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Abstract
We study the semi-Hilbertian structure induced by a positive operator A on a Hilbert 
space ℍ. Restricting our attention to A−bounded positive operators, we characterize 
the norm attainment set and also investigate the corresponding compactness prop-
erty. We obtain a complete characterization of the A−Birkhoff–James orthogonality 
of A−bounded operators under an additional boundedness condition. This extends 
the finite-dimensional Bhatia-S̆emrl Theorem verbatim to the infinite-dimensional 
setting.

Keywords Semi-Hilbertian structure · Renorming · Positive operators · A-Birkhoff-
James orthogonality · Norm attainment set · Compact operators

Mathematics Subject Classification 47C05 · 47L05 · 46B03 · 47A30 · 47B65

1 Introduction

The purpose of the paper was to explore the orthogonality and the norm attainment 
of bounded linear operators in the context of semi-Hilbertian structure induced by 
positive operators on a Hilbert space. Such a study was initiated by Krein in [10] and 
it remains an active and productive area of research till date. We refer the readers 
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to [2, 3, 8, 18] and the references therein for more information on this. Let us now 
mention the relevant notations and the terminologies to be used in the article.

We use the symbol ℍ to denote a Hilbert space. Finite-dimensional Hilbert spaces 
are also known as Euclidean spaces. Unless mentioned specifically, we work with 
both real and complex Hilbert spaces. The scalar field is denoted by �, which can 
be either ℝ or ℂ. The underlying inner product and the corresponding norm on ℍ are 
denoted by ⟨ , ⟩ and ‖ ⋅ ‖, respectively. In general, inner products on ℍ are defined 
as positive definite, conjugate symmetric forms which are linear in the first argu-
ment. It should be noted that apart from the underlying inner product ⟨ , ⟩ on ℍ, 
there may be many other inner products defined on ℍ, generating different norms. 
In order to avoid any confusion, whenever we talk of a topological concept on ℍ, 
we explicitly mention the norm that generates the corresponding topology. Let 
B
ℍ
= {x ∈ ℍ ∶ ‖x‖ ≤ 1} and S

ℍ
= {x ∈ ℍ ∶ ‖x‖ = 1} be the unit ball and the unit 

sphere of ℍ, respectively. We use the symbol � to denote the zero vector of any Hil-
bert space other than the scalar fields ℝ and ℂ. For any complex number z,   Re(z) 
and Im(z) denote the real part and the complex part of z,   respectively. For any set 
G ⊂ ℍ, G denotes the norm closure of G. Let 𝕃(ℍ)(𝕂(ℍ)) denote the Banach space 
of all bounded (compact) linear operators on ℍ , endowed with the usual operator 
norm. Given any A ∈ 𝕃(ℍ), we denote the null space of A by N(A) and the range 
space of A by R(A). The symbol I is used to denote the identity operator on ℍ. For 
A ∈ 𝕃(ℍ), A∗ denotes the Hilbert adjoint of A. An operator A ∈ 𝕃(ℍ) can be rep-
resented as A = ReA + iImA, where ReA =

1

2
(A + A∗

) and ImA =

1

2i
(A − A∗

). Recall 
that A ∈ 𝕃(ℍ) is said to be a positive operator if A = A∗ and ⟨Ax, x⟩ ≥ 0 for all x ∈ ℍ . 
A positive operator A is said to be positive definite if ⟨Ax, x⟩ > 0 for all x ∈ ℍ ⧵ {�} . 
It is well known [2] that any positive operator A ∈ 𝕃(ℍ) induces a positive semi-
definite sesquilinear form ⟨ , ⟩A on ℍ, given by ⟨x, y⟩A = ⟨Ax, y⟩, where x, y ∈ ℍ. It 
is easy to see that ⟨ , ⟩A induces a semi-norm ‖ ⋅ ‖A on ℍ, given by ‖x‖A =

√
⟨Ax, x⟩. 

Moreover, when A is positive definite, it can be verified that ⟨ , ⟩A is an inner product 
on ℍ and ‖ ⋅ ‖A is a norm on ℍ. In fact, given any A ∈ 𝕃(ℍ), it is natural to ask when 
the functions ⟨ , ⟩A and ‖ ⋅ ‖A, defined as above, are an inner product and a norm on 
ℍ, respectively. We explore this question and some related topics in the first part 
of our main results. We refer the readers to [1, 4, 7, 11] for some more interesting 
results in this direction.

