical significance
(Glass, Peckham, & Sanders, 1972; Lix, Keselman, &
Keselman, 1996). In our case, the experimental design
violates the assumption of independence because the
same participants performed both global and local
blocks - this means any systematic variations due to
participants are not independent across blocks. Second,
the residuals of an ANOVA performed on RT data
are not normally distributed (Supplementary Figure
S1). Third, due to removal of excessively long response
times, the data can become unbalanced (i.e. have
unequal numbers of observations in each experimental
condition). This can make the model interpretation
ambiguous and ANOVA inoperable (Shaw, Mitchell-
olds, & Mitchell-olds, 1993). A potential solution
is to use repeated measures ANOVA, but this is
typically applied on the average response times, which
ignores the trial-to-trial variability present in the data
and also continues to assume normally distributed
residuals.

Recent statistical approaches have overcome these
limitations using linear mixed effect models (Baayen,
Davidson, & Bates, 2008; Lo & Andrews, 2015).
To investigate these issues, we extensively compared
statistical results obtained using ANOVA, repeated
measures ANOVA, as well as using linear mixed effects
modeling. We found that fitting the inverse response
times (1/RT) to a linear mixed effects model yielded
residuals that were much closer to normality compared
with the same model applied to the RT data itself. This
often resulted in stronger effect sizes and statistical
significance as well. Our results are summarized in
Supplementary Section S1.

All statistical analyses described hereafter are
reported using linear mixed models applied to inverse
response times. We report the partial eta-squared (η2

p)
as a measure of effect size that can be compared across
experiments or studies (Richardson, 2011; Lakens,
2013). For ease of exposition, we describe only the key
statistical comparisons in the main text and provide
detailed descriptions in Supplementary Section S1.

Global advantage in the same-different task

To investigate the presence of a global advantage we
compared global and local task responses to the GDLD
and GSLS pairs, where participants made identical
responses in both task blocks (Figure 2B). Participants
were faster to respond in the global block in both cases
(mean ± SD of RT: 707 ± 69 ms and 749 ± 89 ms in
the global and local blocks for GDLD pairs; 629 ± 40
ms and 684 ± 40 ms for GSLS pairs; see Figure 2B).
These effects were highly significant as evidenced by a
significant main effect of block in a linear mixed effects
model applied to inverse response times (F(1,8602)
= 97.76, p < 0.00005 for GDLD pairs; F(1,8647) =
413.06, p < 0.00005, η2

p = 0.046 for GSLS pairs; see
Supplementary Section S1 for details). We conclude
that participants show a robust global advantage effect
in the same-different task.

Global-local interference in the same-different
task

Next, we asked whether interference effects
were present in the same-different task. To assess
local-to-global interference, we compared GSLS and
GSLD pairs in the global block, where participants had
to make a “SAME” response in the absence or presence
of interfering local information. In the global task,
participants were faster on the 49 GSLS pairs compared
with 147 GSLD pairs (mean ± SD of RT: 629 ± 40 ms
for GSLS; 698 ± 73 ms for GSLD pairs; Figure 2C).
This difference was statistically significant, as evidenced
by a main effect of interference in a linear mixed model
applied to inverse response times (F(1,8772) = 433.18,
p < 0.000005, η2

p = 0.047; see Supplementary Section
S1).

To measure interference in the opposite direction (i.e.
global-to-local interference), we compared response
times with GSLS and GDLS pairs in the local
block, because participants had to make a “SAME”
response to the local level in the absence or presence of
interfering global information (see Figure 2C). Again,
participants were significantly faster on the GSLS pairs
(mean ± SD of RT: 684 ± 40 ms for GSLS pairs, 753
± 77 for GDLS pairs; see Figure 2C). This difference
was also statistically significant (F(1,8564) =351.16, p
< 0.00005, η2

p = 0.039; see Supplementary Section S1).
In sum, we conclude that there is robust global-local

interference in the same-different task.

Shape congruence effect in the same-different
task

Previous studies have shown that participants
respond faster to congruent compared with incongruent
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stimuli, but these comparisons are confounded by
response conflict. In other words, for an incongruent
stimulus, like a circle made of diamonds, participants
had to make one response for the global circle in the
global block and a different one for the local diamonds
in the local block. By contrast, a congruent stimulus
like a circle made of circles was always associated with
a single response. Thus, the slower responses in the
classic studies could have been due to the associated
response differences rather than the visual features of
the stimulus itself.

Interestingly, this confound is absent in the
same-different task. Pairs of identical congruent stimuli
as well as pairs of identical incongruent stimuli belong
to GSLS pairs, which elicit the SAME response in both
global and local blocks. Likewise, nonidentical pairs of
congruent stimuli can be compared with nonidentical
pairs of incongruent stimuli, because they elicit the
DIFFERENT response in both global and local blocks.
These comparisons thereby are devoid of any response
conflict (see Figure 2A). Thus, if we observe a slower
response to incongruent stimuli in the same-different
task, it can be attributed solely to the incongruence in
visual features.

To test this prediction, we compared the response
times for congruent-congruent and incongruent-
incongruent GDLD pairs. As predicted, participants
were faster for congruent stimuli in both global and
local blocks (mean ± SD of RT for congruent and
incongruent stimuli: 683 ± 59 ms and 736 ± 92
ms in the global block; 732 ± 89 ms and 779 ± 99
ms in the local block; Figure 2E). This difference
was statistically significant as evidenced by a main
effect of congruence in a linear mixed model applied
to inverse reaction times (F(1,1212) = 36.33, p <
0.00005, η2

p = 0.029 in the global block; F(1,1206) =
31.95, p < 0.00005, η2

p = 0.026 in the local block; see
Supplementary Section S1).

