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In this paper we investigate the Lp boundedness of the 
lacunary maximal function M lac

Hn associated to the spherical 
means Arf taken over Koranyi spheres on the Heisenberg 
group. Closely following an approach used by M. Lacey in the 
Euclidean case, we obtain sparse bounds for these maximal 
functions leading to new unweighted and weighted estimates. 
The key ingredients in the proof are the Lp improving 
property of the operator Arf and a continuity property of 
the difference Arf − τyArf , where τyf(x) = f(xy−1) is the 
right translation operator.
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1. Introduction and the main results

The study of spherical means has received considerable attention in the last few 
decades. In 1976, Stein first considered the spherical maximal function on Rn defined by
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Mf(x) = sup
r>0

|f ∗ μr(x)| = sup
r>0

∣∣∣ ∫
|y|=r

f(x− y)dμr(y)
∣∣∣

where μr is the normalised measure on the Euclidean sphere of radius r. In [18], for 
n ≥ 3 he proved that

‖Mf‖p ≤ C‖f‖p if and only if p >
n

n− 1 .

Later Cowling-Mauceri [7] revisited this and proved Stein’s result using completely dif-
ferent arguments. In 1986, Bourgain [3] settled the case n = 2. On the other hand, as 
proved by C. P. Calderon [4], the lacunary spherical maximal function

Mlacf(x) = sup
j∈Z

|f ∗ μ2j (x)|

turned out to be bounded on Lp(Rn) for all 1 < p < ∞. Recently, M. Lacey has come 
up with a new idea to prove these two results and much more. In [13] he has obtained 
sparse bounds for both M and Mlac leading to new weighted norm estimates.

Our aim in this paper is to prove sparse bounds for the lacunary spherical maximal 
functions on the Heisenberg group. Recall that the Heisenberg group Hn := Cn × R is 
equipped with the group operation

(z, t).(w, s) :=
(
z + w, t + s + 1

2�(z.w̄)
)
, ∀(z, t), (w, s) ∈ Hn.

On this group, for every r > 0, we have a family of non-isotropic dilations defined by 
δr(z, t) := (rz, r2t), ∀(z, t) ∈ Hn These δr are automorphisms of the group Hn. The 
Koranyi norm of (z, t) in Hn is defined by

|(z, t)| := (|z|4 + 16t2) 1
4

and it is easy to see that |δr(z, t)| = r|(z, t)|, i.e., the norm is homogeneous of degree 1 
relative to these non-isotropic dilations. The Haar measure on Hn is simply the Lebesgue 
measure dzdt. As in the Euclidean case, this Haar measure has a polar decomposition. 
Let SK := {(z, t) ∈ Hn : |(z, t)| = 1} be the unit sphere with respect to the Koranyi 
norm. Then there is a unique Radon measure σ on SK such that for every integrable 
function on Hn we have

∫
Hn

f(z, t)dzdt =
∞∫
0

∫
SK

f(δrω)rQ−1dσ(ω)dr (1.1)

where Q = (2n + 2) is known as the homogeneous dimension of Hn.
Let us fix some more notations first. Given f on Hn, its dilation δrf is simply defined 

by δrf(z, t) = f(δr(z, t)), ∀(z, t) ∈ Hn. More generally, if U is a distribution on Hn, 
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then its dilation δrU is defined by 〈δrU, φ〉 := 〈U, δrφ〉, ∀φ ∈ C∞
c (Hn). We let σr = δrσ

and define the spherical mean value operator Ar by

Arf(x) = f ∗ σr(x) =
∫

|y|=1

f(x.δry−1)dσ(y).

The associated spherical maximal function MHnf(x) = supr>0 |Arf(x)| was studied by 
M. Cowling in [5] where he established the following result.

Theorem 1.1. The spherical maximal function MHn is bounded on Lp(Hn) for all p >
2n+1
2n .

This is the Heisenberg analogue of Stein’s theorem on Rn but Cowling used an entirely 
different approach in proving this. He used a very clever idea of expressing σr as a 
weighted integral of Riesz potentials which are easy to handle, see Theorem 3.2 below. 
Other proofs of the above theorem are also available in the literature. By adapting Stein’s 
second proof of the Euclidean case [19] (Corollary 3 in XI, section 3), Oliver Schmidt, in 
his still unpublished work [17], studied maximal functions on stratified groups associated 
to hyper-surfaces with a non vanishing rotational curvature, giving another proof of 
the above theorem of Cowling. Also in [10], using a square function argument, Fischer 
proved the boundedness of the spherical maximal operator on functions on free step two 
nilpotent Lie groups which includes the above result of Cowling.

In this paper we are interested in establishing an analogue of Calderon’s theorem for 
the Heisenberg group. Though the methods used in [4] are adaptations of the original 
idea of Stein [18], it is unlikely that a proof along similar lines is possible. This is mainly 
because the group Fourier transform of the measure σr is not known explicitly. To state 
our main result, we fix δ ∈ (0, 1/96) and let

M lac
Hnf(x) = sup

k∈Z
|Aδkf(x)|

stand for the lacunary spherical maximal function on Hn. We prove:

Theorem 1.2. Let n ≥ 2. The lacunary spherical maximal function M lac
Hn is bounded on 

Lp(Hn) for all 1 < p < ∞.

This is the analogue of Calderon’s theorem for the spherical averages on Koranyi 
spheres. In view of the work by Fischer [10], it is natural to ask if the above theorem 
can be proved in the more general context of free step two nilpotent Lie groups. For 
reasons we just mentioned before the statement of the theorem, it is going to be very 
difficult to prove such a result using spectral methods. In proving the above theorem for 
the Heisenberg group, we combine the idea of Cowling along with a recently formulated 
strategy of Lacey [13] in the Euclidean context that has turned out to be fruitful in 



4 P. Ganguly, S. Thangavelu / Journal of Functional Analysis 280 (2021) 108832
handling several maximal functions. We believe that our proof can be suitably adapted 
to handle at least the case of H-type groups, we restrain ourselves from doing so in order 
to keep the proofs elegant. We plan to take up the general case of free step two groups 
in a future work.

As mentioned above, we establish Theorem 1.2 by closely following Lacey [13]. The 
main idea of Lacey in reproving Calderon’s theorem on Rn is to establish a sparse 
domination for the spherical means. In order to do so, he required two main ingredients: 
(i) the Lp improving property and (ii) the continuity property, of the spherical means. 
These ingredients are then used to control the spherical maximal function in terms of 
certain dyadic maximal functions.

Once a sparse domination for the lacunary spherical maximal function is obtained, it 
is then a routine matter to deduce weighted and unweighted Lp bounds. Theorem 1.2, 
as well as certain weighted versions that are stated in Section 5 are easy consequences of 
the sparse bound stated in Theorem 1.3, which is the main result of this paper. In order 
to state the result we need to set up some more notation, see [13].

As in the case of Rn, there is a notion of dyadic grids on Hn, the members of which 
are called (dyadic) cubes. A collection of cubes S in Hn is said to be η-sparse if there 
are sets {ES ⊂ S : S ∈ S} which are pairwise disjoint and satisfy |ES| > η|S| for all 
S ∈ S. For any cube Q and 1 < p < ∞, we define

〈f〉Q,p :=
(

1
|Q|

∫
Q

|f(x)|pdx
)1/p

, 〈f〉Q := 1
|Q|

∫
Q

|f(x)|dx.

In the above, x = (z, t) ∈ Hn and dx = dzdt is the Lebesgue measure on Cn×R, which, 
as we have already mentioned, is the Haar measure on the Heisenberg group. Following 
Lacey [13], by the term (p, q)-sparse form we mean the following:

ΛS,p,q(f, g) =
∑
S∈S

|S|〈f〉S,p〈g〉S,q.

Theorem 1.3. Assume n ≥ 2 and fix 0 < δ < 1
96 . Let 1 < p, q < ∞ be such that ( 1

p , 
1
q )

belong to the interior of the triangle joining the points (0, 1), (1, 0) and ( 2n
2n+1 , 

2n
2n+1 ). 

Then for any pair of compactly supported bounded functions (f, g) there exists a (p, q)-
sparse form such that 〈M lac

Hnf, g〉 ≤ CΛS,p,q(f, g).

We remark that as in the Euclidean case we can take any δ > 0 in Theorem 1.3, in 
particular we can choose δ = 1/2. In order to prove the main ingredients in our case, we 
make use of the idea of Cowling along with analytic interpolation. Once we have these 
two ingredients in our hand, the method of Lacey can be adapted to the Heisenberg 
group setting to obtain sparse domination. This has been already done in a joint work 
of the second author [1] where a different kind of spherical maximal function is studied 
on the Heisenberg group.
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The spherical maximal function mentioned in the previous paragraph is associated to 
the spherical means taken over complex spheres Sr,0 = {(z, 0) ∈ Hn : |z| = r} which were 
initiated in the work of Nevo and Thangavelu. In [16], they showed that the corresponding 
maximal function is bounded on Lp(Hn) for p > 2n−1

2n−2 . Later Narayanan-Thangavelu in 
[15] and independently Müller-Seeger in [14] improved that result and proved that the 
maximal function is bounded on Lp(Hn) if and only if p > 2n

2n−1 . Recently, Bagchi et al.
[1] have proved the analogue of Calderon’s theorem for the associated lacunary spherical 
maximal function by obtaining a sparse bound as in Lacey [13].