Given a Hilbert space (ℍ, ‖ ⋅ ‖) and a positive A ∈ 𝕃(ℍ), it is clear that 
ker‖ ⋅ ‖A = {x ∈ ℍ ∶ ‖x‖A = 0} is a closed linear subspace of ℍ . Then there is a 
closed linear subspace W ⊆ ℍ such that W⊥ker‖ ⋅ ‖A and ℍ = W + ker‖ ⋅ ‖A. Let 
P be the linear projection on W such that kerP = ker‖ ⋅ ‖A. Then it follows from 
[17] that ‖x‖A = ‖Px‖A. In other words, the restriction of ‖ ⋅ ‖A to the subspace W 
is indeed a norm which satisfies the parallelogram property and so (W, ‖ ⋅ ‖A) is an 
inner product space. The investigations for the space ℍ equipped with the seminorm 
‖ ⋅ ‖A are very closely connected to the investigations for the inner product space 
(W, ‖ ⋅ ‖A). Furthermore, we consider A−bounded linear operator T ∶ ℍ ⟶ ℍ. 
Next, we define linear operator T̂ ∶ W ⟶ W by T̂(w) ∶= T(w). Now, it is very 
easy to see that we can think of the A−norm on 𝕃(ℍ) as the classical operator norm 
in the operator space �(W) . Of course, in this case, W is equipped with the norm 
‖ ⋅ ‖A ∶ W ⟶ [0,∞). Recently, Zamani [18] investigated the orthogonality relation 



Page 3 of 12 17Orthogonality and norm attainment of operators in semi-Hilbertian spaces

induced by a positive linear operator on a Hilbert space and obtained some interest-
ing results. In particular, he generalized Theorem 1.1 of [5], also known as the Bha-
tia-S̆emrl Theorem, that characterizes the Birkhoff-James orthogonality of matrices 
on Euclidean spaces. Let us now recall some relevant definitions from [2] and [18].

Definition 1.1 Let ℍ be a Hilbert space. Let A ∈ 𝕃(ℍ) be positive. An element x ∈ ℍ 
is said to be A−orthogonal to an element y ∈ ℍ, denoted by x⊥Ay, if ⟨x, y⟩A = 0.

Note that if A = I , then the above definition coincides with the usual notion of 
orthogonality in Hilbert spaces.

Let BA1∕2(ℍ) =
�
T ∈ 𝕃(ℍ) ∶ ∃ c > 0 such that ‖Tx‖A ≤ c‖x‖A ∀x ∈ ℍ

�
 . The A−

norm of T ∈ BA1∕2(ℍ) is given as follows:

An operator T ∈ 𝕃(ℍ) is said to be A−bounded if T ∈ BA1∕2(ℍ).

Definition 1.2 T ∈ BA1∕2(ℍ) is said to be A−Birkhoff–James orthogonal to 
S ∈ BA1∕2(ℍ), denoted by T⊥B

A
S, if ‖T + �S‖A ≥ ‖T‖A for all � ∈ ℂ.

Note that the above definition gives a generalization of the Birkhoff–James 
orthogonality of bounded linear operators on a Hilbert space. For more information 
on Birkhoff–James orthogonality in normed linear spaces, we refer the readers to the 
pioneering articles [6, 9]. Birkhoff–James orthogonality of bounded linear operators 
and some related applications have been explored in recent times in [5, 12, 13, 15, 
16]. We also make use of the following notations:

Given a positive operator A ∈ 𝕃(ℍ), let B
ℍ(A) and S

ℍ(A) denote the A−unit ball 
and the A−unit sphere of ℍ, respectively, i.e., B

ℍ(A) =

�
x ∈ ℍ ∶ ‖x‖A ≤ 1

�
 and 

S
ℍ(A) =

�
x ∈ ℍ ∶ ‖x‖A = 1

�
 . For any T ∈ BA1∕2(ℍ), the A−norm attainment set MT

A
 

of T was considered in [18]:

We study the structure of the A−norm attainment set of an A−bounded operator 
T ∈ 𝕃(ℍ) and also explore the corresponding compactness property. As the most 
important result of the present article, we obtain a complete characterization of the 
A−Birkhoff–James orthogonality of compact and A−bounded operators on ℍ under 
an additional condition. This extends the Bhatia–S̆emrl Theorem to the setting of 
semi-Hilbertian spaces, induced by a positive operator.

2  Main Results

We begin this section with a characterization of the norm-generating operators on a 
Hilbert space.

‖T‖A = sup
x∈ℍ,‖x‖A=1

‖Tx‖A = sup
�
�⟨Tx, y⟩A� ∶ x, y ∈ ℍ, ‖x‖A = ‖y‖A = 1

�
.

MT
A
=

�
x ∈ ℍ ∶ ‖x‖A = 1, ‖Tx‖A = ‖T‖A

�
.
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Theorem 2.1 Let ℍ be a Hilbert space and let A ∈ 𝕃(ℍ). Then ‖ ⋅ ‖A is a norm on ℍ 
if and only if ⟨Ax, x⟩ > 0 for all x ∈ ℍ ⧵ {�}.

Proof As the necessary part of the theorem follows trivially, we only prove the suf-
ficient part.

