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Supplementary Materials: Internal friction controls active ciliary
oscillations near the instability threshold

Section S1. Tension forces in the filament

The tangential component of the stress resultant is the tension within the filament (40), which

we can compute from filament velocity as Ft(s) = t(s)·
∫ L

s
fv(s′)ds′ = −t(s)·

∫ L

s
γ ·Ṙ(s′)ds′ =

−γngt(s), where, gt(s) = t(s) ·
∫ L

s
[Ṙn(s′)n(s′) + (Ṙt(s

′)/2)t(s′)]ds′. The tension force in the

filament is also too small (fig. S3) compared to the internal elastic forces.

Section S2. Linear stability analysis

We Fourier transform the coupled equations of motion [Eq. 7 in main text] in space and time

with the following convention

∆θ(s, t) =

∫
dz

2π

∑
n

∆̃θ(qn, z)e
i(qns−zt), [similarly for mA(s, t)→ m̃A(qn, z)]

where qn is the discretized wavenumber of the nth mode due to finite length of the filament and

z is the complex frequency. In matrix form,[
(1 + q2

n)− iz(q2
n + νκ/νu) −1

b3 iz − b1

][
∆̃θ

m̃A

]
=

[
0
0

]
(S1)

For non-trivial solution, the determinant of the above matrix must be zero. Hence the dispersion

relation is [
(1 + q2

n)− iz(q2
n + νκ/νu)

]
(iz − b1) + b3 = 0 (S2)

This is a quadratic equation in the complex frequency z of the formA(qn)z2+B(qn)z+C(qn) =

0 whose coefficients are A(qn) = q2
n + νκ/νu, B(qn) = i

[
(1 + q2

n) + b1(q2
n + νκ/νu)

]
and

C(qn) = b3 − b1(1 + q2
n). Roots are z1,2 =

[
− B(qn) ±

√
B2(qn)− 4A(qn)C(qn)

]
/2A(qn).

As the time dependent component in the solution is e−izt, existence of the real part of the root



will imply that the solution is oscillatory and sign of the imaginary part of z will decide if the

solution is growing or decaying. Hence, the conditions for unstable oscillations are Im[z] > 0

and Re[z] 6= 0. The frequency of the oscillations is therefore given byω = −Re[z].

Section S3. Why strain softening and shear thinning facilitates the insta-
bility to oscillations?

We Fourier transform the dynamical equation of motion (Eq. 6 in the main text) in space

and time under oscillating shear of fundamental frequency ω i.e. ∆θ ∼ ∆̃θei(qns+ωt) where

ω = −Re(z) is real and qn is the discretized wavenumber of the nth mode.

(−q2
n − iωq2

n − 1− iωνκ/νu)∆̃θ+ m̃A = 0 (S3)

Replacing the fundamental Fourier mode of active stress as m̃A = (G′ + iωG′′)∆̃θ, where

where G′ and G′′ corresponds to elastic and viscous response of the system, respectively and

are related to b1, b3 such that b1, b3 < 0 =⇒ G′, G′′ > 0 (see main text), we obtain

−(1 + q2
n)∆̃θ︸ ︷︷ ︸

passive elastic

−iω(q2
n + νκ/νu)∆̃θ︸ ︷︷ ︸

passive viscous

+ (G′ + iωG′′)∆̃θ︸ ︷︷ ︸
active elastic + viscous

= 0 (S4)

Hence, the passive elastic and viscous terms in the equation of motion are negative i.e. they

resist the sliding caused by the active dynein motors. Now, if G′, G′′ < 0, the system’s passive

spring constant and friction coefficient get renormalized by the ATP dependent dynein activity

and thus, both the active and passive components of the system resist the sliding ultimately

leading to a quiescent stable state of the filament. On the other hand, if G′, G′′ > 0, dynein

motors work against the material response so that the system becomes unstable and undergoes

oscillations. Here, G′ > 0 indicates that elastic stresses reduce within the axoneme as motor

activity increases which is called ‘strain softening’ and G′′ > 0 indicates that the axoneme

becomes less viscous with increasing motor activity which is called ‘shear thinning’.



We note that nonlinear viscoelastic effects are not needed for an active material, such as

the axoneme, to shear thin/strain soft, because the nonequilibrium active stresses generated by

the dynein motors can produce structural rearrangements within the axoneme by binding and

unbinding the dynein cross-bridges across microtubule doublets. This is in contrast to passive

equilibrium systems which have to be intrinsically nonlinear to strain soft/shear thin under large

external shear as thermal energy alone is insufficient to drive structural rearrangements in such

systems.