Let μr stand for the normalised surface measure on Sr = {z ∈ Cn : |z| = r} ⊂ Cn

which can be considered as a measure on Hn. The associated spherical maximal function 
is then given by supr>0 |f∗μr(z, t)|. Even though the measure μr is more singular than σr, 
its group Fourier transform is explicitly known, given in terms of the spherical functions 
associated to the action of the unitary group U(n) on Hn. These spherical functions 
are given by Laguerre functions for which very precise estimates are available in the 
literature. Thus the spectral method turns out to be useful in studying the maximal 
function supr>0 |f ∗μr(z, t)| as can be seen from all the three works [16], [15] and [1] (see 
also [21]). Having said this, we remark that it may be interesting to see if Calderon’s 
approach can be adapted to study the lacunary maximal function associated to the 
spherical means f ∗μr. In [1] the authors were interested in proving sparse bounds which 
immediately gives Calderon’s theorem as a corollary. Consequently, they did not make 
any attempt to prove Calderon’s theorem using spectral methods. However, the spectral 
theory of the spherical means cannot be avoided completely. Even in our case, we will see 
that information on the Fourier transform of σr plays an important role in establishing 
Lp improving and continuity properties of the spherical means f ∗ σr.

We conclude the introduction by briefly describing the plan of the paper. After collect-
ing some relevant results from the harmonic analysis on Heisenberg groups in Section 2
we establish the Lp improving properties of the spherical averages in Section 3. In Sec-
tion 4 we study the continuity properties of the same. Finally in Section 5 we sketch 
the proof of the sparse domination (i.e. proof of Theorem 1.3) and deduce weighted and 
unweighted inequalities.

2. Preliminaries

2.1. Fourier transform on Hn

In this section we collect some basic results from the harmonic analysis on Heisenberg 
groups that will play important roles in the study of the spherical maximal function. 
General references for this section are Folland [11] and Thangavelu [23]. The Heisenberg 
group Hn introduced in the previous section is a nilpotent Lie group which is non-
commutative and yet with a very simple representation theory. For each non zero real 
number λ we have an infinite dimensional representation πλ realised on the Hilbert space 
L2(Rn). These are explicitly given by
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πλ(z, t)ϕ(ξ) = eiλtei(x·ξ+
1
2x·y)ϕ(ξ + y),

where z = x + iy and ϕ ∈ L2(Rn). These representations are known to be unitary 
and irreducible. Moreover, upto unitary equivalence these account for all the infinite 
dimensional irreducible unitary representations of Hn (see [11]). As the finite dimensional 
representations of Hn do not contribute to the Plancherel measure we will not describe 
them here.

The Fourier transform of a function f ∈ L1(Hn) is the operator valued function 
obtained by integrating f against πλ:

f̂(λ) =
∫
Hn

f(z, t)πλ(z, t)dzdt.

Note that f̂(λ) is a bounded linear operator on L2(Rn). It is known that when f ∈
L1 ∩ L2(Hn) its Fourier transform is actually a Hilbert-Schmidt operator and one has

∫
Hn

|f(z, t)|2dzdt = (2π)−n−1
∞∫

−∞

‖f̂(λ)‖2
HS |λ|ndλ.

The above allows us to extend the Fourier transform as a unitary operator between 
L2(Hn) and the Hilbert space of Hilbert-Schmidt operator valued functions on R which 
are square integrable with respect to the Plancherel measure dμ(λ) = (2π)−n−1|λ|ndλ.

2.2. The Heisenberg Lie algebra

We let hn stand for the Heisenberg Lie algebra consisting of left invariant vector fields 
on Hn. A basis for hn is provided by the 2n + 1 vector fields

Xj = ∂

∂xj
+ 1

2yj
∂

∂t
, Yj = ∂

∂yj
− 1

2xj
∂

∂t
, j = 1, 2, ..., n

and T = ∂
∂t . These correspond to certain one parameter subgroups of Hn. Recall that 

given such a subgroup Γ = {γ(s) : s ∈ R} one associates the left invariant vector field

Xf(g) = d

ds

∣∣
s=0f(gγ(s)).

Associated to each such X we also have a right invariant vector field X̃ defined by

X̃f(g) = d

ds

∣∣
s=0f(γ(s)g).

It then follows that any (x, y, t) ∈ Hn can be written as (x, y, t) = exp(x ·X +y ·Y + tT )
where X = (X1, ...., Xn), Y = (Y1, ...., Yn) and exp is the exponential map taking hn into 
Hn. From the above definition right invariant vector fields can be explicitly calculated
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X̃j = ∂

∂xj
− 1

2yj
∂

∂t
Ỹj = ∂

∂yj
+ 1

2xj
∂

∂t
;

they agree with the left invariant ones at the origin. The representations πλ of Hn give 
rise to the derived representations dπλ of the Lie algebra hn. These are given by

dπλ(X)ϕ = d

ds

∣∣
s=0πλ(exp sX)ϕ.

For reasonable functions f and any right invariant vector field X, it is known that

πλ(X̃f) = dπλ(X̃)πλ(f)

where dπλ is the derived representation of the Heisenberg lie algebra corresponding to πλ. 
It is also well-known that dπλ(X̃j) = iλξj and dπλ(Ỹj) = ∂

∂ξj
. Now writing Z̃j = X̃j+iỸj , 

Z̃j = X̃j − iỸj and using the above results we have

πλ(Z̃jf) = iAj(λ)πλ(f) and πλ(Z̃jf) = iA∗
j (λ)πλ(f)

where Aj(λ) and A∗
j (λ) are the annihilation and creation operators given by

Aj(λ) =
(
− ∂

∂ξj
+ iλξj

)
, A∗

j (λ) =
( ∂

∂ξj
+ iλξj

)
.

We make use of these relations in the proof of the continuity property of the spherical 
means, see Section 4.

2.3. The measure on the Koranyi sphere

Let SK = {(z, t) ∈ Hn : |(z, t)| = 1} be the Koranyi sphere of radius 1. Then it is 
well known that there is a Radon measure σ on K which gives rise to the following polar 
decomposition of the Haar measure on the Heisenberg group:

∫
Hn

f(x)dx =
∞∫
0

( ∫
SK

f(δry)dσ(y)
)
rQ−1dr

where Q = 2n +2 is known as the homogeneous dimension of Hn. For any r > 0 we define 
the measure σr = δrσ and note that it is supported on Kr = {(z, t) ∈ Hn : |(z, t)| = r}. 
We also have another polar decomposition of the Haar measure given by

∫
n

f(z, t)dzdt =
∞∫

−∞

∞∫ ( ∫
f(rω, t)dμ(ω)

)
r2n−1drdt
H 0 |ω|=1
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where μ is the surface measure on the unit sphere in Cn. If we let μr stand for the 
surface measure on the sphere Sr = {(z, 0) ∈ Hn : |z| = r} and δt for the Dirac measure 
on R supported at the point t then the measure μr,t = μr ∗ δt is supported on the set 
Sr,t = {(z, t) ∈ Hn : |z| = r}. The measure σr can be expressed in terms of the measures 
μr,t as follows (see Faraut-Harzallah [9]):

σr =
Γ
(
n+1

2
)

√
πΓ

(
n
2
)

π/2∫
−π/2

μr
√

cos θ, 14 r2 sin θ (cos θ)n−1dθ.

2.4. Fourier transforms of radial measures

The unitary group U(n) has a natural action on Hn given by k.(z, t) = (k.z, t), k ∈
U(n) which induces an action on functions and measures on the Heisenberg group. We 
say that a function f (measure μ) is radial if it is invariant under the action of U(n). It is 
well known that the subspace of radial functions in L1(Hn) forms a commutative Banach 
algebra under convolution. So is the space of finite radial measures on Hn. The Fourier 
transforms of such measures are functions of the Hermite operator H(λ) = −Δ +λ2|x|2.

In fact, if H(λ) =
∑∞

k=0(2k+n)|λ|Pk(λ) stands for the spectral decomposition of this 
operator, then for a radial measure μ we have

μ̂(λ) =
∞∑
k=0

Rk(λ, μ)Pk(λ).

More explicitly, Pk(λ) stands for the orthogonal projection of L2(Rn) onto the kth
eigenspace spanned by scaled Hermite functions Φλ

α for |α| = k. The coefficients Rk(λ, μ)
are explicitly given by

Rk(λ, μ) = k!(n− 1)!
(k + n− 1)!

∫
Hn

eiλtϕλ
k(z)dμ(z, t).

In the above formula, ϕλ
k are Laguerre functions of type (n − 1):

ϕλ
k(z) = Ln−1

k (1
2 |λ||z|

2)e− 1
4 |λ||z|

2

where Ln−1
k denotes the Laguerre polynomial of type (n − 1). We refer the reader to [22]

for the definition and properties. In particular, for the measures σr we have

Rk(λ, σr) =
Γ
(
n+1

2
)

√
πΓ

(
n
2
) k!(n− 1)!

(k + n− 1)!

π/2∫
ϕλ
k(r

√
cos θ)eiλ 1

4 r
2 sin θ (cos θ)n−1dθ.
−π/2
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Though the above integral cannot be evaluated in a closed form, it can be used to study 
the maximal function associated to the spherical means f ∗ σr. See the work of Fischer 
[10] where the spherical maximal function in a slightly general context has been studied.

3. Lp -improving property of the spherical means

In this section we prove certain Lp − Lq bounds for the spherical means operator 
Ar. In order to prove the required estimates we embed Ar into an analytic family of 
operators and then appeal to Stein’s analytic interpolation theorem. First we obtain 
the following representation of the measure σr as a superposition of certain operators 
which can be handled easily. In what follows we let Pt(x) = cQ t (t2 + |x|2)−Q+1

2 and 
Iγ(x) := C(Q, γ)|x|−Q+iγ , x ∈ Hn, t > 0, γ ∈ R where cQ is defined by the condition

cQ

∫
Hn

(1 + |x|2)−Q+1
2 dx = 1

and C(Q, γ) = cnΓ
(
Q−iγ

4
)2
/Γ

(
iγ
2
)
. In the proof of the next theorem which gives a 

representation of σt in terms of Pt and Iγ we make use of the following simple lemma.