Clearly, ‖x + y‖2
A
= ‖x‖2

A
+ ‖y‖2

A
+ ⟨Ax, y⟩ + ⟨Ay, x⟩. 

This shows that ⟨Ax, y⟩ + ⟨Ay, x⟩ is real. It is easy to see that 
Re⟨Ax, y⟩ + Re⟨Ay, x⟩ = ⟨(ReA)x, y⟩ + ⟨(ReA)y, x⟩, where ReA =

1

2
(A + A∗

).

Clearly, ‖ ⋅ ‖A trivially satisfies all the properties for being a norm, except possi-
bly the triangle inequality. The triangle inequality is satisfied if for all x, y ∈ ℍ,

Note that for all 
x ∈ ℍ, ⟨ReAx, x⟩ = 1

2
(⟨Ax, x⟩ + ⟨A∗x, x⟩⟩) = 1

2
(⟨Ax, x⟩ + ⟨Ax, x⟩) = ⟨Ax, x⟩ . This 

proves that ReA is positive definite and so there exists a unique positive operator B 
on ℍ such that ReA = B2. Now, we have

Similarly, we can show that �⟨(ReA)y, x⟩� ≤ ⟨Ax, x⟩1∕2⟨Ay, y⟩1∕2. Therefore,

This completes the proof of the fact that ‖ ⋅ ‖A is a norm on ℍ.   ◻

As mentioned in the introduction, if A is a positive definite operator on a Hilbert 
space ℍ, then A generates an inner product ⟨ , ⟩A on ℍ defined as ⟨x, y⟩A = ⟨Ax, y⟩ for 
all x, y ∈ ℍ. On the other hand, suppose that A ∈ 𝕃(ℍ) is such that ⟨x, y⟩A is an inner 
product on ℍ. From the conjugate-symmetry of inner product, it follows that A must 
be self adjoint and from the positive definiteness of inner product, it follows that A 
must be positive definite. This is mentioned in the following proposition:

Proposition 2.1 Let ℍ be a Hilbert space and let A ∈ 𝕃(ℍ). Then ⟨ , ⟩A is an inner 
product on ℍ if and only if A is positive definite.

Remark 2.1 In view of the above theorem, there is a subtle difference in the descrip-
tion of the norm generating operators, depending on whether the underlying Hilbert 
space is complex or real. This is illustrated in the following two points: 

‖x + y‖A ≤‖x‖A + ‖y‖A
i.e., if , ⟨A(x + y), x + y⟩ ≤⟨Ax, x⟩ + ⟨Ay, y⟩ + 2⟨Ax, x⟩1∕2⟨Ay, y⟩1∕2

i.e., if , ⟨Ax, y⟩ + ⟨Ay, x⟩ ≤2⟨Ax, x⟩1∕2⟨Ay, y⟩1∕2

i.e., if ,Re⟨Ax, y⟩ + Re⟨Ay, x⟩ ≤2⟨Ax, x⟩1∕2⟨Ay, y⟩1∕2

i.e., if , ⟨(ReA)x, y⟩ + ⟨(ReA)y, x⟩ ≤2⟨Ax, x⟩1∕2⟨Ay, y⟩1∕2.

�⟨(ReA)x, y⟩� =�⟨B2x, y⟩� = �⟨Bx,By⟩� = ‖Bx‖‖By‖
=⟨B2x, x⟩1∕2⟨B2y, y⟩1∕2 = ⟨(ReA)x, x⟩1∕2⟨(ReA)y, y⟩1∕2

=⟨Ax, x⟩1∕2⟨Ay, y⟩1∕2.

⟨(ReA)x, y⟩ + ⟨(ReA)y, x⟩ ≤ �⟨(ReA)x, y⟩ + ⟨(ReA)y, x⟩� ≤ 2⟨Ax, x⟩1∕2⟨Ay, y⟩1∕2.
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1. If ℍ is a complex Hilbert space then ⟨ , ⟩A and ‖ ⋅ ‖A are inner product and norm on 
ℍ , respectively, if and only if A is a positive definite operator on ℍ . This is because 
of the well-known fact that in case of a complex Hilbert space ℍ, if A ∈ 𝕃(ℍ) is 
such that ⟨Ax, x⟩ ≥ 0 for all x ∈ ℍ, then A = A∗.