We observed similar results for GSLS pairs.
Participants were faster for congruent pairs (mean
± SD of RT for congruent and incongruent stimuli:
604 ± 34 ms and 630 ± 40 ms in the global block of
GSLS pairs; 648 ± 19 ms and 685 ± 40 ms in the local
block of GSLS pairs; see Figure 2E). This difference
was also statistically significant as assessed by a main
effect of congruence in a linear mixed model applied to
inverse reaction times (F(1,4362) = 24.4, p < 0.0005,
η2
p = 0.005 in the global block; F(1,4269) = 38.85, p <

0.0005, η2
p = 0.009 in the local block; see Supplementary

Section S1).
We conclude that participants responded faster to

congruent stimuli in both global and local blocks.
Thus, the global-local interference observed in previous
studies can be explained by stimulus incongruence
rather than response conflict.

Quantitative modeling of same-different task
response times

So far, we have shown that the global advantage and
incongruence effects are present in a same-different
task. We next wondered whether response times vary
systematically within each block across image pairs, and
if these variations can be explained using quantitative
models.

To establish that response times are systematic in the
global and local blocks, we simply asked whether the
average response times from one half of the participants
across image pairs are correlated with the other half
of the participants. This revealed striking correlations
(see Supplementary Section S2), suggesting that there is
highly systematic variation across image pairs.

We next asked whether these systematic variations
can be explained using the factors described in the
Introduction, namely dissimilarity and distinctiveness
(see Figure 1). How do we estimate distinctiveness? We
reasoned that distinctiveness might be the only influence
on response time to identical image pairs, because
these pairs have no variation in dissimilarity. In this
case, images that elicited fast responses must be more
distinctive than those that elicit slow responses. We
accordingly took the reciprocal of the average response
time for each GSLS pair (across trials and participants)
as a measure of distinctiveness for that image. The
distinctiveness for each hierarchical stimulus in the
global and local blocks is shown in Figure 3A,B. It can
be seen that shapes with a global circle (“O”) are more
distinctive in the global block than shapes containing
the global shape “A.” In other words, participants
responded faster when they saw these shapes. It can also
be seen that global distinctiveness is unrelated to local
distinctiveness (r = 0.16, p = 0.26), suggesting that they
are qualitatively different. Interestingly, distinctiveness
estimated from GSLS pairs is correlated with both
SAME and DIFFERENT response times in both
blocks, and also explained the faster responses to the
congruent stimuli (Supplementary Section S3).

How do we estimate dissimilarity? Unlike
distinctiveness, there is no direct subset of image
pairs that can be used to measure the contribution
of image dissimilarity to response times, because
distinctiveness correlates with all other response times
(Supplementary Section S3). We therefore devised a
quantitative model for the response times to estimate
the underlying image dissimilarities and elucidate
the contribution of dissimilarity and distinctiveness.
Because high dissimilarity can increase response times
for “SAME” responses and decrease response times for
“DIFFERENT” responses, we devised two separate
models for these two types of responses, as detailed
below.
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Figure 3. Quantitative model predictions for the same-different task. (A) Distinctiveness of each hierarchical stimulus estimated using
the inverse response times for identical image pairs (GSLS) in the global block. (B) Distinctiveness of each hierarchical stimulus in the
local block. (C) Observed versus predicted response times for “SAME” responses in the global block. Inset: Partial correlation between
observed response times and each factor while regressing out all other factors (GDST and LDST = global and local distinctiveness;
GDis and LDis: global and local dissimilarity). Error bars represents 68% confidence intervals, corresponding to ±1 standard deviation
from the mean. (D) Same as C but for “SAME” responses in the local block. (E) Same as C but for “DIFFERENT” responses in the global
block. (F) Same as C but for “DIFFERENT” responses in the local block.
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Modeling “SAME” responses using
distinctiveness and dissimilarity

Recall that “SAME” responses in the global block
are made to image pairs in which the global shape is
the same and local shape is different. Let AB denote
a hierarchical stimulus made of shape A at the global
level and B at the local level. We can denote any image
pair eliciting a “SAME” response in global block as
AB and AC, because the global shape will be identical.
Then, according to our model, the response time (SRT)
taken to respond to an image pair AB and AC is given
by:

SRT (AB,AC) = kG ∗ GD + kL ∗ LD + LBC

where GD is the sum of the global distinctiveness of
AB and AC (estimated from GSLS pairs in the global
block), LD is the sum of local distinctiveness of AB
and AC (estimated from GSLS pairs in the local block),
kG and kL are constants that specify the contribution
of GD and LD toward the response time, and LBC
denotes the dissimilarity between local shapes B and
C. Because there are seven possible local shapes there
are only 7C2 = 21 possible local shape terms. When
this equation is written down for each GSLD pair,
we get a system of linear equations of the form y =
Xb where y is a 147 × 1 vector containing the GSLD
response times, X is a 147 × 23 matrix containing the
net global distinctiveness and net local distinctiveness
as the first two columns, and 0/1 in the other columns
corresponding to whether a given local shape pair is
present in that image pair or not, and b is a 23 × 1
vector of unknowns containing the weights kG, kL, and
the 21 estimated local dissimilarities. Because there are
147 equations and only 22 unknowns, we can estimate
the unknown vector b using linear regression.

The performance of this model is summarized
in Figure 3. The model-predicted response times were
strongly correlated with the observed response times
for the GSLD pairs in the global block (r = 0.86, n
= 147, and p < 0.00005; Figure 3C). These model
fits were close to the reliability of the data (rc =
0.83 ± 0.02; see Methods), suggesting that the model
explained nearly all the explainable variance in the
data. However, the model fits do not elucidate which
factor contributes more toward response times. To
do so, we performed a partial correlation analysis in
which we calculated the correlation between observed
response times and each factor after regressing out the
contributions of the other two factors. For example, to
estimate the contribution of global distinctiveness, we
calculated the correlation between observed response
times and global distinctiveness after regressing out the
contribution of local distinctiveness and the estimated
local dissimilarity values corresponding to each image
pair. This revealed a significant negative correlation (r =
−0.81, n = 147, and p < 0.00005; see Figure 3C, inset).