Lemma 3.1. Let F (t) = cQ(1 +e2t)−Q+1
2 eQt and let F̂ (γ) stands for the Euclidean Fourier 

transform of F . Then

√
2πF̂ (γ) =

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) .

Proof. By the definition of the Fourier transform

F̂ (γ) = cQ√
2π

∞∫
−∞

(1 + e2t)−
Q+1

2 eQte−itγdt

which after the change of variables et = r leads to

√
2πF̂ (γ) = cQ

∞∫
0

(1 + r2)−
Q+1

2 rQ−1−iγdr.

Another change of variables (1 − t) = (1 + r2)−1 converts the above integral into the 
Beta integral

1
2

1∫
(1 − t)

1+iγ
2 −1t

Q−iγ
2 −1dt = 1

2
Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q+1

2
) .
0
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Consequently we obtain

√
2πF̂ (γ) = 1

2cQ
Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q+1

2
) .

Observe that, by the definition of cQ we have

1 =
√

2πF̂ (0) = 1
2cQ

Γ
(
Q
2
)
Γ
( 1

2
)

Γ
(
Q+1

2
)

which leads to the conclusion 
√

2πF̂ (γ) = Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1
2
) completing the proof. �

The following result is the analogue of a theorem by Cowling and Mauceri [7] proved 
in the context of Rn. We provide the details in the Heisenberg setting for the convenience 
of the reader. We define another constant d(Q, γ) by the requirement

d(Q, γ)C(Q, γ) = 1 −
Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) . (3.1)

Theorem 3.2. For t > 0 the following representation holds in the sense of distributions:

σt = Pt + 1
2π

∞∫
−∞

d(Q, γ)t−iγIγ dγ.

Proof. Let u ∈ C∞
c (1 − δ < |x| < 1 + δ). Then by using polar decomposition of the Haar 

measure,

∫
Hn

u(x)|x|−Q+iγdx =
∞∫
0

∫
SK

u(δrω)riγ−1dσ(ω)dr.

By defining ū(r) =
∫
SK

u(δrω)dσ(ω) we rewrite the above as

∫
Hn

u(x)|x|−Q+iγdx =
∞∫
0

ū(r)riγ−1dr

But by a change of variables we have

∞∫
0

ū(r)riγ−1dr =
∞∫

−∞

ū(et)eiγtdt.

Hence by the Fourier inversion formula we obtain
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∞∫
−∞

( ∫
Hn

u(x)|x|−Q+iγdx
)
dγ = 2πū(1) = 2π〈σ, u〉. (3.2)

We now consider the following equation:

〈
∞∫

−∞

d(Q, γ)Iγdγ, u〉 =
∫
Hn

( ∞∫
−∞

d(Q, γ)C(Q, γ)|x|−Q+iγdγ
)
u(x)dx.

Now changing the order of the integration and using (3.1) and (3.2) we get

〈
∞∫

−∞

d(Q, γ)Iγdγ, u〉 = 2π〈σ, u〉 −
∞∫

−∞

( ∫
Hn

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) u(x)|x|−Q+iγdx

)
dγ.(3.3)

Now we simplify the second integral in the above equation. Using polar decomposition 
we have

∞∫
−∞

∫
Hn

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) u(x)|x|−Q+iγdxdγ

=
∞∫

−∞

∫
SK

∞∫
0

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) riγ−1u(δrω)drdσ(ω)dγ

=
∞∫

−∞

∫
SK

∞∫
−∞

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) eiγtu(δetω)dtdσ(ω)dγ.

By Fubini’s theorem, changing the order of the integration we obtain

∞∫
−∞

∫
Hn

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) u(x)|x|−Q+iγdxdγ

=
∞∫

−∞

∫
SK

( ∞∫
−∞

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) eiγtdγ

)
u(δetω)dσ(ω)dt.

We now make use of Lemma 3.1 and obtain

∞∫
−∞

∫
SK

( ∞∫
−∞

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2 )
) eiγtdγ

)
u(δetω)dσ(ω)dt

=
√

2π
∞∫ ∫ ( ∞∫

F̂ (γ)eitγdγ
)
u(δetω)dσ(ω)dt
−∞ SK −∞
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= (2π)
∞∫

−∞

∫
SK

F (t)u(δetω)dσ(ω)dt

= (2π)cQ
∫
SK

∞∫
0

(1 + r2)−
Q+1

2 u(δrω)rQ−1drdσ(ω).

As the last integral in the above chain of equations is nothing but (2π) 
∫
Hn u(x)P1(x)dx

we have proved

∞∫
−∞

∫
Hn

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) u(x)|x|−Q+iγdxdγ = (2π)〈P1, u〉. (3.4)

Combining (3.3) and (3.4) we obtain the following equality which holds in the sense of 
distributions:

σ = P1 + (2π)−1
∞∫

−∞

d(Q, γ)Iγdγ.

As σt is obtained from σ by dilation, the theorem is proved. �
We would like to embed the spherical means Ar into an analytic family of operators. 

As in the Euclidean case, this is achieved by observing that the distributions given by 
the functions

φr,α(x) = 2 r−Q

Γ(α)

(
1 − |x|2

r2

)α−1

+
, �(α) > 0

converge to σr as α → 0. In the Euclidean case the Fourier transform of φr,α(x) is 
known explicitly, given in terms of Bessel functions, which allows immediate extension 
as a homomorphic family of distributions. In the case of the Heisenberg group we do not 
have a useful formula for the (group) Fourier transform of φr,α. Hence we make use of 
the following representation similar to the one proved for σr in the preceding theorem 
in holomorphically extending the operator f ∗ φr,α.

Proposition 3.3. Let r > 0, Re(α) > 0. Then for any Schwartz function f on Hn, we 
have

f ∗ φr,α(x) = 2 r−Q

Γ(α)

r∫
0

(
1 − t2

r2

)α−1
tQ−1f ∗ Pt(x)dt

+ 1
2π

∞∫
d(Q, γ)r−iγ Γ(Q−iγ

2 )
Γ(α + Q−iγ

2 )
f ∗ Iγ(x)dγ.
−∞
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Proof. By definition of convolution on Heisenberg group we have

f ∗ φr,α(x) =
∫
Hn

f(x.y−1)φr,α(y)dy.

As φr,α is radial, integrating in polar coordinates we get

f ∗ φr,α(x) =2 r−Q

Γ(α)

∞∫
0

( ∫
SK

f(x.δtω−1)
(
1 − t2

r2

)α−1
+ dσ(ω)

)
tQ−1 dt

=2 r−Q

Γ(α)

r∫
0

(
1 − t2

r2

)α−1
tQ−1f ∗ σt(x)dt.

Making use of the representation

f ∗ σt = f ∗ Pt + 1
2π

∞∫
−∞

d(Q, γ)t−iγf ∗ Iγdγ

proved in the previous theorem we get f ∗ φr,α = Sr,αf + Tr,αf where

Sr,αf(x) = 2 r−Q

Γ(α)

r∫
0

(
1 − t2

r2

)α−1
tQ−1f ∗ Pt(x)dt

and

Tr,αf(x) = 1
2π

∞∫
−∞

(
2 r−Q

Γ(α)

r∫
0

(
1 − t2

r2

)α−1
tQ−1t−iγdt

)
d(Q, γ)f ∗ Iγ(x)dγ.

The inner integral can be explicitly calculated:

r−Q

r∫
0

(
1 − t2

r2

)α−1
tQ−1t−iγdt = r−iγ

1∫
0

(1 − t2)α−1tQ−1−iγdt

which reduces to a beta integral and yields

2 r−Q

Γ(α)

r∫
0

(
1 − t2

r2

)α−1
tQ−1t−iγdt =

Γ(α)Γ(Q−iγ
2 )

Γ(α + Q−iγ
2 )

.

Consequently, we obtain the representation
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Tr,αf := 1
2π

∞∫
−∞

d(Q, γ)r−iγ Γ(Q−iγ
2 )

Γ(α + Q−iγ
2 )

f ∗ Iγ(x)dγ,

proving the theorem. �
If we define Ar,αf = f ∗φr,α, then by the above proposition we have Ar,αf = Sr,αf +

Tr,αf where the above holds under the assumption that �(α) > 0. But both Sr,α and 
Tr,α have analytic continuation to a larger domain of α. Indeed, Tr,α can be extended 
to the whole of C as an entire function and Sr,α extends holomorphically to the region 
�(α) > −n. Thus Ar,α is an analytic family of operators and when α goes to 0 we 
recover f ∗ σr. We remark that the Lp-improving property of this generalised spherical 
mean Ar,αf on the Euclidean space has been studied by Strichartz [20].

In order to study the Lp improving property of the spherical mean value operator 
f → f ∗σr we use analytic interpolation. It is enough to prove an Lp-improving property 
for the operator Tr,0 by studying the family Tr,α. We shall show that for α = 1 + iβ, the 
operator Tr,α is bounded from L1+δ to L∞ for any δ > 0 and for some negative value of 
�(α), it is bounded on L2(Hn). By a dilation argument, we can assume that r = 1 and 
hence we deal with Tα := T1,α. To handle the L2 boundedness, we need the following 
Fourier transform computation.