2. If ℍ is real, then there may exist A ∈ 𝕃(ℍ) such that A ≠ A∗ (and consequently, 
A is not positive definite) but ‖ ⋅ ‖A is a norm on ℍ. As for example, consider the 
operator A on the Hilbert space �2

2
(ℝ) defined as A(x, y) = (x − y, x + y) for all 

(x, y) ∈ ℝ
2. Then it is easy to see that ⟨Ax, x⟩ > 0 for all x ≠ � but A ≠ A∗ . A gen-

erates a norm given by ‖x‖A = ⟨Ax, x⟩1∕2 on �2
2
(ℝ) but ⟨x, y⟩A = ⟨Ax, y⟩ is not an 

inner product on �2
2
(ℝ) . The inner product that induces the norm ‖ ⋅ ‖A is given by 

⟨(ReA)x, y⟩ . In fact, given any A ∈ 𝕃(ℍ) with ⟨Ax, x⟩ > 0 for all x ≠ �, the positive 
definite operator ReA always generates an inner product ⟨x, y⟩ReA = ⟨(ReA)x, y⟩ 
which induces the norm ‖ ⋅ ‖A.

Our next theorem guarantees that under a suitable condition, given any inner 
product on an infinite-dimensional separable Hilbert space ℍ , there exists a unique 
positive definite operator that generates the given inner product.

Theorem 2.2 Let (ℍ, ⟨ , ⟩) be a separable Hilbert space. Let ⟨ , ⟩1 be another inner 
product on ℍ. Then the following two conditions are equivalent: 

 (i) there exists a positive definite operator A on ℍ such that ⟨ , ⟩1 = ⟨ , ⟩A.
 (ii) there exists M > 0 such that ‖x‖1 ≤ M‖x‖ for all x ∈ ℍ, where ‖ ⋅ ‖1 is the norm 

induced by the inner product ⟨ , ⟩1 on ℍ.

Proof (i) ⇒ (ii) :  Clearly, ‖x‖2
1
= ⟨x, x⟩1 = ⟨x, x⟩A = ⟨Ax, x⟩ ≤ ‖A‖‖x‖2.

(ii) ⇒ (i)  :   Since ‖x‖1 ≤ M‖x‖ for all x ∈ ℍ , it follows that ℍ is a separa-
ble inner product space with respect to ⟨ , ⟩1. Let (H, ⟨ , ⟩H) be the completion 
of (ℍ, ⟨ , ⟩1). Clearly, ⟨x, y⟩H = ⟨x, y⟩1 for all x, y ∈ ℍ. Since ℍ is separable with 
respect to ⟨ , ⟩1, it is easy to deduce that H is separable with respect to ⟨ , ⟩H. 
Let B = {e1, e2, e3,…} be an orthonormal basis of ℍ with respect to ⟨ , ⟩ and let 
B1 = {f1, f2, f3,…} be an orthonormal basis of H with respect to ⟨ , ⟩H . Consider 
the map T̃ ∶ (H, ⟨ , ⟩H) → (ℍ, ⟨ , ⟩) defined by T̃(

∑
∞

i=1
aifi) =

∑
∞

i=1
aiei where 

ai ∈ 𝕂(= ℝ,ℂ) for all i ∈ ℕ. It can be verified easily that T̃  is well-defined and lin-
ear. Let T = T̃ ∣

(ℍ,⟨ , ⟩1) . It is easy to see that ⟨x, y⟩1 = ⟨Tx, Ty⟩ for all x, y ∈ ℍ . Thus 
‖Tx‖2 = ⟨x, x⟩1 ≤ M2‖x‖2. In particular, T is bounded and, therefore, the adjoint 
operator T∗

∶ (ℍ, ⟨ , ⟩) ⟶ (ℍ, ⟨ , ⟩1) exists. Let A = T∗T  . Then it is easy to see 
that A is a positive definite operator on (ℍ, ⟨ , ⟩) such that ⟨x, y⟩1 = ⟨Ax, y⟩ for all 
x, y ∈ ℍ.

The uniqueness of A follows from the fact that if B is any positive definite opera-
tor that generates the inner product ⟨ , ⟩1 then ⟨Ax, y⟩ = ⟨Bx, y⟩ for all x, y ∈ ℍ and so 
A = B.   ◻

In light of the above theorem, let us make the following two remarks:
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Remark 2.2 In case ℍ is finite-dimensional, Condition (ii) of the above theorem 
holds true automatically. Therefore, we obtain a complete description of the set of 
all inner products defined on an Euclidean space, in terms of positive definite opera-
tors on ℍ. Following the usual matricial representation of linear operators on Euclid-
ean spaces, it seems convenient to say that every positive definite matrix defines an 
inner product on �n and conversely.

Remark 2.3 We note that if ⟨ , ⟩1 is an inner product on ℍ such that Condition (ii) of 
the above theorem is satisfied, it is not necessarily true that (ℍ, ⟨ , ⟩1) is complete. 
Such an example will be constructed explicitly in the proof of Theorem 2.3 (iv).

The unit ball B
ℍ
 is convex and bounded with respect to ‖ ⋅ ‖ . Also, it is com-

pact (in the topology induced by ‖ ⋅ ‖ ) if and only ℍ is finite-dimensional. We next 
study some analogous geometric and topological properties of the A−unit ball 
B
ℍ(A) with respect to the norm ‖ ⋅ ‖ . We begin with the following proposition, the 

proof of which is omitted as it follows rather trivially from the convexity of the 
A−norm and the continuity of the inner product.