Likewise, we obtained a significant positive partial
correlation between local dissimilarities and observed
response times after regressing out the other factors
(r = 0.69, n = 147, and p < 0.00005; see Figure 3C,
inset). However, local distinctiveness showed positive
partial correlation (r = 0.30, n = 147, and p < 0.0005)
suggesting that locally distinctive shapes slow down
responses in the global block. Thus, response times are
faster for more globally distinctive image pairs, and
slower for more dissimilar image pairs.

We obtained similar results for local “SAME”
responses. As before, the response time for “SAME”
responses in the local block to an image pair (AB and
CB) was written as:

SRT (AB,CB) = kG ∗ GD + kL ∗ LD + GAC

where SRT is the response time, GD and LD are the net
global and net local distinctiveness of the images AB
and CB, respectively, kG and kL are unknown constants
that specify the contribution of the net global and local
distinctiveness, and GAC is the dissimilarity between
the global shapes A and C. As before, this model is
applicable to all the GDLS pairs (n = 147), has 23 free
parameters and can be solved using straightforward
linear regression.

The model fits for local “SAME” responses are
depicted in Figure 3D. We obtained a striking
correlation between predicted and observed response
times (r = 0.72, n = 147, and p < 0.00005; see
Figure 3D). This correlation was close to the reliability
of the data itself (rc = 0.80 ± 0.03), suggesting that the
model explains nearly all the explainable variance in
the response times. To estimate the unique contribution
of distinctiveness and dissimilarity, we performed a
partial correlation analysis as before. We obtained
a significant partial negative correlation between
observed response times and local distinctiveness
after regressing out global distinctiveness and global
dissimilarity (r = -0.70, n = 147, and p < 0.00005;
see Figure 3D, inset). We also obtained a significant
positive partial correlation between observed response
times and global dissimilarity after factoring out
both distinctiveness terms (r = 0.47, n = 147, and p
< 0.00005; see Figure 3D, inset). Finally, as before,
global distinctiveness showed a positive correlation
with local “SAME” responses after accounting for the
other factors (r = 0.36, n = 147, and p < 0.00005; see
Figure 3D inset).

Modeling “DIFFERENT” responses using
distinctiveness and dissimilarity

We used a similar approach to predict “DIF-
FERENT” responses in the global and local blocks.
Specifically, for any image pair AB and CD, the

Downloaded from jov.arvojournals.org on 01/21/2021



Journal of Vision (2020) 20(10):20, 1–21 Jacob & Arun 10

GSL GDG GDL LSG LDG LDL

Global SAME model, L terms 1 0.54* 0.17 0.14 0.09 0.48*
Global DIFFERENT model, Global terms 1 0.24 0.34 0.30 0.47*
Global DIFFERENT model, Local terms 1 0.03 –0.08 0.14
Local SAME model, Global terms 1 0.11 –0.04
Local DIFFERENT model, Global terms 1 –0.31
Local DIFFERENT model, Local terms 1

Table 1. Correlation between estimated dissimilarity terms within and across models. Each entry represents the correlation
coefficient between pairs of model terms. Asterisks represent statistical significance (* is p < 0.05). Column labels are identical to row
labels but are abbreviated for ease of display.

response time according to the model is written as:

DRT (AB,CD) = kG ∗ GD + kL ∗ LD

− GAC − LBD

where DRT is the response time for making a
“DIFFERENT” response, GD and LD are the net
global and net local distinctiveness of the images AB
and CD, respectively, kG and kL are unknown constants
that specify their contributions, GAC is the dissimilarity
between the global shapes A and C, and LBD is the
dissimilarity between the local shapes B and D. Note
that, unlike the “SAME” response model, the sign
of GAC and LBD is negative because large global or
local dissimilarity should speed up “DIFFERENT”
responses. The resulting model, which applies to both
GDLS and GDLD pairs, consists of 44 free parameters,
which are the two constants specifying the contribution
of the global and local distinctiveness and 21 terms
each for the pairwise dissimilarities at the global and
local levels respectively. As before, this is a linear
model whose free parameters can be estimated using
straightforward linear regression.

The model fits for “DIFFERENT” responses in the
global block are summarized in Figure 3E. We obtained
a striking correlation between observed response times
and predicted response times (r = 0.82, n = 294,
and p < 0.00005; see Figure 3E). This correlation
was close to the data reliability itself (rc = 0.84 ±
0.02), implying that the model explained nearly all the
explainable variance in the data. To estimate the unique
contributions of each term, we performed a partial
correlation analysis as before. We obtained a significant
negative partial correlation between observed response
times and global distinctiveness after regressing out
all other factors (r = –0.21, n = 294, and p < 0.0005;
see Figure 3E, inset). We also obtained a significant
negative partial correlation between observed response
times and both dissimilarity terms (r = –0.76, n = 294,
and p < 0.00005 for global terms; and r = –0.33, n =
294, and p < 0.00005 for local terms; see Figure 3E,
inset). However, we note that the contribution of global
terms is larger than the contribution of local terms.
As before, local distinctiveness did not contribute

significantly to “DIFFERENT” responses in the global
block (r = –0.06, p = 0.34, and n = 294; see Figure 3E,
inset). We conclude that “DIFFERENT” responses in
the global block are faster for globally distinctive image
pairs, and for dissimilar image pairs.

We obtained similar results for “DIFFERENT”
responses in the local block for GSLD and GDLD
pairs. Model predictions were strongly correlated with
observed response times (r = 0.87, n = 294, and p <
0.00005; see Figure 3F). This correlation was close
to the data reliability (rc = 0.85 ± 0.01) suggesting
that the model explained nearly all the variance in the
response times. A partial correlation analysis revealed
a significant negative partial correlation for all terms
except global distinctiveness (correlation between
observed RT and each factor after accounting for all
others: r = –0.26, n = 294, and p < 0.00005 for local
distinctiveness; r = –0.04, n = 294, and p = 0.55 for
global distinctiveness; r = –0.32, n = 294, and p <
0.00005 for global terms; and r = –0.86, n = 294, and
p < 0.00005 for local terms; see Figure 3F). In contrast
to the global block, the contribution of global terms
was smaller than that of the local terms. We conclude
that “DIFFERENT” responses in the local block
are faster for locally distinctive image pairs and for
dissimilar image pairs.