Proposition 3.4. For λ �= 0, the Heisenberg group Fourier transform of the distribution 
|.|−Q+iγ is given by

̂|.|−Q+iγ(λ) = (2π)n+1|λ|−iγ/2 Γ( iγ2 )
Γ(Q4 − iγ

4 )2

∞∑
k=0

Γ
( 2k+n

2 + 2−iγ
4

)
Γ
( 2k+n

2 + 2+iγ
4

)Pk(λ).

This has been proved in the work of Cowling and Haagerup [6]. From the above 
proposition it is now easy to prove the following:

Proposition 3.5. Assume that n ≥ 1. Then for any α ∈ C with Re(α) > −n + 1
2 we have

‖Tαf‖2 ≤ C(�(α))‖f‖2

where C(�(α)) has admissible growth.

Proof. Note that if we write a(Q, γ) := d(Q, γ)C(Q, γ) we have

Tαf(x) =
∞∫

−∞

a(Q, γ)r−iγ Γ(Q−iγ
2 )

Γ(α + Q−iγ
2 )

f ∗ |.|−Q+iγ(x)dγ.

It is therefore enough to show that
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∞∫
−∞

|a(Q, γ)|
|Γ(Q−iγ

2 )|
|Γ(α + Q−iγ

2 )|
b(Q, γ) dγ ≤ C(�(α))

where b(Q, γ) is the norm of the operator f → f ∗ | · |−Q+iγ on L2(Hn) so that we have 
the inequality

‖f ∗ | · |−Q+iγ‖2 ≤ b(Q, γ)‖f‖2.

In view of Plancherel theorem for the group Fourier transform on Hn we have the estimate

b(Q, γ) ≤ C sup
λ

‖ ̂|.|−Q+iγ(λ)‖.

Using the computation in the previous proposition, we have

‖ ̂|.|−Q+iγ(λ)‖ ≤ C
|Γ( iγ2 )|

|Γ(Q4 − iγ
4 )|2

sup
k

|Γ
( 2k+n

2 + 2−iγ
4

)
|

|Γ
( 2k+n

2 + 2+iγ
4

)
|

= C
|Γ( iγ2 )|

|Γ(Q4 − iγ
4 )|2

.

Thus we only need to show that

∞∫
−∞

|a(Q, γ)|
|Γ(Q−iγ

2 )|
|Γ(α + Q−iγ

2 )|
|Γ( iγ2 )|

|Γ(Q4 − iγ
4 )|2

dγ ≤ C(�(α)).

In order to prove the above, we first recall that

a(Q, γ) =
(
1 −

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) )

and hence a(Q, γ) has a zero at γ = 0. Consequently,

1∫
−1

|a(Q, γ)|
|γ|

|Γ(Q−iγ
2 )|

|Γ(α + Q−iγ
2 )|

|Γ(1 + iγ
2 )|

|Γ(Q4 − iγ
4 )|2

dγ ≤ C1(�(α))

as long as �(α) > −n − 1. To prove the integrability away from the origin we make use 
of the following asymptotic formula for the gamma function: for |ν| large

Γ(μ + iν) ∼
√

2π|ν|μ−1/2e−
1
2π|ν|.

So using this formula, a simple calculation shows that for |γ| ≥ 1

|a(Q, γ)|
|γ|

|Γ(Q−iγ
2 )|
Q−iγ

|Γ(1 + iγ
2 )|

Q iγ 2
≤ C2(�(α))|γ|−�(α)−n−1/2.
|Γ(α + 2 )| |Γ( 4 − 4 )|
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Therefore, it follows that

∫
|γ|≥1

|a(Q, γ)|
|γ|

|Γ(Q−iγ
2 )|

|Γ(α + Q−iγ
2 )|

|Γ(1 + iγ
2 )|

|Γ(Q4 − iγ
4 )|2

dγ ≤ C2(�(α))

for all �(α) > −n + 1/2. This completes the proof of the proposition. �
Proposition 3.6. For any β ∈ R and p > 1 we have,

‖T1+iβf‖∞ ≤ C(β)‖f‖p.

Proof. For any p > 1, to prove Lp → L∞ estimate, first note that in view of the 
Proposition 3.3, for any β ∈ R we have

T1+iβf(x) = f ∗ φ1,1+iβ(x) − 1
Γ(1 + iβ)

1∫
0

(
1 − t2

)iβ

tQ−1f ∗ Pt(x)dt. (3.5)

So for any x ∈ Hn we have

|T1+iβf(x)| ≤ |f ∗ φ1,1+iβ(x)| + 1
|Γ(1 + iβ)|

1∫
0

tQ−1|f ∗ Pt(x)|dt. (3.6)

Now see that

|f ∗ φ1,1+iβ(x)| ≤ 1
|Γ(1 + iβ)| |f | ∗ χB1(x) ≤ C(β)‖f‖p.

As we have Pt(x) = t−QP1(δ−1
t x) it follows that for any p > 1,

|f ∗ Pt(x)| ≤ t−Q‖f‖p
( ∫
Hn

P1(δ−1
t x)p

′
dx

)1/p′
≤ Ct−Q/p‖f‖p.

Consequently, the integral in (1.2) is bounded by ‖f‖p. Finally, these two estimates 
together with (3.6) we get

‖T1+iβf‖∞ ≤ C(β)‖f‖p. �
By using the above two propositions and an analytic interpolation argument, we now 

prove the following result.

Proposition 3.7. For any 0 < δ < 1, we have T0 : Lpδ(Hn) → Lqδ(Hn) where pδ =
(1 + δ)2n+1−δ and qδ = (2n + 1 − δ).
2n
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Fig. 1. Triangle L′
n, on the left side, shows the region for Lp −Lq estimates for A1. The dual triangle Ln is 

on the right.

Proof. Given δ > 0 we consider the holomorphic family of operators TL(z), where L(z) =
(−n + 1+δ

2 )(1 −z) +z. In view of the Propositions 3.5 and 3.6, Stein’s interpolation theorem 
gives

TL(u) : Lp(u)(Hn) → Lq(u)(Hn)

where 1
p(u) = 1−u

2 + u
1+δ and 1

q(u) = 1
2 (1 − u). Solving for L(u) = 0 we get u = 2n−1−δ

2n+1−δ

and simplifying we get p(u) = pδ = (1 + δ)2n+1−δ
2n and q(u) = qδ = (2n + 1 − δ). �

The following result which follows from the above end point estimates by means 
of analytic interpolation describes the Lp improving properties of the spherical mean 
operator Ar.

Theorem 3.8. Assume that n ≥ 1. Then we have

‖Arf‖q ≤ CrQ( 1
q− 1

p )‖f‖p

whenever ( 1
p , 

1
q ) lies in the interior of the triangle joining the points (0, 0), (1, 1), and 

( 2n
2n+1 , 

1
2n+1 ) as well as the straight line joining the points (0, 0), (1, 1).

Proof. An easy calculation shows that δ−1
r A1δr = Ar and hence we can assume that 

r = 1. With pδ and qδ as in the proof of Theorem 3.7, we first show that

Ar : Lpδ (Hn) → Lqδ(Hn). (3.7)

Recall that from the Proposition 3.3 we have
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f ∗ φ1,α(x) = 2
Γ(α)

1∫
0

(1 − t2)α−1tQ−1f ∗ Pt(x)dt + Tαf(x).

Note that A1 is recovered from f ∗φ1,α by letting α tend to 0. As the first term converges 
to f∗P1(x) we have the equation A1f(x) = f∗P1(x) +T0f(x). Since P1 ∈ Lp for any p ≥ 1
in view of Young’s inequality we get ‖f ∗ P1‖qδ ≤ C‖f‖pδ

. Hence using Proposition 3.7
we see that the same is true of A1. Since A1 is bounded on Lp(Hn) for any 1 ≤ p ≤ ∞
Marcinkiewicz interpolation theorem shows ‖A1f‖q ≤ ‖f‖p whenever ( 1

p , 
1
q ) belongs to 

the triangle Δδ with vertices at (0, 0), (1, 1) and ( 2n
(1+δ)(2n+1−δ) , 

1
(2n+1−δ) ). The theorem 

is proved by letting δ go to 0 (Fig. 1). �
Remark. It is possible to use the explicit formula for the measure σr stated in the pre-
liminaries to get Lp − Lq estimates for the spherical means. However, we only get the 
estimates for ( 1

p , 
1
q ) coming from a smaller triangle.

4. The continuity property

Our aim in this section is to prove the following theorem which is known as the 
continuity property of the spherical mean operator Ar. For a ∈ Hn let τaf(x) = f(xa−1)
be the right translation of f by a. We prove:

Theorem 4.1. Assume that n ≥ 2. Then for any a ∈ Hn with |a| ≤ r and for (1/p, 1/q)
lying in the interior of the triangle joining the points (0, 0), (1, 1) and ( 2n

2n+1 , 
1

2n+1 ), we 
have

‖Ar −Arτa‖Lp→Lq ≤ CrQ(1/q−1/p)|δ−1
r a|η

for some 0 < η < 1.

In view of the relation Ar − Arτa = δ−1
r (A1 − A1τδ−1

r a)δr we can assume r = 1
without loss of generality. Also in view of Riesz-Thorin interpolation theorem it is enough 
to prove the case p = 2. It is therefore natural to use the Plancherel theorem for the 
Fourier transform. Since we do not know the group Fourier transform of σr explicitly, 
we proceed as in the case of the proof of the Lp improving property by making use of 
the integral representation for the measure. For the purpose of proving continuity it is 
convenient to work with the following family rather than Ar,α used earlier.