Proposition 2.2 Let ℍ be a Hilbert space and let A ∈ 𝕃(ℍ) be positive. Then B
ℍ(A) is 

convex and closed with respect to ‖ ⋅ ‖.

We would like to describe the boundedness properties of the A−unit ball and 
the A−unit sphere with respect to the norm ‖ ⋅ ‖. We require the following propo-
sition which is particularly useful in our study. The proof is omitted, as it can be 
obtained quite easily.

Proposition 2.3 Let ℍ be a Hilbert space. Let A ∈ 𝕃(ℍ) be positive. Then 
ℍ = N(A)⊕ R(A).

We describe the boundedness properties of the A−unit ball and the A−unit 
sphere in the next theorem.

Theorem 2.3 Let ℍ be a Hilbert space and let A ∈ 𝕃(ℍ) be positive. Then the follow-
ing hold true: 

 (i) If N(A) ≠ {�} , then both S
ℍ(A) and B

ℍ(A) are unbounded with respect to ‖ ⋅ ‖.
 (ii) If ℍ is finite-dimensional, then B

ℍ(A) ∩ R(A)(= B
ℍ(A) ∩ R(A)) is bounded with 

respect to ‖ ⋅ ‖.
 (iii) If H is finite-dimensional, then B

ℍ(A) is bounded with respect to ‖ ⋅ ‖ if and only 
if N(A) = {�}.

 (iv) Both (ii) and (iii) fail to hold if ℍ is infinite-dimensional.

Proof We first observe that
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and so it follows that ‖x‖A = 0 if and only if x ∈ N(A) : 

 (i) Let x ∈ N(A) be such that x ≠ �. Then ‖x‖A = 0 and so ‖�x‖A = 0 for 
all � ∈ 𝕂(= ℝ,ℂ). Next we claim that if z ∈ S

ℍ(A), then z + �x ∈ S
ℍ(A) 

for all � ∈ 𝕂(= ℝ,ℂ). Clearly, ‖z + �x‖A ≤ ‖z‖A + ���‖x‖A = 1. Again, 
‖z + �x‖A ≥ ‖z‖A − ���‖x‖A = 1. Thus z + �x ∈ S

ℍ(A) for all � ∈ 𝕂(= ℝ,ℂ). 
Therefore, S

ℍ(A) is unbounded with respect to ‖ ⋅ ‖ and so B
ℍ(A) is also 

unbounded with respect to ‖ ⋅ ‖.
 (ii) Suppose on the contrary that B

ℍ(A) ∩ R(A) is unbounded with respect to ‖ ⋅ ‖ . 
Then for each n ∈ ℕ , there exists vn ∈ B

ℍ(A) ∩ R(A) such that ‖vn‖ ≥ n . Let 
wn =

vn

‖vn‖
 . Then ‖wn‖ = 1 and ‖wn‖A ≤

1

n
 . Clearly, {wn} ⊆ S

ℍ
 . Since ℍ is finite-

dimensional, S
ℍ
 is compact. Without loss of generality we may assume that 

wn ⟶ w, where w ∈ S
ℍ
 . By Proposition 2.2, B

ℍ(A) ∩ R(A) is a closed set with 
respect to ‖ ⋅ ‖ and hence w ∈ B

ℍ(A) ∩ R(A) . It is easy to check that 
‖wn‖A ⟶ ‖w‖A . Therefore, ‖w‖A = 0 and so w ∈ N(A). This shows that 
w ∈ N(A) ∩ R(A) and so w = � , a contradiction to our assumption that w ∈ S

ℍ
 . 

Therefore, B
ℍ(A) ∩ R(A) is bounded with respect to ‖ ⋅ ‖.

 (iii) As ℍ is finite-dimensional, ℍ = N(A)⊕ R(A). Therefore, any x ∈ B
ℍ(A) can be 

uniquely written as x = u + v, where u ∈ B
ℍ(A) ∩ N(A) and v ∈ B

ℍ(A) ∩ R(A). 
From (ii), it follows that B

ℍ(A) is bounded with respect to ‖ ⋅ ‖ if and only 
if B

ℍ(A) ∩ N(A) is bounded with respect to ‖ ⋅ ‖ . From (i), it follows that 
N(A) = {�} if B

ℍ(A) is bounded with respect to ‖ ⋅ ‖ . On the other hand, if 
N(A) = {�} then B

ℍ(A) = B
ℍ(A) ∩ R(A) is bounded with respect to ‖ ⋅ ‖ by apply-

ing (ii).
 (iv) Consider the Hilber t space �2. Let A ∈ �(�2) be defined by 

A(x1, x2, x3,…) = (x1,
x2

2
,
x3

3
,…), where (x1, x2, x3,…) ∈ �2. It is easy to check 

that A is positive definite and N(A) = {�}. Therefore, �2 = R(A)(≠ R(A)) . Con-
sider the sequence {vn} ⊆ �2 where {vn} = {

√
nen}, where {en} is the usual 

orthonormal basis of �2. Clearly, ‖vn‖2A = ⟨Avn, vn⟩ = 1 for each n ∈ ℕ but 
‖vn‖ =

√
n for each n ∈ ℕ.

