Observation of Chaotic Dynamicsin Dilute Sheared Aqueous Solutions of CTAT
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The nonlinear flow behavior of a viscoelastic gel formed due to entangled, cylindrical micelles in
aqueous solutions of the surfactant cetyl trimethylammonium tosilate (CTAT) has been studied. On
subjecting the system to a step shear rate lying above a certain value, the shear and normal stresses
show interesting time dependent behavior. The analysis of the measured time series shows the existence
of a finite correlation dimension and a positive Lyapunov exponent, unambiguously implying that the
dynamics can be described by that of a dynamical system with a strange attractor whose dimension

increases with the increase in shear rate.

Systems of giant wormlike micelles formed in certain
surfactant solutions are known to show very unusua
nonlinear rheology. In steady shear, the shear stress o
saturates to a constant value while the first normal stress
difference increases roughly linearly with shear rate y
[1,2]. The constitutive model of viscoelastic behavior of
wormlike micellar systems which incorporates reptation
and reaction dynamics (breakage and recombination of
micelles) predicts a mechanical instability of the shear
banding type [3] where bands supporting high shear rates
(low viscosity) coexist with regions of lower shear rates
(higher viscosity). Flow birefringence [4] and nuclear
magnetic resonance velocity imaging [5] have reveaed
the existence of banded flow in the shear stress plateau.
An dternative explanation for the nonmonotonicity of
the flow curve has also been proposed [6,7] in terms of
the coexistence of two thermodynamically stable phases,
isotropic and nematic, present in the sheared solution.
Berret [6] observed damped, periodic oscillations in the
stress relaxation of CPyCl-NaSal solution at a surfac-
tant volume fraction ¢ of 12% on the application of
controlled shear rates y. Grand et al. [8] have shown
the existence of a metastable branch in the flow curve
of dilute CPyCl-NaSal (cetylpyridinium chloride-sodium
salicylate) solution supporting stresses higher than that
observed in the stress plateau. They have explained their
results in terms of shear banding. Previous observations
of shear stress fluctuations in CTAB-NaSal solutions have
been explained in terms of shear thickening induced by
the growth and retraction of shear induced structures [9].

The rheology of CTAT (cetyl trimethylammonium tosi-
late) has been examined extensively in the linear viscoelas-
tic regime [10]. Above the Kraft temperature of 23 °C and
at low concentrations (C < 0.04 wt %), spherical micellar
solutions are formed which exhibit Newtonian flow be-
havior. At higher surfactant concentrations (0.04 < C <
0.9 wt %), cylindrical wormlike micelles are formed which
get entangled at C > 0.9 wt % to form clear viscoelastic
gels[10]. The purpose of this Letter isto report interesting
time dependence of the shear and normal stresses after sub-
jecting the system to a step shear rate lying in the plateau

region. Our detailed analysis shows unambiguously that
the observed dynamics can be described as that of a low
dimensional, dynamical system with a strange attractor.

Our experiments were done on dilute aqueous solutions
of CTAT, 1.35 wt % at 25 °C. Following the measurements
of the elastic modulus G'(w) and the viscous modulus
G"(w) inthelinear rheology regime and the flow curve (o
Vs y) in the constant stress mode, controlled shear rate ex-
periments were performed wherein shear stress and normal
stress showed interesting time dependence. The time se-
ries obtained for both types of stresses have been analyzed
by two methods to extract certain invariant characteristics,
metric and dynamical, of the nonlinear dynamics such as
correlation dimensions, the embedding dimensions, and
Lyapunov exponents. The analysis following the ago-
rithm due to Grassberger and Procaccia [11] shows that
thereisafinite correlation dimension. Another method due
to Gao and Zheng [12] yields an estimate of the positive
Lyapunov exponent. This analysis unambiguously shows
that the observed time dependence of the signal is not
due to stochastic noise, but has its origin in determinis-
tic chaotic dynamics. We note that Noronha et al. have
shown the existence of chaotic dynamics in the jerky flow
of some metal aloys undergoing plastic deformation [13]
which aso show a honmonotonic flow curve. Recently,
after the completion of our present studies [14], we be-
came aware of experiments by Soltero et al. [15] on the
nonlinear rheology of CTAT at 5 and 10 wt % which show
the existence of a plateau region at y > (27¢)~' and os-
cillations in the stress and birefringence in 5 wt % CTAT
ay=100s""

The CTAT-water samples used in our experiments were
prepared by adding appropriate amounts of CTAT to dis-
tilled and deionized water and were allowed to equilibrate
for at least one week. For our experiments we used a
stress controlled rheometer with temperature control and
software for shear rate control (Rheolyst AR-1000N,
T.A. Instrument, U.K.). The rheometer was also equipped
with eight strain gauge transducers capable of measuring
the normal force to an accuracy of 10~* N. The mea-
surements were made using a cone-and-plate geometry of