Relation between “SAME” and “DIFFERENT”
model parameters

Next, we asked whether the dissimilarity terms
estimated from “SAME” and “DIFFERENT”
responses were related. In the global block, we obtained
a significant positive correlation between the local
dissimilarity terms (Table 1). Likewise, the global and
local terms estimated from “DIFFERENT” responses
were significantly correlated (see Table 1). In general,
only 3 of 15 (20%) of all possible pairs were negatively
correlated, and the median pairwise correlation across
all model term pairs was significantly above zero
(median correlation: 0.14, p < 0.01, sign-rank test).
Taken together, these positive correlations imply
that the dissimilarities driving the “SAME” and

Downloaded from jov.arvojournals.org on 01/21/2021



Journal of Vision (2020) 20(10):20, 1–21 Jacob & Arun 11

“DIFFERENT” responses at both global and local
levels are driven by a common underlying shape
representation.

Experiment 2: Visual search

There are two main findings from Experiment 1.
First, participants show a robust global advantage
and an interference and incongruence effect in the
same-different task. These effects could arise from the
underlying categorization process or the underlying
visual representation. To distinguish between these
possibilities would require a task devoid of categorical
judgments. To this end, we devised a visual search
task in which participants have to locate an oddball
target among multiple identical distractors, rather than
making a categorical judgment about shape. Second,
responses in the same-different task were explained
using two factors: distinctiveness and dissimilarity, but
it is not clear how these factors relate to the underlying
visual representation.

We sought to answer four questions. First, are the
global advantage and incongruence effects present
in visual search? Second, can performance in the
same-different task be explained in terms of the
responses in the visual search task? Third, can we
understand how global and local features combine
in visual search? Finally, can the dissimilarity and
distinctiveness terms in the same-different model of
Experiment 1 be related to some aspect of the visual
representations observed during visual search?

Methods

Participants. Eight right-handed participants (6 men,
aged 23–30 years) participated in the study. We selected
this number of participants here and in subsequent
experiments based on the fact that similar sample
sizes have yielded extremely consistent visual search
data in our previous studies (Mohan & Arun, 2012;
Vighneshvel & Arun, 2013; Pramod & Arun, 2016).

Stimuli. We used the same set of 49 stimuli as in
Experiment 1, which were created by combining seven
possible shapes at the global level with seven possible
shapes at the local level in all possible combinations.
The full stimulus set can be seen in Supplementary
Section S5.

Procedure. Participants were seated approximately
60 cm from a computer. Each participant performed a
baseline motor block, a practice block, and then the
main visual search block. In the baseline block, on each
trial, a white circle appeared on either side of the screen
and participants had to indicate the side on which
the circle appeared. We included this block so that

participants would become familiar with the key press
associated with each side of the screen, and to estimate
a baseline motor response time for each participant. In
the practice block, participants performed 20 correct
trials of visual search involving unrelated objects to
become familiarized with the main task.

Each trial of the main experiment started with a
red fixation cross presented at the center of the screen
for 500 ms. This was followed by a 4 × 4 search array
measuring 24 degrees square with a spacing of 2.25
degrees between the centers of adjacent items. Images
were slightly larger in size (1.2 times) compared with
Experiment 1 to ensure that the local elements were
clearly visible. The search array consisted of 15 identical
distractors and one oddball target placed at a randomly
chosen location in the grid. Participants were asked to
locate the oddball target and respond with a key press
(“Z” for left and “M” for right) within 10 seconds,
failing which the trial was aborted and repeated later.
A red vertical line was presented at the center of the
screen to facilitate left/right judgments.

Search displays corresponding to each possible
image pair were presented two times, with either image
in a pair as target (with target position on the left in
one case and on the right in the other). Thus, there
were 49C2 = 1176 unique searches and 2352 total trials.
Trials in which the participant made an error or did
not respond within 10 seconds were repeated randomly
later. In practice, these repeated trials were very few in
number, because participants accuracy was extremely
high (mean and SD accuracy: 98.4% ± 0.7% across
participants).

Model fitting

We measured the perceived dissimilarity between
every pair of images by taking the reciprocal of the
average search time for that pair across participants
and trials. We constructed a quantitative model for this
perceived dissimilarity following the part summation
model developed in our previous study (Pramod &
Arun, 2016). Let each hierarchical stimulus be denoted
as AB where A is the shape at the global level and B
is the local shape. The net dissimilarity between two
hierarchical stimuli AB and CD is given by:

d (AB,CD)= GAC + LBD + XAD + XBC

+WAB + WCD + constant

where GAC is the dissimilarity between the global
shapes, LBD is the dissimilarity between the local shapes,
XAD and XBC are the across-object dissimilarities
between the global shape of one stimulus and the
local shape of the other, and WAB and WCD are the
dissimilarities between global and local shape within
each object. Thus, there are four sets of unknown
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parameters in the model, corresponding to global terms,
local term, across-object terms, and within-object
terms. Each set contains pairwise dissimilarities among
the seven shapes used to create the stimuli. Note that
model terms repeat across image pairs: for instance,
the term GAC is present for every image pair in which
A is a global shape of one and C is the global shape
of the other. Writing this equation for each of the
1176 image pairs results in a total of 1176 equations
corresponding to each image pair, but with only 21
shape pairs times four types (global, local, across, and
within) + 1 = 85 free parameters. The advantage of
this model is that it allows each set of model terms
to behave independently, thereby allowing potentially
different shape representations to emerge for each type
through the course of model fitting.

This simultaneous set of equations can be written as y
= Xb where y is a 1176 × 1 vector of observed pairwise
dissimilarities between hierarchical stimuli, X is a 1176
× 85 matrix containing 0, 1, or 2 (indicating how many
times a part pair of a given type occurred in that image
pair) and b is a 85 × 1 vector of unknown part-part
dissimilarities of each type (corresponding, across, and
within). We solved this equation using standard linear
regression (regress function, MATLAB).