  ◻

In view of the above theorem, we make the following remark on the geometry of 
semi-Hilbertian spaces.

Remark 2.4 Let A be a positive operator on a Hilbert space ℍ. If ‖x‖A = 0 for some 
x ≠ �, then by (i) of Theorem 2.3, the A−unit sphere of ℍ contains a straight line. In 
other words, the semi-normed space (ℍ, ‖ ⋅ ‖A) is not strictly convex whenever A is 
not positive definite.

There is another nice way to obtain Remark 2.4. Namely, now suppose that A 
is positive, but not positive definite. Since ‖ ⋅ ‖A is a seminorm, it follows from 

‖Ax‖2 = ⟨Ax,Ax⟩ = ⟨A2x, x⟩ = ⟨Ax, x⟩A
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Theorem 3.2 from [17] that any x ∈ B
ℍ(A) can be uniquely written as x = u + v , 

where u ∈ BW and v ∈ ker‖ ⋅ ‖A. Note that BW is the closed unit ball in the inner 
product space (W, ‖ ⋅ ‖A) , and ker‖ ⋅ ‖A is a linear subspace. Therefore, it is easy 
to see that A−unit sphere of ℍ contains a straight line and the seminormed space 
(ℍ, ‖ ⋅ ‖A) is not strictly convex whenever A is not positive definite.

In Theorem  2.2 of [14], the authors studied the norm attainment sets of 
bounded linear operators on a Hilbert space. In particular, it was proved that in an 
inner product space ℍ , for any operator T ∈ 𝕃(ℍ), the norm attainment set MT is 
either the empty set �, or, MT is the unit sphere of some subspace of ℍ. Our next 
result generalizes this, in case of A−bounded operators.

Theorem 2.4 Let ℍ be a Hilbert space. Let A ∈ 𝕃(ℍ) be positive and let T ∈ BA1∕2(ℍ). 
Then either MT

A
= � or MT

A
∩ R(A) is the A−unit sphere of some subspace of ℍ.

Proof If MT
A
= �, then we have nothing to prove. Let us assume that MT

A
≠ �. 

Let x ∈ MT
A
. As ℍ = N(A)⊕ R(A), x can be uniquely written as x = u + v, where 

u ∈ N(A) and v ∈ R(A). Hence ‖u‖A = 0 and ‖x‖A = ‖v‖A. As T ∈ BA1∕2(ℍ), it fol-
lows that ‖Tu‖A = 0 and, therefore, ‖Tx‖A = ‖Tv‖A = ‖T‖A. This proves that 
MT

A
∩ R(A) ≠ �.

To prove that MT
A
∩ R(A) is the A− unit sphere of some subspace of ℍ, it is enough 

to show that �1e1±�2e2

‖�1e1±�2e2‖A
∈ MT

A
∩ R(A) , whenever e1, e2 ∈ MT

A
∩ R(A) and 

�1, �2 ∈ 𝕂(= ℝ, ℂ). Let e1, e2 ∈ MT
A
∩ R(A), then ‖Te1‖A = ‖Te2‖A = ‖T‖A and 

‖e1‖A = ‖e2‖A = 1. First we claim that ‖ ⋅ ‖A satisfies the parallelogram law for all 
x, y ∈ ℍ. Let x, y ∈ ℍ. Then we have

This proves our claim. Therefore,

Hence the above inequality is actually an equality. Since 
‖T(�1e1 ± �2e2)‖A ≤ ‖T‖A‖�1e1 ± �2e2‖A, it follows that

This establishes the theorem.   ◻

‖x + y‖2
A
+ ‖x − y‖2

A
=⟨x + y, x + y⟩A + ⟨x − y, x − y⟩A
=⟨A(x + y), x + y⟩ + ⟨A(x − y), x − y⟩
=2(⟨Ax, x⟩ + ⟨Ay, y⟩)
=2(‖x‖2

A
+ ‖y‖2

A
).

2(��1�2 + ��2�2)‖T‖2A =2(‖�1Te1‖2A + ‖�2Te2‖2A)
=‖�1Te1 + �2Te2‖2A + ‖�1Te1 − �2Te2‖2A
=‖T(�1e1 + �2e2)‖2A + ‖T(�1e1 − �2e2)‖2A
≤‖T‖2

A
(‖�1e1 + �2e2‖2A + ‖�1e1 − �2e2‖2A)

=2(��1�2 + ��2�2)‖T‖2A.