For �(α) > 0 and r > 0 we define

Φr,α(x) := 4 r−Q

Γ(α)

(
1 − |x|4

r4

)α−1

+
, x ∈ Hn

which converges to σr as α goes to 0. Given a ∈ Hn consider the equation
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τaf ∗ Φr,α(x) − f ∗ Φr,α(x) =
∫
Hn

f(xy−1a−1)Φr,α(y)dy −
∫
Hn

f(xy−1)Φr,α(y)dy.

By making a change of variables and using fundamental theorem of calculus we can 
rewrite the above as

∫
Hn

f(xy−1)Φr,α((a)y)dy −
∫
Hn

f(xy−1)Φr,α(y)dy =
∫
Hn

( 1∫
0

d

ds
Φr,α((δsa)y)ds

)
dy.

We are thus led to calculate the derivative of Φr,α((δsa)y) which is given in the following 
lemma. Let

Xj = ∂

∂xj
+ 1

2yj
∂

∂t
, Yj = ∂

∂yj
− 1

2xj
∂

∂t
, j = 1, 2, ..., n

and T = ∂
∂t be the (2n + 1) left invariant vector fields giving an orthonormal basis for 

the Heisenberg Lie algebra hn. It then follows that any (x, y, t) ∈ Hn can be written as 
(x, y, t) = exp(x ·X + y · Y + tT ) where X = (X1, ...., Xn) and Y = (Y1, ...., Yn) and exp
is the exponential map taking hn into Hn. We can then check that

d

ds

∣∣
s=0ϕ(exp(δs(a, b, c)(x, y, t))) = (a · X̃ + b · Ỹ + cT )ϕ(x, y, t)

where X̃ = (X̃1, ...., X̃n) and Ỹ = (Ỹ1, ...., Ỹn), with

X̃j = ∂

∂xj
− 1

2yj
∂

∂t
, Ỹj = ∂

∂yj
+ 1

2xj
∂

∂t
.

We remark that these are the right invariant vector fields agreeing with the left invariant 
ones at the origin.

Lemma 4.2. Let a = (a, b, c) ∈ Hn be fixed. Then for any r > 0 and �(α) > 1 we have

τaf ∗ Φr,α(x) − f ∗ Φr,α(x) =
1∫

0

( ∫
Hn

τδsaf(xy−1)(a · X̃ + b · Ỹ + 2csT )Φr,α(y)dy
)
ds

Proof. In view of the foregoing calculations we have

τaf ∗ Φr,α(x) − f ∗ Φr,α(x) =
∫
Hn

f(xy−1)
( 1∫

0

d

ds
Φr,α((δsa)y)ds

)
dy.

We note that
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d

ds
Φr,α((δsa)y) = d

du

∣∣
u=0Φr,α((δs+ua)y),

(δs+ua)y = (ua, ub, (u2 + 2su)c)(sa, sb, s2c)y

which can also be written in the form

exp
(
u(a ·X + b · Y ) + (u2 + 2su)cT

)
(δsa)y.

Therefore, taking derivative with respect to u at 0 and making use of the calculations 
done before the lemma we get the result. �

In order to obtain a usable expression for (a · X̃ + b · Ỹ + 2csT )Φr,α(y) we make use 
of the following simple lemma.

Lemma 4.3. Let ϕ0 and ψ0 be smooth functions on R and let ϕ(x) = ϕ0(|x|4) and 

ψ(x) = ψ0(|x|4). Then for any vector field Z on Hn we have Zϕ(x) = ϕ′
0(|x|4)

ψ′
0(|x|4)

Zψ(x). In 
particular,

Z(|x|Iγ(x)) = 1
4(−Q + 1 + iγ)|x|−3Z(|x|4)Iγ(x).

Taking ϕ0(u) = 4r−Q

Γ(α−1) (1 − u4

r4 )α−1
+ and ψ0(u) = u in the above lemma we get the 

following.

Lemma 4.4. Assuming that �(α) > 1 we have

(a · X̃ + b · Ỹ + 2csT )Φr,α(y) = cr−3
(
2csψ0(x) +

n∑
j=1

(ajϕj(x) + bjψj(x))
)
Φr,α−1(x)

where ϕj and ψj are homogeneous of degree three whereas ψ0 is of degree two.

Indeed, we only have to take

ϕj(x) = X̃j(|x|4), ψj(x) = Ỹj(|x|4), ψ0(x) = T (|x|4)

and note that as X̃j and Ỹj are homogeneous of degree one and T is homogeneous of 
degree two these functions have the right homogeneity stated in the lemma.

We want to estimate the norm of Arτaf − Arf which will be obtained as the limit 
of τaf ∗ Φr,α(x) − f ∗ Φr,α(x) as α goes to 0. Since the expression in the above lemma 
is proved under the assumption that �(α) > 1 we need to holomorphically extend the 
integral

∫
g(xy−1)Φr,α−1(y)(a · X̃ + b · Ỹ + 2csT )(|y|4) dy
Hn
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for smaller values of α before passing to the limit. Assuming r = 1 we consider the 
operator

∫
Hn

f(xy−1)Φ1,α−1(y)ϕj(y)dy.

We now obtain the following representation for the above integral which allows holomor-
phic extension.

Proposition 4.5. For any α with �(α) > 1 we have

∫
Hn

f(xy−1)Φ1,α−1(y)ϕj(y)dy = Sα,jf(x) + Tα,jf(x).

Here Tα,j is entire and Sα,j has a holomorphic extension to the region �(α) > −Q−1
4 +1.

Proof. Integrating in polar coordinates we have

∫
Hn

f(xy−1)Φ1,α−1(y)ϕj(y)dy

= 4
Γ(α− 1)

1∫
0

∫
SK

f(x.δuω−1)
(
1 − u4)α−2

uQ+2ϕj(ω)dσ(ω)du

= 4
Γ(α− 1)

1∫
0

(
1 − u4)α−2

uQ+2f ∗ (ϕjσ)u(x)du

Making use of the representation of the representation of σu given in Theorem 3.2, we 
have

f ∗ (ϕjσ)u(x) = f ∗ Pu,j(x) + 1
2π

∞∫
−∞

d(Q, γ)u−iγf ∗ Iγ,j(x)dγ

where Pu,j(x) = Pu(x)ϕj(x)|x|−3 and Iγ,j(x) = Iγ(x)ϕj(x)|x|−3. Using this expression 
we have ∫

Hn

f(xy−1)Φ1,α−1(y)ϕj(y)dy = Sα,jf(x) + Tα,jf(x)

where Sα,jf is given by
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Sα,jf(x) = 4
Γ(α− 1)

1∫
0

(
1 − u4)α−2

uQ+2f ∗ Pu,j(x)du

and Tα,jf by the integral

Tα,jf(x) = 4
Γ(α− 1)

1∫
0

(
1 − u4)α−2

uQ+2
( 1

2π

∞∫
−∞

d(Q, γ)u−iγf ∗ Iγ,j(x)dγ
)
du.

Holomorphic extension of Sα,jf is a routine matter: we integrate by parts by writing

Sα,jf(x) = 1
Γ(α)

1∫
0

uQ−1f ∗ Pu,j(x) d

du

(
1 − u4)α−1

du.

Under the assumption that �(α) > 1 the above leads to the formula

Sα,jf(x) = 1
Γ(α)

1∫
0

(
1 − u4)α−1 d

du

(
uQ−1f ∗ Pu,j(x)

)
du.

The above procedure can be repeated as long as �(α) > −Q−1
4 + 1. For example, one 

more integration by parts gives

Sα,jf(x) = 1
4Γ(α + 1)

1∫
0

(
1 − u4)α d

du

(
u−3 d

du

(
uQ−1f ∗ Pu,j(x)

))
du,

valid for �(α) > 0. Having taken care of Sα,jf we now turn our attention towards the 
other term, namely Tα,jf . Interchanging the order of integration in the defining integral 
of Tα,j we get

Tα,jf(x) = 1
2π

∞∫
−∞

d(Q, γ)
( 4

Γ(α− 1)

1∫
0

(
1 − u4)α−2

uQ+2u−iγdu
)
f ∗ Iγ,j(x)dγ.

A simple calculation shows that

4
Γ(α− 1)

1∫
0

(
1 − u4)α−2

uQ+2u−iγdu =
Γ(Q+3−iγ

4 )
Γ(α− 1 + Q+3−iγ

4 )
.

Thus we have proved the representation
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Tα,jf(x) = 1
2π

∞∫
−∞

d(Q, γ)
Γ(Q+3−iγ

4 )
Γ(α− 1 + Q+3−iγ

4 )
f ∗ Iγ,j(x)dγ.

Observe that the above is well defined and holomorphic on the whole of C as 1
Γ is an 

entire function. �
As we have already remarked, in proving Theorem 4.1 we assume p = q = 2 and 

r = 1. In view of Lemma 4.2 and Proposition 4.5 we are led to show that the operators 
S0,j and T0,j are bounded on L2(Hn). Note that these operators are defined using the 
function ϕj . We also need to prove the L2 boundedness of operators defined in terms of 
ψj and ψ0. As the proofs are similar we only treat S0,j and T0,j .

The boundedness of S0,j is something very easy to check. Recall that

S0,jf(x) = 1
4

1∫
0

d

du

(
u−3 d

du

(
uQ−1f ∗ Pu,j(x)

))
du

= 1
4

1∫
0

d

du

(
(Q− 1)uQ−5f ∗ Pu,j(x) + uQ−4f ∗ d

du
Pu,j(x)

)

which under the assumption that n ≥ 2 reduces to

S0,jf(x) = 1
4
(
(Q− 1)f ∗ P1,j(x) + f ∗Kj(x)

)
where Kj(x) = d

du |u=1Pu,j(x) is an integrable function. It is now clear that S0,j is 
bounded on L2(Hn). We use the Fourier transform to prove the L2 boundedness of T0,j . 
The following formula has been proved by Cowling and Haagerup [6].