Section S4. Comparison with microscopic load dependent detachment model
of dynein motors

In the microscopic load dependent detachment model, the motor detachment rate (koff ) is as-

sumed to increase exponentially with increasing load (i.e. single motor force, f+), which in

turn decreases linearly with the dynein sliding speed (vd) by the force-velocity relationship of

the motors (10,33,41).

koff (f+) = k0 exp

[
f+

fc

]
= k0 exp

[
f̄ − f ′vd

fc

]
(S5)

where f̄ is the dynein stall force, f ′ is the slope of the dynein force-velocity curve, fc is the

characteristic unbinding force generally given by fc ≈ f̄/2 (10,33). The force-velocity slope

is given by f ′ = f̄/v0, where v0 is the dynein velocity at zero load. In the limit of low sliding

speed i.e.
f ′vd
fc

<< 1, the above exponential relation linearizes to

koff (f+) = k̄off

[
1− f ′vd

fc

]
(S6)

where k̄off = koff (f̄) = k0 exp(f̄/fc) is the motor detachment rate at stall [refer to Eq. B4

in Appendix B of (10)]. Now let us see if our experiments near the critical ATP concentration

satisfy the linearizing condition,
f ′vd
fc

<< 1 =⇒ vd
v0/2

<< 1.

Axoneme being a cross-linked filament, the angular speed of the axoneme (∂t∆θ) is related



to the sliding speed per dynein motor as vd = aMT∂t∆θ/Lρp̄ (10). Here aMT = 24 nm is

the MT interdoublet spacing in which the dyneins work (4), L is the filament length at which

angular speed is calculated from experiments, ρ = 198 µm−1 is motor density (4) and p̄ = 0.02

is the fraction of motor domains that are attached to MT, equivalent to the duty ratio (21,33).

Therefore, Lρp̄ is the total number of motors bound to a single MT along the length of the

filament. At 60 µM ATP, ∂t∆θ ≈ 80 rad/s (from Fig. 4E of main text) atL ≈ 9 µm. Using these

values vd ≈ 54 nm/s. Earlier experiments have measured the zero load dynein velocity at 60 µM

ATP to be v0 ≈ 2 µm/s (42,21). Hence the ratio of dynein sliding speed in our experiments to

the half of its zero load velocity
vd
v0/2

≈ 0.05 << 1. To summarize, the axoneme beating near

the instability threshold at 60 µM ATP is in the dominantly linear regime (equivalently weakly

nonlinear regime) of the post-bifurcation dynamics. Therefore, our choice of linear constitutive

relationship for the active moment and the associated linear stability analysis is valid near the

instability threshold [also refer to Fig. 3a and associated text of (33)].

Now, that we have shown our experiments are consistent with the condition for linearizing

the exponential dependence of motor detachment rate on sliding speed, we connect our con-

stitutive equation for active moment to this linearized version of microscopic motor dynamics

model (sliding control motor coordination model) proposed by Riedel-Kruse et al. (10). In

(10), the active shear force per unit length is related to the shear displacement by a response

function, χ = K + iωλ, as per their notation. The sign convention of G′ and G′′ is opposite

to the elasto-viscous response coefficients (K and λ) of (10) [also of (19,32)], as active drive in

these references has opposite sign convention. The equivalence of our response coefficients to

their microscopic model of load dependent detachment of motors [refer to Eq. B9 in Appendix

B of (10)] are as follows:

(a) G′ ≡ −a2K = 2a2ρf̄ f ′

fc
p̄(1− p̄) ω2τ̄

1+(ωτ̄)2
. This quantity is always positive.

(b) G′′ ≡ −a2λ = −2a2ρf ′p̄
[
1− f̄

fc

(1−p̄)
{1+(ωτ̄)2}

]
. This quantity can be positive or negative.



In the above expressions, τ̄ is the relaxation time of motor attachment/detachment and all other

variables are already defined in the preceding paragraph. The sign in (b) depends on τ̄ and p̄ as:

(i) G′′ > 0 for ωτ̄ << 1 and p̄ ∼ 0 and (ii) G′′ < 0 for ωτ̄ >> 1 and p̄ ∼ 1. For our active

filament G′′ > 0 i.e. b3 < 0 asserts that ωτ̄ << 1 and p̄ ∼ 0. This means that the axonemal

dynein motors are short lived with low duty ratio, which agrees with (21).