‖T(�1e1 ± �2e2)‖A = ‖T‖A‖�1e1 ± �2e2‖A.
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In the next theorem we study the compactness property of MT
A
∩ R(A).

Theorem 2.5 Let ℍ be a Hilbert space and let A ∈ 𝕃(ℍ) be a positive operator such 
that B

ℍ(A) ∩ R(A) is bounded with respect to ‖ ⋅ ‖ . Let T ∈ 𝕂(ℍ) ∩ BA1∕2(ℍ). Then 
MT

A
∩ R(A) is compact with respect to ‖ ⋅ ‖.

Proof Clearly, R(A) is a Hilbert space with respect to ‖ ⋅ ‖. It is easy to see that A is 
positive definite on R(A). Therefore, ‖ ⋅ ‖A is a norm on R(A). We claim that ‖ ⋅ ‖A 
and ‖ ⋅ ‖ are equivalent norms on R(A). Clearly, 1√

‖A‖
‖x‖A ≤ ‖x‖ for all x ∈ ℍ . Let 

x ∈ R(A) . Then x

‖x‖A
∈ B

ℍ(A) ∩ R(A) . Since B
ℍ(A) ∩ R(A) is bounded, there exists 

M > 0 such that ‖z‖ ≤ M for all z ∈ B
ℍ(A) ∩ R(A) . Therefore, ‖x‖

‖x‖A
≤ M . Thus 

1√
‖A‖

‖x‖A ≤ ‖x‖ ≤ M‖x‖A for all x ∈ R(A) . Thus our claim is established. There-
fore, R(A) is a Hilbert space with respect to ‖ ⋅ ‖A. Next, let {vn} be a sequence in 
MT

A
∩ R(A) . We show that {vn} has a convergent subsequence in MT

A
∩ R(A) with 

respect to ‖ ⋅ ‖ . Since ℍ is reflexive and B
ℍ(A) ∩ R(A) is closed, convex and bounded 

with respect to ‖ ⋅ ‖ , it follows that B
ℍ(A) ∩ R(A) is weakly compact with respect to 

‖ ⋅ ‖ . Thus the sequence {vn} has a weakly convergent subsequence {vnk} with respect 
to ‖ ⋅ ‖. Suppose vnk ⇀ v for some v ∈ B

ℍ(A) ∩ R(A) with respect to ‖ ⋅ ‖ . Since 
T ∈ 𝕂(ℍ), it follows that Tvnk ⟶ Tv with respect to ‖ ⋅ ‖ . It is easy to see that

As ‖v‖A ≤ 1, we conclude that v ∈ MT
A
∩ R(A) and 1 = ‖vnk‖A ⟶ ‖v‖A = 1. 

As vnk ⇀ v with respect to ‖ ⋅ ‖, clearly, vnk ⇀ v with respect to ‖ ⋅ ‖A. Since 
(R(A), ⟨ , ⟩A) is a Hilbert space, it follows that vnk ⟶ v with respect to ‖ ⋅ ‖A. As 
‖ ⋅ ‖A and ‖ ⋅ ‖ are equivalent norms on R(A) , therefore, vnk ⟶ v with respect to 
‖ ⋅ ‖. This establishes the theorem.   ◻

Remark 2.5 Note that, MT
A
∩ R(A) is also compact with respect to ‖ ⋅ ‖A in R(A) , due 

to the fact that ‖ ⋅ ‖A and ‖ ⋅ ‖ are equivalent norms on R(A).

In [18], the author has characterized the A−Birkhoff–James orthogonality of 
A−bounded operators on a Hilbert space with the help of A−norming sequences. 
In the finite-dimensional case, the Bhatia-S̆emrl Theorem follows from the said 
characterization, as shown in Theorem 2.4 of [18]. The main difference between 
the characterizations of A−Birkhoff–James orthogonality of operators in the 
infinite-dimensional case and the finite-dimensional case is that the approximate 
orthogonality of the images of norming sequences in the former case can be 
strengthened to the exact orthogonality of the images of a norming vector in the 
later case. For the convenience of the readers, let us mention the relevant results 
from [18] and [5].

Theorem 2.6 (Zamani, Theorem 2.2 of [18]). Let T , S ∈ BA1∕2 (ℍ). Then the following 
conditions are equivalent: 

‖T‖2
A
= lim

k→∞

‖Tvnk‖
2
A
= lim

k→∞

⟨ATvnk , Tvnk⟩ = ⟨ATv, Tv⟩ = ‖Tv‖2
A
.
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 (i) there exists a sequence of A−unit vectors {xn} in ℍ such that
   limn→∞

‖Txn‖A = ‖T‖A and limn→∞
⟨Txn, Sxn⟩A = 0.