Proposition 4.6. For all 0 < �(s) < (n +1) the Fourier transform of the function |x|−Q+2s

is given by

cn|λ|−s Γ(s)
Γ(n+1−s

2 )2
∞∑
k=0

Γ(2k+n+1−s
2 )

Γ(2k+n+1+s
2 )

Pk(λ).

Proposition 4.7. For all n ≥ 2 and j = 1, 2, ..., n the operator T0,j is bounded on L2(Hn).

Proof. In view of the representation

T0,jf(x) = 1
2π

∞∫
−∞

d(Q, γ)
Γ(Q+3−iγ

4 )
Γ(Q−1−iγ

4 )
f ∗ Iγ,j(x)dγ

we only have to show that
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∞∫
−∞

|d(Q, γ)|
|Γ(Q+3−iγ

4 )|
|Γ(Q−1−iγ

4 )|
‖Iγ,j‖dγ < ∞

where ‖Iγ,j‖ stands for the norm of the operator f → f ∗ Iγ,j on L2(Hn). In order to 
estimate the norm of this operator we use Plancherel theorem for the Fourier transform, 
namely

‖f‖2
2 = (2π)−(n+1)

∞∫
−∞

‖f̂(λ)‖2
HS |λ|ndλ

where f̂(λ) = πλ(f) the Fourier transform of f at λ. In view of the relation πλ(f ∗ g) =
f̂(λ)ĝ(λ) it follows that

‖f ∗ Iγ,j‖2 ≤ sup
λ 	=0

‖Îγ,j(λ)‖

where ‖Îγ,j(λ)‖ is the operator norm of Îγ,j(λ). In order to calculate the Fourier trans-
form of Iγ,j we recall that Iγ,j(x) = |x|−3ϕj(x)Iγ(x) where ϕj(x) = X̃j(|x|4). In view of 
Lemma 4.3 we have

Iγ,j(x) = 4
(−Q + 1 + iγ)X̃j(|x|Iγ(x)) = 4C(Q, γ)

(−Q + 1 + iγ)X̃j(|x|−Q+1+iγ).

This allows us to calculate the Fourier transform of Iγ,j in terms of the Fourier transform 
of |x|−Q+1+iγ which is known explicitly.

For reasonable functions f it is known that πλ(X̃jf) = dπλ(X̃j)πλ(f) where dπλ is 
the derived representation of the Lie algebra hn corresponding to πλ. It is also known 
that dπλ(X̃j)ϕ(ξ) = iλξjϕ(ξ) where ϕ ∈ L2(Rn). Rewriting the above in terms of the 
annihilation and creation operators Aj(λ)∗ = ∂

∂ξj
+ λξj , Aj(λ) = − ∂

∂ξj
+ λξj we have

Îγ,j(λ) = 2iC(Q, γ)
(−Q + 1 + iγ) (Aj(λ) + Aj(λ)∗)πλ(|x|−Q+1+iγ).

If we let H(λ) stand for the (scaled) Hermite operator −Δ +λ2|ξ|2 on Rn then it is well 
known that the operators Aj(λ)H(λ)−1/2 and A∗

j (λ)H(λ)−1/2 are bounded on L2(Rn). 
Hence we are led to check the boundedness of the operator H(λ)1/2πλ(|x|−Q+1+iγ). From 
Lemma we infer that

πλ(|x|−Q+1+iγ) = cn|λ|−(1+iγ)/2 Γ(1+iγ
2 )

Γ(Q−(1+iγ)
4 )2

∞∑
k=0

Γ
( 2k+n

2 + 1−iγ
4

)
Γ
( 2k+n

2 + 3+iγ
4

)Pk(λ).

As H(λ)1/2Pk(λ) = ((2k + n)|λ|)1/2Pk(λ) the operator norm of Îγ,j(λ) is a constant 
multiple of
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|C(Q, γ)|
|(−Q + 1 + iγ)|

|Γ(1+iγ
2 )|

|Γ(Q−(1+iγ)
4 )|2

sup
k∈N

(
(2k + n)1/2

|Γ(2k+n
2 + 1−iγ

4 )|
|Γ(2k+n

2 + 3+iγ
4 )|

)
.

In view of Stirling’s formula for large k we have
∣∣∣∣∣Γ

( 2k+n
2 + 1−iγ

4
)

Γ
( 2k+n

2 + 3+iγ
4

)
∣∣∣∣∣ =

∣∣∣∣∣Γ
( 2k+n

2 + 1−iγ
4

)
/Γ

( 2k+n
2 − iγ

4
)

Γ
( 2k+n

2 + 3+iγ
4

)
/Γ

( 2k+n
2 + iγ

4
) Γ

( 2k+n
2 − iγ

4
)

Γ
( 2k+n

2 + iγ
4
)
∣∣∣∣∣

≤ C
|
( 2k+n

2 − iγ
4
)
|1/4

|
( 2k+n

2 + iγ
4
)
|3/4

.

From the above it is clear that

sup
k∈N

(
(2k + n)1/2

|Γ(2k+n
2 + 1−iγ

4 )|
|Γ(2k+n

2 + 3+iγ
4 )|

)
≤ C

and consequently the operator norm of Îγ,j(λ) is bounded by a constant multiple of

|C(Q, γ)|
|(−Q + 1 + iγ)|

|Γ(1+iγ
2 )|

|Γ(Q−(1+iγ)
4 )|2

.

Finally we are left with checking the finiteness of the following integral:

∞∫
−∞

|d(Q, γ)|
|Γ(Q+3−iγ

4 )|
|Γ(Q−1−iγ

4 )|
|C(Q, γ)|

|(−Q + 1 + iγ)|
|Γ(1+iγ

2 )|
|Γ(Q−(1+iγ)

4 )|2
dγ.

Recall that

C(Q, γ)d(Q, γ) = a(Q, γ) =
(
1 −

Γ
(
Q−iγ

2
)
Γ
( 1+iγ

2
)

Γ
(
Q
2
)
Γ
( 1

2
) )

We now make use of the following asymptotic formula for the gamma function: for |ν|
tending to infinity

Γ(μ + iν) ∼
√

2π|ν|μ−1/2e−
1
2π|ν|.

In view of this it follows that a(Q, γ) is a bounded function of γ and

|Γ(Q+3−iγ
4 )|

|Γ(Q−1−iγ
4 )|

≤ C1|γ|,
|Γ(1+iγ

2 )|
|Γ(Q−(1+iγ)

4 )|2
≤ C2|γ|−n+ 1

2

as |γ| tends to infinity. Consequently, the integral under consideration converges under 
the assumption that n ≥ 2. �
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5. Sparse bounds and boundedness of the maximal functions

Our aim in this section is to sketch a proof of the sparse bounds for the lacunary 
spherical maximal function stated in Theorem 1.3. In doing so we closely follow Bagchi 
et al. [1]. We equip Hn with a metric induced by the Koranyi norm which makes it a 
homogeneous space. It is well known that on such spaces there is a well defined notion 
of dyadic cubes and grids with properties similar to their counter parts in the Euclidean 
setting. However, we need to be careful with the metric we choose since the group is 
non-commutative.

Recall that the Koranyi norm on Hn is homogeneous of degree one with respect to 
the non-isotropic dilations. Since we are considering f ∗ σr it is necessary to work with 
the left invariant metric dL(x, y) = |x−1y| = dL(0, x−1y) instead of the standard metric 
d(x, y) = |xy−1| = d(0, xy−1), which is right invariant. The balls and cubes are then 
defined using dL. Thus B(a, r) = {x ∈ Hn : |a−1x| < r}. With this definition we 
note that B(a, r) = a · B(0, r), a fact which is crucial. This allows us to conclude that 
when f is supported in B(a, r) then f ∗ σs is supported in B(a, r + s). Indeed, as the 
support of σs is contained in B(0, s) we see that f ∗σs is supported in B(a, r) ·B(0, s) ⊂
a ·B(0, r) ·B(0, s) ⊂ B(a, r + s). We have the following result by Hytonen [12].

Theorem 5.1. Let δ ∈ (0, 1) with δ ≤ 1/96. Then there exists a countable set of points 
{zk,αν : ν ∈ Ak}, k ∈ Z, α = 1, 2, . . . , N and a finite number of dyadic systems Dα :=
∪k∈ZDα

k , Dα
k := {Qk,α

ν : ν ∈ Ak} such that

(1) For every α ∈ {1, 2, . . . , N} and k ∈ Z we have
i) Hn = ∪Q∈Dα

k
Q (disjoint union).

ii) Q, P ∈ Dα ⇒ Q ∩ P ∈ {∅, P, Q}.
iii) Qk,α

ν ∈ Dα ⇒ B
(
zk,αν , 1

12δ
k
)
⊆ Qk,α

ν ⊆ B
(
zk,αν , 4δk

)
. In this situation zk,αν is 

called the centre of the cube and the side length �(Qk,α
ν ) is defined to be δk.

(2) For every ball B = B(x, r), there exists a cube QB ∈ ∪αDα such that B ⊆ QB and 
�(QB) = δk−1, where k is the unique integer such that δk+1 < r ≤ δk.