The results described in the main text, for ease of
exposition, are based on fitting the model to all pairwise
dissimilarities, which could result in overfitting. To
assess this possibility, we fitted the model each time
on 80% of the data and calculated its predictions on
the held-out 20%. This too yielded a strong positive
correlation across many 80-20 splits (r = 0.85 ± 0.01,
p < 0.00005 in all cases), indicating that the model is
not overfitting to the data.

Results

Participants performed searches corresponding
to all possible pairs of hierarchical stimuli (49C2 =
1176 pairs). Participants were highly accurate in the
task (mean ± SD accuracy: 98.4% ± 0.7% across
participants).

Note that each image pair in visual search has a
one-to-one correspondence with an image pair used in
the same-different task. Thus, we have GDLS, GSLD,
and GDLD pairs in the visual search task. However,
there are no GSLS pairs in visual search because these
pairs correspond to identical images, and can have no
oddball search.

Global advantage effect in visual search

We set out to investigate whether there is a global
advantage effect in visual search. We compared searches
with target differing only in global shape (i.e. GDLS

pairs) with equivalent searches in which the target
differed only in local shape (i.e. GSLD pairs). Two
example searches are depicted in Figure 4A,B. It can
be readily seen that finding a target differing in global
shape (see Figure 4A) is much easier than finding the
same shape difference in local shape (see Figure 4B).

The above observation held true across all
GDLS/GSLD searches. Participants were equally
accurate on GDLS searches and GSLD searches
(accuracy, mean ± SD: 98% ± 1% for GDLS, 98%
± 1% for GSLD, p = 0.48, sign-rank test across
participant-wise accuracy). However, they were faster
on GDLS searches compared with GSLD searches
(search times, mean ± SD: 1.90 ± 0.40 seconds across
147 GDLS pairs, 2.11 ± 0.56 seconds across 147 GSLD
pairs; Figure 4C). This difference was statistically
significant as evidenced by a main effect of scale
of change in a linear mixed effects model analysis
performed on inverse RT (F(1,4696) = 163.24, p <
0.00005, η2

p = 0.034; for details see Supplementary
Section S4). We conclude that searching for a target
differing in global shape is easier than searching for a
target differing in local shape. Thus, there is a robust
global advantage effect in visual search.

Incongruence effect in visual search

Next, we compared whether searches involving a
pair of congruent stimuli were easier than those with
incongruent stimuli. Example searches of each type are
shown in Figure 4D,E. Searches for pairs of congruent
stimuli were faster than searches for incongruent
stimulus pairs (mean ± SD of RT: 1127 ± 409 ms and
1359 ± 398 ms for congruent and incongruent pairs
respectively; Figure 4F). This difference was statistically
significant as assessed using a linear mixed effects model
applied to inverse response times (F(1,664) = 35.87, p
< 0.00005, η2

p = 0.051 for main effect of congruence;
Supplementary Section S4).

The above incongruence effect compares image
pairs with congruent target and congruent distractor
with image pairs for with incongruent target and
incongruent distractor, so the difference could arise due
to the sharing of features within a shape or due to the
juxtaposition of shared shapes. To resolve this issue, we
calculated the effect of target congruence and distractor
congruence separately. We calculated the effect of target
incongruence by calculating the search times for either a
congruent or incongruent target formed by two shapes
against all possible incongruent distractors chosen from
the remaining five shapes (n = 2 × 7C2 × 2 × 5P2 =
1680). Target congruent searches were slightly faster
than target incongruent searches (mean ± SD of RT:
1095 ± 399 ms and 1117 ± 401 ms for congruent and
incongruent targets; Figure 4G, top panel). However,
this difference was not statistically insignificant, as
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Figure 4. Global advantage and congruence in visual search (Experiment 2). (A) Example search array with an oddball target differing
only in global shape from the distractors. The actual experiment used 4 × 4 search arrays with stimuli shown as white against a black
background. (B) Example search array with an oddball target differing only in local shape from the distractors. (C) Average response
times for GDLS and GSLD search pairs. Error bars represent SEM across image pairs. Asterisks indicate statistical significance
(**** indicates p < 0.00005 for main effect of type of change (global/local) in a linear mixed effects model on inverse response times;
see text). (D) Example search array for a congruent target among congruent distractor. (E) Example search array for an incongruent
target among an incongruent distractor. (F) Average response times for congruent and incongruent searches (n = 21). Error bars
represents SEM across image pairs. Asterisks indicate statistical significance (**** indicates p < 0.00005 for main effect of
congruence in a linear mixed effects model on inverse response times; see text). (G) Top: Average response times for searches with
congruent or incongruent targets among a fixed set of distractors whose global and local shapes are not shared with the target
(n = 21 × 2 × 20 = 840). Asterisks indicate statistical significance (n.s. indicates the main effect of target congruence is not significant
in a linear mixed effects model on inverse response times; see text). Bottom: Average response times for searches with congruent or
incongruent distractors and a fixed set of targets whose global and local shapes are not shared with the distractors (n = 21 × 2 ×
20 = 840). Asterisks indicates statistical significance (**** indicates p <0.00005 for main effect of distractor congruence in a linear
mixed effects model on inverse response times; see text).

evidenced by the lack of a main effect of congruence
in a linear mixed effects model analysis performed on
inverse response times (F(1,328) = 3.73, p = 0.54; see
Supplementary Section S4).