 (ii) T⊥B
A
S.

Theorem 2.7 (Bhatia and S̆emrl, Theorem 1.1 of [5]) A matrix A is orthogonal to 
a matrix B if and only if there exists a unit vector x ∈ ℍ such that ‖Ax‖ = ‖A‖ and 
⟨Ax,Bx⟩ = 0.

In our next theorem, we show that under certain additional conditions, the said 
strengthening of the A−Birkhoff–James orthogonality of A−bounded operators 
can be preserved even in the infinite-dimensional case.

Theorem  2.8 Let ℍ be a Hilbert space and let A ∈ 𝕃(ℍ) be positive such that 
B
ℍ(A) ∩ R(A) is bounded with respect to ‖ ⋅ ‖. Let T , S ∈ 𝕂(ℍ) ∩ BA1∕2(ℍ). Then T⊥B

A
S 

if and only if there exists v ∈ MT
A
 such that Tv⊥ASv.

Proof The sufficient part of the theorem follows easily. Indeed, suppose that there 
exists v ∈ MT

A
 such that Tv⊥ASv. Then

Let us prove the necessary part of the theorem. By Theorem 2.2 of [18], there exists 
a sequence {xn} ⊆ S

ℍ(A) such that

Since ℍ = N(A)⊕ R(A) , it follows that xn = un + vn for each 
n ∈ ℕ , where un ∈ N(A) and vn ∈ R(A). Clearly, ‖un‖A = 0 for all 
n ∈ ℕ . Thus ‖xn‖A = ‖vn + un‖A ≤ ‖vn‖A + ‖un‖A = ‖vn‖A . Again, 
‖xn‖A = ‖vn + un‖A ≥ ‖vn‖A − ‖un‖A = ‖vn‖A . Therefore, ‖xn‖A = ‖vn‖A for each 
n ∈ ℕ. As {xn} ⊆ S

ℍ(A) , we conclude that {vn} ⊆ S
ℍ(A) ∩ R(A). Since T , S ∈ BA1∕2 (ℍ) , 

‖Tun‖A = ‖Sun‖A = 0 for all n ∈ ℕ . Hence ‖Txn‖A = ‖Tvn‖A and ‖Sxn‖A = ‖Svn‖A 
for each n ∈ ℕ. Since ℍ is reflexive and B

ℍ(A) ∩ R(A) is closed, convex and bounded 
with respect to ‖ ⋅ ‖, therefore, B

ℍ(A) ∩ R(A) is weakly compact with respect to 
‖ ⋅ ‖. Thus the sequence {vn} has a weakly convergent subsequence. Without loss 
of generality we may assume that vn ⇀ v with respect to ‖ ⋅ ‖ on ℍ , for some 
v ∈ B

ℍ(A) ∩ R(A). Since T , S ∈ 𝕂(ℍ), it follows that Tvn ⟶ Tv and Svn ⟶ Sv with 
respect to ‖ ⋅ ‖ in ℍ . Therefore,

As ‖v‖A ≤ 1, we conclude that v ∈ MT
A
∩ R(A).

‖T + �S‖A ≥‖Tv + �Sv‖A
≥‖Tv‖A
=‖T‖A for all � ∈ 𝕂(= ℝ, ℂ).

lim
n→∞

‖Txn‖A = ‖T‖A and lim
n→∞

⟨Txn, Sxn⟩A = 0.

‖T‖2
A
= lim

n→∞

‖Txn‖2A = lim
n→∞

‖Tvn‖2A
= lim

n→∞

⟨ATvn, Tvn⟩ = ‖Tv‖2
A
.
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Next we show that Tv⊥ASv. As ‖Tun‖A = ‖Sun‖A = 0, it is immediate that 
Tun, Sun ∈ N(A) for all n ∈ ℕ. Since A is positive, it follows that N(A) = N(A1∕2

). 
Hence A1∕2

(Tun) = A1∕2
(Sun) = � for all n ∈ ℕ. Therefore, we have

Thus Tv⊥ASv. This completes the proof of the theorem.   ◻

We end this article with the following closing remark:

Remark 2.6 Note that in Theorem 2.8, if ℍ is finite-dimensional and A = I, then the 
Bhatia-S̆emrl Theorem (Theorem 1.1 of [5]) follows immediately. In particular, the 
finite-dimensional Bhatia-S̆emrl Theorem can be extended verbatim to the infinite-
dimensional setting of semi-Hilbertian spaces, provided certain additional condi-
tions are satisfied. We further observe that Theorem 2.4 of [18] follows as a cor-
ollary to Theorem 2.8, since in a finite-dimensional Hilbert space, B

ℍ(A) ∩ R(A) is 
bounded with respect to ‖ ⋅ ‖ and every linear operator is compact.
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