Once we have the above theorem we can proceed as in Bagchi et al. [1] to establish 
the sparse bounds. The main ingredients in the rather long proof are the Lp improving 
property of the spherical means Ar and their continuity property which we have estab-
lished already. The proof presented in [1] can be repeated verbatim to get the sparse 
bounds. We refer the reader to [1] for all the details.

Theorem 5.2. Assume n ≥ 2 and fix 0 < δ < 1
96 . Let 1 < p, q < ∞ be such that ( 1

p , 
1
q )

belongs to the interior of the triangle joining the points (0, 1), (1, 0) and ( 2n
2n+1 , 

2n
2n+1 ). 

Then for any pair of compactly supported bounded functions (f, g) there exists a (p, q)-
sparse form such that 〈M lac

Hnf, g〉 ≤ CΛS,p,q(f, g).
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Sketch of proof: First we will reduce the case of getting sparse bounds for M lac
Hn to a 

simpler case. For this we need to set up some notations. For each k ∈ Z and a cube Q in 
Hn with l(Q) = δk writing VQ = ∪P∈VQ

P where VQ = {P ∈ D1
k+3 : B(zP , δk+1) ⊆ Q}

we define

AQf := Aδk+2(f1VQ
).

From this definition it is not hard to see that

Aδk+2f ≤
N∑

α=1

∑
Q∈Dα

k

AQf

and also whenever supp(f) ⊆ Q, supp(AQf) ⊆ Q. Hence it is enough to prove sparse 
bound for each of the maximal function defined by

MDαf = sup
Q∈Dα

AQf for each α = 1, 2, . . . , N.

Now we use standard trick to linearize the supremum. Suppose Q0 is a cube in D and 
Q be the collection of all dyadic subcubes of Q0. We define

EQ :=
{
x ∈ Q : AQf(x) ≥ 1

2 sup
P∈Q

AP f(x)
}

for Q ∈ Q. Note that for any x ∈ Hn there exists a Q ∈ Q such that

AQf(x) ≥ 1
2 sup

P∈Q
AP f(x)

and hence x ∈ EQ. If we define BQ = EQ \ ∪Q′⊇QEQ′ , then {BQ : Q ∈ Q} are disjoint 
and also, ∪Q∈QBQ = ∪Q∈QEQ. Observing that {BQ : Q ∈ Q}, for any f, g > 0 an easy 
calculation yields

〈 sup
Q∈Q

AQf, g〉 ≤ 2
∑
Q∈Q

〈AQf, g1BQ
〉.

Now we will make use of the following lemma which is the main ingredient in proving 
the sparse bound.

Lemma 5.3. Let 1 < p, q < ∞ be such that 
( 1
p , 

1
q

)
in the interior of the triangle joining 

the points (0, 1), (1, 0) and 
( 2n

2n+1 , 
2n

2n+1
)
. Let f = 1F and let g be any bounded function 

supported in Q0. Let C0 > 1 be a constant and let Q be a collection of dyadic sub-cubes 
of Q0 ∈ D for which the following holds

sup
′

sup
′

〈f〉Q,p

〈f〉 < C0. (5.1)

Q ∈QQ:Q ⊂Q⊂Q0 Q0,p
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Then there holds ∑
Q∈Q

〈AQf, gQ〉 � |Q0|〈f〉Q0,p〈g〉Q0,q.

Using the continuity property, we have established in the previous section, this lemma 
can be proved using exactly the same argument as in Bagchi et al. [1]. We refer the reader 
to [1] for the proof of this lemma.

Now once we have this lemma, the sparse domination result is immediate. Since f is 
compactly supported, we may assume that the support of f is contained in some cube 
Q0. Also we can take f to be non-negative. Then notice that for a fixed dyadic grid D
we have

MDf = MD∩Q0f = sup
Q∈D∩Q0

|AQf |.

Hence we need to prove a sparse bound for∑
Q∈D∩Q0

〈AQf, g1BQ
〉.

Using the previous lemma we first prove for a special case when f = 1F where F ⊆ Q0. 
We consider the following set

EQ0 := {P maximal subcube of Q0 : 〈f〉P,p > 2〈f〉Q0,p}

Let EQ0 = ∪P∈EQ0
. For a suitable choice of cn > 1 we can arrange |EQ0 | < 1

2 |Q0|. We 
let FQ0 = Q0 \ EQ0 so that |FQ0 | ≥ 1

2 |Q0|. We define

Q0 = {Q ∈ D ∩Q0 : Q ∩ EQ0 = ∅}. (5.2)

Note that when Q ∈ Q0 then 〈f〉Q,p ≤ 2〈f〉Q0,p. For otherwise, if 〈f〉Q,p > 2〈f〉Q0,p then 
there exists P ∈ EQ0 such that P ⊃ Q, which is a contradiction. For the same reason, if 
Q′ ∈ Q0 and Q′ ⊂ Q ⊂ Q0 then 〈f〉Q,p ≤ 2〈f〉Q0,p. Thus

sup
Q′∈Q0

sup
Q:Q′⊂Q⊂Q0

〈f〉Q,p ≤ 2〈f〉Q0,p.

Note that for any Q ∈ D ∩Q0, either Q ∈ Q0 or Q ⊂ P for some P ∈ EQ0 . Thus∑
Q∈D∩Q0

〈AQf, g1BQ
〉 =

∑
Q∈Q0

〈AQf, g1BQ
〉 +

∑
P∈EQ0

∑
Q⊂P

〈AQf, g1BQ
〉

for any Q ∈ Q0, Q ⊂ FQ0 and hence∑
〈AQf, g1BQ

〉 =
∑

〈AQf, g1FQ0
1BQ

〉.

Q∈Q0 Q∈Q0
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Applying Lemma 5.3 we obtain

∑
Q∈Q0

〈AQf, g1BQ
〉 ≤ C|Q0|〈f〉Q0,p〈g1FQ0

〉Q0,q.

Let {Pj} be an enumeration of the cubes in EQ0 . Then the second sum above is given 
by

∞∑
j=1

∑
Q∈Pj∩D

〈AQf, g1BQ
〉.

For each j we can repeat the above argument recursively. Putting everything together 
we get a sparse collection S for which

∑
Q∈D∩Q0

〈AQf, g1BQ
〉 ≤ C

∑
S∈S

|S||〈f〉S,p〈g1FS
〉S,q. (5.3)

This proves the result when f = 1F .
Now we will prove the above result (5.3) for any non-negative, compactly supported 

bounded function f . Here we modify the definition of EQ0 as follows

EQ0 := {P maximal subcube of Q0 : 〈f〉P,p > 2〈f〉Q0,p or 〈g〉P,p > 2〈g〉Q0,p}

Now defining EQ0 , FQ0 and Q0 same as before, we have

sup
Q′∈Q0

sup
Q:Q′⊂Q⊂Q0

〈f〉Q,p ≤ 2〈f〉Q0,p and sup
Q′∈Q0

sup
Q:Q′⊂Q⊂Q0

〈g〉Q,q ≤ 2〈g〉Q0,q.

Now we will decompose f in the following way so that we can use the sparse domination 
already proved for characteristic functions. We write f =

∑
m fm where fm := f1Em

and Em := {x ∈ Q0 : 2m ≤ f(x) < 2m+1}. For each m applying the sparse domination 
to 1Em

, we get a sparse family Sm such that

∑
Q∈Q0∩D

〈AQ1Em
, g1FQ0

1BQ
〉 ≤ C

∑
S∈Sm

|S|〈1Em
〉S,p〈g1FQ0

〉S,q

Hence using the fact that for any Q ∈ Q0, Q ⊂ FQ0 we have

∑
Q∈Q0

〈AQfm, g1BQ
〉 ≤ C2m+1

∑
S∈Sm

|S|〈1Em
〉S,p〈g1FQ0

〉S,q.

Now it is clear that if S ∩ FQ0 = φ then 〈g1FQ0
〉S,q = 0. Also when S ∩ FQ0 �= φ, using 

the definition of EQ0 and Q0 one can easily show that 〈g1FQ0
〉S,q ≤ C〈g〉Q0,q. Hence we 

make use of the following lemma proved in [13] (see also [1]):
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Lemma 5.4. Let S be a collection of sparse sub-cubes of a fixed dyadic cube Q0 and let 
1 ≤ s < t < ∞. Then, for a bounded function φ,

∑
Q∈S

〈φ〉Q,s|Q| � 〈φ〉Q0,t|Q0|.

For some ρ1 > p we have

∑
Q∈Q0

〈AQfm, g1BQ
〉 ≤ C2m+1〈g〉Q0,q〈1Em

〉Q0,ρ1 |Q0|.

But we know that f =
∑

m fm. So, finally we obtain

∑
Q∈Q0

〈AQf, g1BQ
〉 ≤ C〈g〉Q0,q|Q0|

∑
m

2m〈1Em
〉Q0,ρ1 .

Note that a simple calculation yields 
∑

m 2m〈1Em
〉Q0,ρ1 ≤ C‖f‖Lρ1,1(Q0,

1
|Q0|dx) where 

‖.‖Lρ1,1 denotes the Lorentz space norm. Also it is a well-known fact that for any ρ > ρ1, 
Lρ1,1(Q0, 1

|Q0|dx)-norm is dominated by the Lρ(Q0, 1
|Q0|dx)-norm. Hence we have

∑
Q∈Q0

〈AQf, g1BQ
〉 ≤ C〈g〉Q0,q|Q0|〈f〉Q0,ρ.