Likewise, we calculated the effect of distractor
incongruence by calculating the search times for
searches with either a congruent or incongruent
distractor and all possible incongruent targets chosen
from the remaining five shapes (n = 7C2 × 2 × 5P2 =

840). Searches with congruent distractors were faster
than incongruent distractors (mean ± SD of RT:
1047 ± 96 ms and 1117 ± 116 ms for congruent and
incongruent distractors; see Figure 4G, bottom panel).
This difference was statistically significant as evidenced
by a main effect of congruence in a linear mixed effects
model applied to inverse response times (F(1,328) =
34.85, p < 0.00005, η2

p = 0.096; see Supplementary
Section S4).
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Systematic variations in response times in the
visual search task

Having established that participants showed a robust
global advantage effect and incongruence effects,
we wondered whether there were other systematic
variations in their responses as well. Indeed, response
times were highly systematic as evidenced by a strong
correlation between two halves of the participants
(split-half correlation between RT of odd- and
even-numbered participants: r = 0.83, n = 1176, and
p < 0.00005).

Previous studies have shown that the reciprocal of
search time can be taken as a measure of dissimilarity
between the target and distractors. We therefore took
the reciprocal of the average search time across all
participants (and trials) for each image pair as a
measure of dissimilarity between the two stimuli.
Because we performed all pairwise searches between
the hierarchical stimuli, it becomes possible to
visualize these stimuli in visual search space using
multidimensional scaling (MDS). The multidimensional
scaling plot obtained from the observed visual search
data is shown in Supplementary Section S5. Two
interesting patterns can be seen. First, stimuli with the
same global shape clustered together, indicating that
these are hard searches. Second, congruent stimuli
(i.e. with the same shape at the global and local levels)
were further apart compared with incongruent stimuli
(with different shapes at the two levels), indicating that
searches involving congruent stimuli are easier than
incongruent stimuli. These observations concur with
the global advantage and incongruence effect described
above in visual search.

Quantitative modeling of global and local shape
integration

So far, we have shown that the global advantage and
incongruence effects in the same-different task also arise
in the visual search task, suggesting that these effects
are intrinsic to the underlying representation of these
hierarchical stimuli. However, these findings do not
provide any fundamental insight into the underlying
representation or how it is organized. For instance, why
are incongruent shapes more similar than congruent
shapes? How do global and local shape combine?

To address these issues, we asked whether search for
pairs of hierarchical stimuli can be explained in terms
of shape differences and interactions at the global and
local levels. To build a quantitative model, we drew
upon our previous studies in which the dissimilarity
between objects differing in multiple features was found
to be accurately explained as a linear sum of part-part
dissimilarities (Pramod & Arun, 2014; Pramod & Arun,

2016; Sunder & Arun, 2016). Consider a hierarchical
stimulus AB, where A represents the global shape and
B is the local shape. Then, according to the model
(which we dub the multiscale part sum model), the
dissimilarity between two hierarchical stimuli AB and
CD can be written as a sum of all possible pairwise
dissimilarities among the parts A, B, C, andD as follows
(Figure 5A):

d (AB,CD)= GAC + LBD + XAD + XBC

+WAB + WCD + constant

where GAC is the dissimilarity between the global
shapes, LBD is the dissimilarity between the local shapes,
XAD and XBC are the across-object dissimilarities
between the global shape of one stimulus and the
local shape of the other, and WAB and WCD are the
dissimilarities between global and local shape within
each object. Because there are seven possible global
shapes, there are 7C2 = 21 pairwise global-global
dissimilarities corresponding to GAB, GAC, GAD, etc.,
and likewise for L, X, and W terms. Thus, in all,
the model has 21 part-part relations times 4 types
+ 1 constant = 85 free parameters. Importantly,
the multiscale part sum model allows for completely
independent shape representations at the global level,
local level, and even for comparisons across objects
and within object. The model works because the same
global part dissimilarity GAC can occur in many shapes
where the same pair of global shapes A and C are
paired with various other local shapes.

Performance of the part sum model

To summarize, we used a multiscale part sum model
that explains the dissimilarity between two hierarchical
stimuli as a sum of pairwise shape comparisons across
multiple scales. To evaluate model performance, we
plotted the observed dissimilarities between hierarchical
stimuli against the dissimilarities predicted by the
part sum model (Figure 5B). This revealed a striking
correlation (r = 0.88, n = 1176, and p < 0.00005;
see Figure 5B). This high degree of fit matches the
reliability of the data (mean ± SD reliability: rc = 0.84
± 0.01; see Methods).

This model also yielded several insights into the
underlying representation. First, because each group of
parameters in the part sum model represent pairwise
part dissimilarities, we asked whether they all reflect
a common underlying shape representation. To this
end, we plotted the estimated part relations at the
local level (L terms), the across-object global-local
relations (X terms), and the within-object relations
(W terms) against the global part relations (G terms).
This revealed a significant correlation for all terms
(correlation with global terms: r = 0.60, p < 0.005 for
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Figure 5. Global and local shape integration in hierarchical stimuli. (A) We investigated how global and local shape combine in visual
search using the multiscale part sum model. According to the model, the dissimilarity between two hierarchical stimuli can be
explained as a weighted sum of shape differences at the global level, local level, and cross-scale differences across and within objects
(see text). (B) Observed dissimilarity plotted against predicted dissimilarity for all 1176 object pairs in the experiment. (C) Local and
cross-scale model terms plotted against global terms. Colored lines indicate the corresponding best fitting line. Asterisks indicate
statistical significance: *** is p < 0.0005, **** is p < 0.00005. (D) Visualization of global shape relations recovered by the multiscale
model, as obtained using multidimensional scaling analysis.

L terms; r = 0.75, p < 0.00005 for X terms; r = -0.60,
p < 0.005 for W terms; Figure 5C). This is consistent
with the finding that hierarchical stimuli and large/small
stimuli are driven by a common representation at the
neural level (Sripati & Olson, 2009).

Second, cross-scale within-object (W terms) were
negative (average: -0.04, p < 0.005, sign-rank test on
21 within-object terms). The effect of within-object
dissimilarity is akin to the effect of distracter
heterogeneity in visual search. Just as similar distracters
make search easier, similar shapes at the global and local
level within a shape make the search easier. We have
made a similar observation previously with two-part
objects (Pramod & Arun, 2016).