cone diameter 4 cm and angle 1°59”. All the experiments
reported here have been done on fresh samples from
the same batch to eliminate sample history effects. The
frequency response measurements of CTAT 1.35 wt%
by subjecting it to small oscillatory stresses in the linear
regime reveal a very poor fit to the Maxwell model, as
seen in insets (@) and (b) of Fig. 1, in contrast to the
behavior at higher CTAT concentrations [10]. The reason
for the failure of the Maxwell model can be that the
two relaxation times 7, and 7., are not widely differ-
ent (7, ~ 1.79 s as estimated from the Cole-Cole plot
and 7., ~ 5 s obtained from the crossover frequency
wco = 0.3 rads™! in the G’ and G” plots, which gives
an approximate estimate of the relaxation time 7z ~ 3 s).
We recall that in the Maxwell model, G(r) = Goe /™,
where 7z = (7 7rep)'/?, 7 and 7y, are the bresking and
reptation times of the micelles with 7, < 7, [16].
Figure 1 shows the metastable flow curve measured un-
der conditions of controlled stress (time elapsed between
acquisition of successive data points = 2 s) for the CTAT
solution of concentration 1.35% by weight. Interestingly,
even though CTAT 1.35 wt % is not strictly Maxwellian,
its flow curve shows a smooth transition to a plateau
region above a critical shear rate similar to the ones
observed in surfactant solutions of CPyCl/NaSa [6—8]
and concentrated CTAT [15], which show Maxwellian
behavior in G(w). For 10 <y <200s™!, o ~ 3¢
where « = 0.06 = 0.004, implying a very weak con-
centration dependence [17]. This value of « is very
much smaller than that observed in the flow curve of the
CPyCl/hexanol /NaCl /water system (a = 0.3) which
undergoes an isotropic-nematic transition at ¢ = 31%
[17]. This observation indicates that the plateau in the
flow curve of our system is due to shear banding rather
than the coexistence of the isotropic and nematic phases
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FIG. 1. Metastable flow curve of CTAT 1.35 wt% at 25°C,
measured under conditions of controlled stress. Insets (a) and (b)
show G'(w) (shown by squares) and G"(w) (shown by circles).
The solid lines show the fits to the Maxwell model.
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[17]. We now discuss our stress relaxation measurements
on imposing step shear rates of different magnitudes
to the samples. For low shear rates, vy =22 s~ !, the
stress relaxes monotonically to a steady state value in a
few seconds. For higher shear rates, the stress initialy
relaxes (r < 100 s) and then oscillates in time, as shown
in Figs. 2(@)—2(e) for a few typica values of applied
shear rates. Figure 2(f) shows the oscillations in the
normal stress measured along with the shear stress (curve
c) a y=100s"!. On raising the temperature, the
oscillations in the stress relaxation are found to decrease
in amplitude and disappear completely at a temperature
of 35°C [Fig. 2(g)]. This may be because of a decrease
in the width of the stress plateau in the flow curve with
increasing temperatures [7]. The power spectra calculated
from the Fourier transforms of the stress autocorrelation
functions have been computed from the time-dependent
stress data as shown in Fig. 3. The initial decay of the
observed stress (r < 100 s) has not been included in the
calculations of the power spectrum. The power spectra
reveal that for y = 22.5s7!, there is only one peak at
0.009 s~! corresponding to a time scale of 110s. At
y = 75 s !, the power spectrum exhibits two dominant
peaks at 0.01 and 0.015s™', corresponding to time
scales of 100 and 67 s. At higher shear rates, there are
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FIG. 2. Shear stress relaxation in CTAT 1.35% on subject-
ing the sample to step shear rates of (a) 22.5s7!, (b) 7557/,
(c) 100s71, (d) 138571, (e) 175s~! at 25°C. (f) shows the
ti me-dependent decay of the normal stress on application of
vy =100 s™!, also at 25°C. Figure 2(g) shows the disappear-
ance of theumedependent oscillationsat 35°Cat y = 100 s~ .
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FIG. 3. Power spectraof the stressrelaxation dataat y = 22.5,
75, and 1.75 s 1.

many more frequency components. These time scales
inferred from Fig. 3 may be understood as being due to
the realignment of macrodomains which form as a result
of shear banding. Stick-dlip between these domains due
to the application of shear can result in the observed
time-dependent behavior.

We will now present the analysis of the data to look for
any pattern expected in a deterministic dynamical system
which would distinguish it from stochastic noise. There
is a short time predictability in deterministic chaos as
compared to no predictability at al in stochastic noise.
Let o; = o(jAt) denote the time series shown in Fig. 2,
consisting of stresses measured at regular time intervals
Ar (= 1.8 s), with j = 1 to N (N = 1500). The time se-
ries is used to construct an m-dimensional vector X; =
(0',', TitLye--s 0','+(m71)L) where m is the embeddlng di-
mension and L is the delay time. The embedding theorem
of Takens ensures that the dynamics of the original system
isrepresented by F: X; — X;+1, provided that the embed-
ding dimension m and the delay time L are properly chosen
[18]. A useful way to characterize the dynamical systemis
by the correlation dimension » [11] of the (strange) attrac-
tor towards which the phase space trgjectories converge
in the asymptotic limit. The correlation integral C(R)
is defined in an m-dimensional phase space as C(R) =
limy— 3z 1,21 HR — |X; — X;1), where H(x) is the
Heaviside functionsand |X; — }?,I is the distance between
the pair of points (i, j) in the m-dimensional embedding
space. The sum in the expression for C(R) gives the num-
ber of point pairs separated by a distance less than R. For
small R's, C(R) is known to scale as C(R) ~ R”, where
the correlation dimension » gives us useful information
about the local structure of the attractor [11]. The expo-
nent » is obtained as a function of log(R) from the plot of
log[C(R)] versuslog(R) (Fig. 4). A plateauintheplot of »
versus log(R) gives the correct » for a chosen embedding