Now proceeding same as in case f = 1F , we get the following sparse domination

〈MDf, g〉 ≤ C
∑
S∈S

|S||〈f〉S,ρ〈g〉S,q,

which proves the theorem. �
As consequences of the sparse bound we get some new weighted and unweighted 

inequalities for the lacunary maximal function under consideration. We now use the 
above sparse domination along with the following well-known boundedness property of 
the sparse forms proved in [8]:

Proposition 5.5. Let 1 ≤ r < s′ ≤ ∞. Then,

Λr,s(f, g) � ‖f‖Lp‖g‖Lp′ , r < p < s′.

We have thus proved the following result which is the main theorem in this article.

Theorem 5.6. For n ≥ 2, the lacunary spherical maximal function M lac
Hn is bounded on 

Lp(Hn) for all 1 < p < ∞.
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Weighted norm inequalities are also well studied in the literature. To state the 
weighted boundedness properties of the sparse form we need to mention the following 
terminologies about classes of weights. A weight w is a non-negative locally integrable 
function defined on Hn. Given 1 < p < ∞, the Muckhenhoupt class of weights Ap

consists of all w satisfying

[w]Ap
:= sup

Q
〈w〉Q〈w1−p′〉p−1

Q < ∞

where the supremum is taken over all cubes Q in Hn. On the other hand, a weight w is 
in the reverse Hölder class RHp, 1 ≤ p < ∞, if

[w]RHp
= sup

Q
〈w〉−1

Q 〈w〉Q,p < ∞,

again the supremum taken over all cubes in Hn. The following weighted inequality for 
sparse form has been proved in [2].

Proposition 5.7. Let 1 ≤ p0 < q′0 ≤ ∞. Then,

Λp0,q0(f, g) ≤ {[w]Ap/p0
· [w]RH(q′0/p)′ }

α‖f‖Lp(w)‖g‖Lp′ (σ), p0 < p < q′0,

with α = max
{

1
p−1 , 

q′0−1
q′0−p

}
.

Using this result we have the following weighted boundedness property for the lacu-
nary maximal function:

Theorem 5.8. Let n ≥ 2 and define

1
φ(1/p0)

=

⎧⎨
⎩1 − 1

2np0
, 0 < 1

p0
≤ 2n

2n+1 ,

2n
(
1 − 1

p0

)
, 2n

2n+1 < 1
p0

< 1.

Then M lac
Hn is bounded on Lp(w) for w ∈ Ap/p0 ∩ RH(φ(1/p0)′/p)′ and all 1 < p0 < p <

(φ(1/p0))′.

Acknowledgments

The authors are very thankful to the referee for reading the manuscript carefully 
and making very useful suggestions which have resulted in a better exposition. The 
first author is supported by Int. Ph.D. scholarship from Indian Institute of Science. The 
second author is supported in part by J. C. Bose Fellowship from the Department of 
Science and Technology, India (Grant no.: DSTO/PAM/TV/2036).



32 P. Ganguly, S. Thangavelu / Journal of Functional Analysis 280 (2021) 108832
References

[1] S. Bagchi, S. Hait, L. Roncal, S. Thangavelu, On the maximal function associated to the spherical 
means on the Heisenberg group, arXiv :1812 .11926v2, 2018.

[2] F. Bernicot, D. Frey, S. Petermichl, Sharp weighted norm estimates beyond Calderón-Zygmund 
theory, Anal. PDE 9 (5) (2016) 1079–1113.

[3] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 
(1986) 69–85.

[4] C.P. Calderón, Lacunary spherical means, Ill. J. Math. 23 (1979) 476–484.
[5] M. Cowling, On Littlewood–Paley–Stein theory, Rend. Semin. Mat. Fis. Milano XLIX (1979) 79–87.
[6] M. Cowling, U. Haagerup, Completely bounded multipliers of the Fourier algebra of a simple Lie 

group of real rank one, Invent. Math. 96 (1989) 507–549.
[7] M. Cowling, G. Mauceri, On Maximal functions, Rend. Circ. Mat. Palermo (2) (suppl. 1) (1981) 

21–55.
[8] D. Cruz–Uribe, J.M. Martell, C. Pérez, Sharp weighted estimates for classical operators, Adv. Math. 

229 (2012) 408–441.
[9] J. Faraut, K. Harzallah, Deux cours d’analyse harmonique, in: Progress in Mathematics, vol. 69, 

Birkhäuser, Boston, MA, 1987, Papers from the Tunis Summer School held in Tunis, August 
27–September 15, 1984.

[10] V. Fischer, The spherical maximal function on the free two-step nilpotent Lie group, Math. Scand. 
99 (2006) 99–118.

[11] G.B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, vol. 122, Princeton 
University Press, Princeton, NJ, 1989.

[12] T. Hytönen, A. Kairema, Systems of dyadic cubes in a doubling metric space, Colloq. Math. 126 
(2012) 1–33.

[13] M.T. Lacey, Sparse bounds for spherical maximal functions, J. Anal. Math. 139 (2019) 613–635.
[14] D. Müller, A. Seeger, Singular spherical maximal operators on a class of two step nilpotent Lie 

groups, Isr. J. Math. 141 (2004) 315–340.
[15] E.K. Narayanan, S. Thangavelu, An optimal theorem for the spherical maximal operator on the 

Heisenberg group, Isr. J. Math. 144 (2004) 211–219.
[16] A. Nevo, S. Thangavelu, Pointwise ergodic theorems for radial averages on the Heisenberg group, 

Adv. Math. 127 (1997) 307–339.
[17] O. Schmidt, Maximaloperatoren zu Hyperflächen in Gruppen vom homogenen Typ, Diplomarbeit 

an der Christian-Albrechts-Universität zu Kiel, Mai 1998.
[18] E.M. Stein, Maximal functions. I. Spherical means, Proc. Natl. Acad. Sci. USA 73 (1976) 2174–2175.
[19] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 

Princeton Math. Ser., vol. 43, 1993.
[20] R.S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Am. Math. Soc. 

148 (1970) 461–471.
[21] S. Thangavelu, Spherical means on the Heisenberg group and a restriction theorem for the symplectic 

Fourier transform, Rev. Mat. Iberoam. 7 (1991) 135–155.
[22] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Mathematical Notes, vol. 42, Prince-

ton University Press, Princeton, NJ, 1993.
[23] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progress in Mathematics, vol. 159, 

Birkhäuser, Boston, MA, 1998.

http://refhub.elsevier.com/S0022-1236(20)30375-X/bibFF24F3EF873F6C4FD3EE2709C365B300s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibFF24F3EF873F6C4FD3EE2709C365B300s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib7CF92C3FA7658908D766BE22CC81465Cs1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib7CF92C3FA7658908D766BE22CC81465Cs1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib4D66F5C5008A4EB6974EF043DD0E8CA6s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib4D66F5C5008A4EB6974EF043DD0E8CA6s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib0D61F8370CAD1D412F80B84D143E1257s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib1E8C40543F10A12CF422F5D38178E675s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib1EE0BF89C5D1032317D13A2E022793C8s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib1EE0BF89C5D1032317D13A2E022793C8s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib707354872D4E8210A2A573B99721B1FBs1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib707354872D4E8210A2A573B99721B1FBs1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib22CBC6767688CE7EC41C8923E8C1F8F1s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib22CBC6767688CE7EC41C8923E8C1F8F1s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib29A42EEE21608E6C4E85903B70051B60s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib29A42EEE21608E6C4E85903B70051B60s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib29A42EEE21608E6C4E85903B70051B60s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibF7418A2D329FE5B71C39192049094CF9s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibF7418A2D329FE5B71C39192049094CF9s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib800618943025315F869E4E1F09471012s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib800618943025315F869E4E1F09471012s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib69E1AAFECCC558D92F93BCF86FB913F5s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib69E1AAFECCC558D92F93BCF86FB913F5s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibF12B25D21D79D88624866CDECBBFF09Es1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib7A663CAEA1B722A63DC2868158ED584Ds1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib7A663CAEA1B722A63DC2868158ED584Ds1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib84E4979B50DA3976E1CC89AF74BE2AD6s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib84E4979B50DA3976E1CC89AF74BE2AD6s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib850C3B9CA667CE9C2BAC5A3CCEA376F8s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib850C3B9CA667CE9C2BAC5A3CCEA376F8s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib6EC9B0D9CF371BD211F26FEC07BC7300s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib6EC9B0D9CF371BD211F26FEC07BC7300s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibCC0722B733E25829ED9DE9E93AC97BE5s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib4461AF6417A6182EE0DCA982814E2E02s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib4461AF6417A6182EE0DCA982814E2E02s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib5DBC98DCC983A70728BD082D1A47546Es1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib5DBC98DCC983A70728BD082D1A47546Es1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib7A13A7DF31912F8A15403A25414A989Ds1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bib7A13A7DF31912F8A15403A25414A989Ds1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibB9ECE18C950AFBFA6B0FDBFA4FF731D3s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibB9ECE18C950AFBFA6B0FDBFA4FF731D3s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibE629114817AFFB6E3C96039ED41449C6s1
http://refhub.elsevier.com/S0022-1236(20)30375-X/bibE629114817AFFB6E3C96039ED41449C6s1

	On the lacunary spherical maximal function on the Heisenberg group
	1 Introduction and the main results
	2 Preliminaries
	2.1 Fourier transform on Hn
	2.2 The Heisenberg Lie algebra
	2.3 The measure on the Koranyi sphere
	2.4 Fourier transforms of radial measures

	3 Lp -improving property of the spherical means
	4 The continuity property
	5 Sparse bounds and boundedness of the maximal functions
	Acknowledgments
	References