Section S5. Estimates of Γu from literature

All parameters, except the shear friction coefficient, have been experimentally measured for

an axoneme or at least for microtubules in the existing literature as mentioned in the main

text. There is uncertainty in the value of Γu. Following (table S1) are the values used for this

coefficient for constructing active filament models in the literature, except for the last entry

which is an experimental study on shear elasticity.

We note that the exact value of this coefficient does not affect the existence of oscillation in

our theoretical model (fig. S4) rather it modulates the magnitudes of the viscoelastic response

coefficients of the active stress. The sliding friction coefficient Γu appears in the dimensionless

dynamical equation as the ratio νκ/νu. Variation of νκ/νu implies variation in Γu because

all parameters except Γu are experimentally known for an axoneme/MT. Figure S4 shows that

unstable oscillations exists for νκ/νu ∈ [0.1, 50]. Correspondingly, the varation of Γu in this

range is [10−7, 0.5× 10−4] Ns/m.

Movie caption

Movie S1. Movie of an isolated and reactivated axoneme in presence of tracers. High speed

phase contrast movie of a reactivated and clamped Chlamydomonas axoneme at 60 µM ATP in

presence of 200 nm tracer particles. Scale bar, 5 µm.



Reference Γu [×10−6] Comparison of shear friction with elasticity
Ns/m

Brokaw (28) 0.06-0.51 negligible compared to elastic terms
Murase-Shimizu (29) 30 very high compared to elastic terms,

overdamping the system
Bayly-Wilson (43) 0.5 negligible compared to elastic terms
Bayly-Dutcher (31) 0.16 negligible compared to elastic terms
Ingmar Riedel (27) 10 comparable and competing with elastic terms, X

Minoura-Yagi- 365 very high compared to elastic terms,
Kamiya (24) overdamping the system*

*Obtained from digitizing Fig. 5 of (24), and fitting a creep response function for Kelvin-Voigt
model of viscoelasticity.

Table S1: Possible values of shear friction coefficient from the literature. Shear friction
coefficient from existing literature and reasons for neglecting/accepting them.



Time = 1 Time = 1211Time = 1 Time = 1211

A B

C D

Fig. S1: Active filaments driven by slip at boundary vs driven internally by motors. (A, B)
Flow fields of a planar flexible beating of a clamped filament, consisting of chemomechanically
active beads, at two instants of the oscillation cycle, adapted from Supplementary video 2 in
(36). (C, D) Computed flow fields using slender body approximation and resistive force theory
(unbounded flow) where the filament positions were extracted from the video. The mismatch
between (A-C) and (B-D) imply that the filament must not be internally driven instead slip
driven as expected of a phoretic chain. The colorbars to the right of (C) and (D) represents the
normalized speed.



(b)A B C

D E F

Fig. S2: Chebyshev differentiation of traveling wave parameters. (A) Amplitude (θ0) and
(B) phase (φ) of the traveling wave parameterization to θ are plotted in cyan circles. Inter-
polation to them for different Chebyshev polynomial orders N almost converges to the actual
value. First order Chebyshev differentiation of (C) θ0 and (D) φ with respect to s for different
polynomial orders. Second order Chebyshev differentiation of (E) θ0 and (F) φ with respect to
s for different polynomial orders. Legends of (C-F) are shown beside (C).



−gt

Fig. S3: Tension forces in the filament. Space-time plot of the tension force i.e. tangential
component of the stress resultant, along the filament for three beat cycles. The length and time
scales are lκ and 1/νh. The colorbar represents its magnitude, with the force scale EI/l2κ =
80 pN.
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Fig. S4: Existence of oscillations with varying sliding friction coefficient. Oscillatory nature
of the complex frequency, z in the parameter space (b3, b1,νκ/νu) for the fundamental mode, q1.
No oscillatory solutions exist in the white regions. The range of νκ/νu ∈ [0.1, 50] corresponds
to Γu ∈ [10−7, 0.5× 10−4] Ns/m (considering the value of νκ to be fixed at 375 Hz). The blue
region of unstable oscillations for all these values of Γu indicate that the magnitude of Γu does
not affect the existence of oscillations.
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