Third, we visualized this common shape
representation using multidimensional scaling on the
pairwise global coefficients estimated by the model.
The resulting plot (Figure 5D) reveals a systematic
arrangement whereby similar global shapes are nearby.
Ultimately, the multiscale part sum model uses this
underlying part representation determines the overall
dissimilarity between hierarchical stimuli.

Model explanation for global advantage and
incongruence

Having established that the full multiscale part sum
model yielded excellent quantitative fits, we asked

whether it can explain the global advantage and
incongruence effects.

First, the global advantage effect in visual search is
the finding that shapes differing in global shape are
more dissimilar than shapes differing in local shape.
This is explained by the multiscale part sum model
by the fact that global part relations are significantly
larger in magnitude compared with local terms (average
magnitude across 21 pairwise terms: 0.42 ± 0.17 s−1 for
global, 0.30 ± 0.11 s−1 for local, p < 0.005, sign-rank
test).

Second, how does the multiscale part sum model
explain the incongruence effect? We first confirmed
that the model shows the same pattern as the observed
data (Figure 6A). To this end, we examined how each
model term in the model works for congruent and
incongruent shapes (Figure 6B). First, note that the
terms corresponding to global and local shape relations
are identical for both congruent and incongruent
stimuli so these cannot explain the incongruence effect.
However, congruent and incongruent stimuli differ
in the cross-scale interactions both across and within
stimuli. For a congruent pair, which have the same
shape at the global and local level, the contribution of
within-object terms is zero, and the contribution of
across-object terms is non-zero, resulting in an overall
larger dissimilarity (see Figure 6B). In contrast, for an
incongruent pair, the within-object terms are negative
and across-object terms are zero, leading to a smaller
overall dissimilarity.
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Figure 6. Incongruence effect in visual search. (A) Average dissimilarity for congruent and incongruent image pairs for observed
dissimilarities (left) and dissimilarities predicted by the multiscale part sum model (right). Error bars indicate SD across image pairs.
Asterisks indicate statistical significance, as calculated using an ANOVA, with conventions as before. (B) Schematic illustrating how the
multiscale model predicts the incongruence effect. For both congruent and incongruent searches, the contribution of global and local
terms in the model is identical. However, for congruent searches, the net dissimilarity is large because cross-scale across terms are
non-zero and within-object terms are zero (because the same shape is present at both scales). In contrast, for incongruent searches,
the net dissimilarity is small because across-object terms are zero (since the local shape of one is the global shape of the other) and
within-object terms are non-zero and negative.

To investigate whether the incongruence effect
observed in visual search is due to the relationship
between the target and distractors, or due to the
incongruency of the target itself, we fit two reduced
models with either the cross-scale across terms (X) or
the cross-scale within terms (W) terms removed. We
reasoned that if the incongruence effect is due to the
across terms, the model containing the across terms will
perform better than the model containing the within
terms in predicting the dissimilarities of the congruent
and incongruent pairs – and likewise if it were due to
the within terms. However, we obtained similar model
performance with across or within terms removed
(correlation across congruent and incongruent pairs,
n = 42: r = 0.87 for model with across terms; r =
0.88 for model with within terms, p < 0.00005 in both
cases). Thus, the incongruence effect arises from both
factors.

To summarize, the multiscale model explains
qualitative features of visual search, such as the global
advantage and incongruence effects, and explains
visual search for hierarchical stimuli using a linear
sum of multiscale part differences. The excellent fits of
the model indicate that shape information combines
linearly across multiple scales.

Relation between same-different model and
visual search

Recall that the responses in the same-different task
were explained using two factors, distinctiveness and
dissimilarity (see Figure 4). We wondered whether these

factors are related to any aspect of the visual search
representation.

We first asked whether the distinctiveness of
each image as estimated from the GSLS pairs in
the same-different task is related to the hierarchical
stimulus representation in visual search. We accordingly
calculated a measure of global distinctiveness in visual
search as follows: for each image, we calculated its
average dissimilarity (1/RT in visual search) to all
other images with the same global shape. Likewise, we
calculated local search distinctiveness as the average
dissimilarity between a given image and all other
images with the same local shape. We then asked how
the global and local distinctiveness estimated from
same-different task are related to the global and local
search distinctiveness estimated from visual search.

We obtained a striking double-dissociation: global
distinctiveness estimated in the same-different task
was correlated only with global but not local search
distinctiveness (r = 0.55, p < 0.00005 for global search
distinctiveness; and r = 0.036, p = 0.55 for local
search distinctiveness; Figure 7A). Likewise, local
distinctiveness estimated in the same-different task was
correlated only with local search distinctiveness but not
global distinctiveness (r = 0.35, p < 0.05 for local search
distinctiveness; and r = 0.05, p = 0.76 for global search
distinctiveness; Figure 7B).

Next, we investigated whether the global and
local shape dissimilarity terms estimated from
the same-different task were related to the global
and local terms in the part-sum model. Many of
these correlations were positive and significant
(see Table 2), suggesting that all dissimilarities are
driven by a common shape representation.
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Same-different model terms Correlation with visual search global terms Correlation with visual search local terms

Same-different task, Global block
Same model Local Terms 0.47* 0.76****
Different model Global Terms 0.69**** 0.82****
Different Model Local Terms 0.02 0
Same-Different task, Local Block
Same model Local Terms 0.37 0.11
Different model Global Terms 0.38 0.21
Different Model Local terms 0.14 0.6**

Table 2. Comparison of model parameters across tasks. Each entry represents the correlation coefficient between model terms
estimated from the same-different task and global and local terms from the visual search model. Asterisks represent statistical
significance (* is p < 0.05, **** is p < 0.00005 etc.).
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Figure 7. Relation between same-different model parameters
and visual search. (A) Correlation between distinctiveness
estimated from 49 GSLS trials in the global block of the
same-different (SD) task with global and local search
distinctiveness. Error bars represents 68% confidence intervals,
corresponding to ±1 standard deviation from the mean. (B)
Correlation between distinctiveness estimated from 49 GSLS
trials in the local block of the same-different task with global
and local search distinctiveness.