dimension m. If the attractor is unfolded by choosing a
large enough m, then the correlation dimension » becomes
independent of the value of the embedding dimension m.
The value of m at which this independence sets in is the
correct embedding dimension, and the corresponding v is
the correlation dimension. If an experimental signal satis-
fies v < m, then the signal is due to deterministic chaos
rather than random noise [11].

Figure 4(a) shows the typical calculations of the cor-
relation dimension v of the attractor to which the stress
trajectories asymptotically converge for a shear rate of
100 s~!'. Thisgivesm = 4 and v = 2.8. Figure 4(b) re-
veals amonotonically increasing behavior of » with y. We
seethat » ~ 1 for stress relaxation dataat y = 22.5 s~!
where the power spectrum [Fig. 3] shows a single fre-
quency. This is indeed expected as v = 1 for a singly
periodic motion (limit cycle), » = 2 for abiperiodic torus
and » > 2 for a strange attractor [18]. We see that the
correlation dimension » > 2 above a shear rate of 75 s .
The dynamics of the stress relaxation thus appears to take
place on the surfaces of attractors of fractal dimensions
that increase with the increase in the applied shear rate.
The procedure has been repeated for different data sets ac-
quired at different times and the values of v calculated in
these cases are found to agree to within 15%. We have
also calculated the correlation dimensions of the attrac-
tors on which the normal stress orbits lie when CTAT
1.35% was subjected to high shear rates. The normal
stressis also found to show low-dimensional, deterministic
dynamics [19]

The existence of a positive Lyapunov exponent is the
most reliable signature of chaotic dynamics [18]. The
Lyapunov exponent characterizes how the distance be-
tween two neighboring points in phase space evolves in
time. Defining d;;j(k) = ||1X;+x — X;+«ll, the Euclidean
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FIG. 4. (a) showsthe plot of log[C(R)] vslog(R) of the stress
trajectories at ¥ = 100 s~ for m = 2 to 5 [(i)—(iv)]. The
slopes of the plots give the following values of v: (i): v =
1.6 for m = 2; (ii): v = 2.3 for m = 3; (iii): » = 2.8 for
m = 4; and (iv): v = 2.8 for m = 5. (b) shows the correlation
dimensions calculated as a function of shear rate .
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FIG. 5. Calculation of the Lyapunov exponent for y = 75, 100
and 138 s~!'. The Lyapunov exponent which may be estimated
from the slope of the curvesis ~0 at y = 75 s~! and becomes
positive at higher shear rates.

distance between two vectors constructed using the embed-
ding theorem by k iterations of the dynamics F, and plot-
ting {In[d;;(k)/d;;(0)]) as afunction of k, we calculate the
Lyapunov exponent by using the relation A = S/AzIn(2),
where S is the slope of the plot. It is seen that A becomes
positive at shear rates >75 s~!, indicating the onset of
chaos at these shear rates (Fig. 5).

In order to quantitatively understand our results, we need
to set up space and time-dependent, nonlinear, coupled
differential equations in at least four phase space vari-
ables. These equations will be the equations of motion, for
example, the continuity and momentum balance equations
together with the constitutive relation between viscoel astic
stress and shear rate. The starting point can be the Johnson-
Segaman (JS) model [20] proposed in the context of
“spurt effect” of polymers which has generically similar
nonmonotonic behavior to the reptation-reaction model
of wormlike micelles. In the JS model, the viscoelastic
nature of the polymer is accounted for by writing the total
stress as the sum of a Newtonian part and a deformation
history dependent viscoelastic part. This model predicts
damped oscillations in the stress in controlled shear
rate conditions [6,19]. We believe that the coupling
of the mean micellar length to the shear rate [21], the
dynamics of the mechanical interfaces [22] and the flow-
concentration coupling [23] should be incorporated in the
JS model. A model constructed by incorporating these
additional features, which takes into account the nonlinear
coupling between the relevant dynamical variables like
shear and normal stresses, shear rate, concentration
profiles, and micellar length distributions is most likely to
exhibit the chaotic behavior that we observe.

In summary, we have proved the existence of chaotic
dynamics in the rheology of dilute, agueous solutions of

CTAT. Our anaysis unambiguously shows that the mini-
mum embedding dimension required to describe the shear
banding instability is four. Our experiments and analyses
will favor the explanation of the nonmonotonic flow be-
havior in terms of mechanical instability rather than the
coexistence of isotropic and nematic phases in the sheared
solution. The presence of the nematic phase for a very
low concentration regime as in our experiments is highly
unlikely. We hope that our experiments will motivate full
theoretical modeling of the shear banding phenomenon.
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