We conclude that both distinctiveness and
dissimilarity terms in the same-different task are
systematically related to the underlying representation
in visual search.

Comparison of part-sum model with other
models

The above results show that search for hierarchical
stimuli is best explained using the reciprocal of search
time (1/RT), or search dissimilarity. That models based
on 1/RT provides a better account than RT-based

models was based on our previous findings (Vighneshvel
& Arun, 2013; Pramod & Arun, 2014; Pramod &
Arun, 2016; Sunder & Arun, 2016). To reconfirm
this finding, we fit RT and 1/RT based models to the
data in this experiment. Indeed, 1/RT based models
provided a better fit to the data (see Supplementary
Section S6).

The above results are also based on a model in which
the net dissimilarity is based on part differences at the
global and local levels as well as cross-scale differences
across and within object. This raises the question of
whether simpler models based on a subset of these
terms would provide an equivalent fit. However, this was
not the case: the full model yielded the best fits despite
having more free parameters (see Supplementary
Section S6).

Simplifying hierarchical stimuli

One fundamental issue with hierarchical stimuli
is that the global shape is formed using the local
shapes, making them inextricably linked. We therefore
wondered whether hierarchical stimuli can be
systematically related to simpler stimuli in which the
global and local shape are independent of each other.
We devised a set of “interior-exterior” shapes whose
representation in visual search can be systematically
linked to that of the hierarchical stimuli, and thereby
simplifying their underlying representation. Even here,
we found that the dissimilarity between interior-exterior
stimuli can be explained as a linear sum of shape
relations across multiple scales (see Supplementary
Section S7). Moreover, changing the position, size, and
grouping status of the local elements leads to systematic
changes in the model parameters (see Supplementary
Sections S7–S9). These findings provide a deeper
understanding of how shape information combines
across multiple scales.
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General discussion

Classic perceptual phenomena, such as the global
advantage and interference effects, have been difficult
to understand because they have been observed during
shape detection tasks, where a complex category
judgment is made on a complex feature representation.
Here, we have shown that these phenomena are
not a consequence of the categorization process
but rather are explained by intrinsic properties of
the underlying shape representation. Moreover, this
underlying representation is governed by a simple
rule whereby global and local features combine
linearly.

Our findings in support of this conclusion are: (1)
global advantage and interference effects are present
in a same-different task as well as in a visual search
task devoid of any shape categorization; (2) responses
in the same-different task were accurately predicted
using two factors: dissimilarity and distinctiveness; (3)
dissimilarities in visual search were explained using
a simple linear rule whereby the net dissimilarity is a
sum of pairwise multiscale shape dissimilarities; and
(4) shape parameters estimated in both tasks were
correlated, indicative of a common underlying shape
representation. Below, we discuss how these results
relate to the existing literature.

Understanding same-different task
performance

We have found that image-by-image variations
in response times in the same-different task can be
accurately explained using a quantitative model. To the
best of our knowledge, there are no quantitative models
for the same-different task. According to our model,
responses in the same-different task are driven by two
factors: dissimilarity and distinctiveness.

The first factor is the dissimilarity between two
images in a pair. Notably, it has opposite effects
on “SAME” and “DIFFERENT” responses. This
makes intuitive sense because if images are more
dissimilar, it should make “SAME” responses harder
and “DIFFERENT” responses easier. It is also
consistent with the common models of decision-making
(Gold & Shadlen, 2002) and categorization (Ashby
& Maddox, 1994; Mohan & Arun, 2012), where
responses are triggered when a decision variable exceeds
a criterion value. In this case, the decision variable is the
dissimilarity.

The second factor is distinctiveness. Response times
were faster for images that are more distinctive (i.e. far
away from other stimuli). To the best of our knowledge,
this has never been reported previously. However, it

makes intuitive sense because nearby stimuli can act as
distractors and slow down responses. Importantly, the
distinctiveness of an image in the global block matched
best with its average distance from all other stimuli
with the same global shape (Figure 7A). Conversely,
the distinctiveness in the local block matched best with
its average distance from all other shapes with the
same local shape (Figure 7B). Thus, distinctiveness is
task-dependent and/or reflects attentional demands.
This finding is concordant with norm-based accounts of
object representations (Sigala, Gabbiani, & Logothetis,
2002; Leopold, Bondar, & Giese, 2006), wherein objects
are represented relative to an underlying average.
We speculate that this underlying average is biased
by the level of attention, making stimuli distinctive
at the local or global level depending on the block.
Testing these intriguing possibilities will require
recording neural responses during global and local
processing.

Explaining global advantage and interference
effects

We have shown that the global advantage and
interference effects also occur in visual search, implying
that they are intrinsic properties of the underlying
shape representation. Further, we found that this
representation is organized according to a simple
linear rule whereby global and local features combine
linearly (see Figure 5). This model provides a simple
explanation of both effects. The global advantage
occurs simply because global part relations are
more salient than local relations (see Figure 5C).
The interference effect occurs because congruent
stimuli are more dissimilar (or equivalently, more
distinctive) than incongruent stimuli, which in turn
is because congruent stimuli have no within-object
part differences (see Figure 6). These findings are
consistent with previous studies showing that a variety
of factors combine linearly in visual search (Pramod
& Arun, 2016; Pramod & Arun, 2018; Sunder & Arun,
2016).

Finally, it has long been observed that the global
advantage and interference effects vary considerably
on the visual angle, eccentricity and shapes of the
local elements (Navon, 1977; Navon & Norman, 1983;
Kimchi, 1992; Poirel et al., 2008). Our results offer a
systematic approach to understand these variations:
the multiscale model parameters varied systematically
with the position, size, and grouping status of the local
elements (see Supplementary Sections S3–S5).

In sum, our results elucidate global and local
processing phenomena by relating them to a systematic
underlying shape representation governed by simple
linear rules.
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