DFT Study of C-C and C-N coupling on a quintuple-bonded Cr₂ template: MECP (Minimum Energy Crossing Point) Barriers Control Product Distribution

Sagar Ghorai and Eluvathingal D. Jemmis*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012

Figure S1. Natural orbitals of ¹1b obtained from CASSCF (12e, 11o) calculation on the DFT optimized geometry considering def2-tzvp basis set for all atoms. Type of orbitals with their orbital occupation numbers are given in parenthesis.

Figure S2. Important bond length comparison between X-ray data and optimize bond parameter of model complexes.

Figure S3. Ground state electronic structure description of the core of complex **3b** i.e. $L_2Cr_2[C_4(NMe)_4]$ (L = diimine ligand, Scheme 1) with important α and β type Kohn Sham molecular orbitals.

Figure S4. Ground state electronic structure description of the core of complex **4b** i.e. $L_2Cr_2[C_6(NMe)_6]$ (L = diimine ligand, Scheme 1) with important α and β type Kohn Sham molecular orbitals.

Figure S5. The relative stabilities of different spin states using M06-L functional with LANL2DZ basis set for Cr and 6-31G(d) basis set for other atoms and dispersion corrected functional BP86-GD3BJ with def2-tzvp basis set for Cr and 6-31G(d) basis set for other atoms; (a) Core of **3b**, (b) **3b**, (c) **4b** and (d) **5b**. N.C. stands for non-convergence.

Figure S6. Free energy (kcal/mol) profile diagram for the formation of ¹**2b** starting from ¹**1b** at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms. (a) HOMO of ¹**1b**; (b) HOMO of ¹**INT1**.

Figure S7. Energy (kcal/mol) profile diagram for the scanning pathways wherever transition states are not located due to flat nature of the PES at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms. (a) ¹1b to ¹INT1; (b) ¹INT1 to ¹INT2; (c) ¹INT3 to ¹INT4; (d) ¹INT6 to ¹INT7; and (e) ¹INT7 to ¹INT8. In all cases bond scanning are performed. The starting and end bond distances for different scanning pathways are given in the figure with step size (in Å) values in parenthesis.

Figure S8. Free energy (kcal/mol) profile diagram for the formation of C-C coupled intermediates (⁵INT19 and ⁵INT21) starting from ¹INT4 at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms. The relative energy between ¹INT15 and MECP1, (ΔE), is the electronic energy difference.

Figure S9. Free energy (kcal/mol) profile diagram for the formation complex ⁵**5b** from cis intermediate ⁵**INT19** at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms. Direct pathway is highlighted by red color.

Figure S10. Energy (kcal/mol) profile diagram for the scanning pathways wherever transition states are not located due to flat nature of the PES at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms. (a) ⁵INT19 to ⁵INT22 and (b) ⁵INT24 to ⁵INT25. In all cases bond scannings are performed. The starting and end bond distances for different scanning pathways are given in the figure with step size (in Å) values in parenthesis.

Figure S11. Free energy profile for the C-C coupling pathway leading to ⁷3b from ⁵INT27 at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms.

Figure S12. Free energy profile for the C-C coupling pathway leading to ⁵INT43 from ⁵INT21 at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms.

Figure S13. Free energy profile for the C-C coupling pathway leading to 7 4b from 5 INT43 at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms.

Figure S14. Energy (kcal/mol) profile diagram for the scanning pathways wherever transition states are not located at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms. (a) ⁵INT21 to ⁵INT35 and (b) ⁵INT45 to ⁵INT46. In all cases bond scanning are performed. The starting and end bond distances for different scanning pathways are given in the figure with step size (in Å) values in parenthesis.

Figure S15. Free energy profile for the hypothetical C-H activation pathway from ⁵INT40 to give ⁵INT53 at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms. Discussion: ⁵INT43 is thermodynamically more stable than ⁵INT53 by 10.2 kcal/mol. ⁵INT53 could also be a possible product but was not observed experimentally.

Structure	WBI	Structure	WBI	Structure	WBI	Structure	WBI
¹ 1b	3.90	¹ INT4	1.99	¹ INT8	1.05	⁵ INT16	0.23
¹ INT1	2.69	¹ INT5	2.42	¹ INT13	2.26	⁵ INT17	0.22
¹ INT2	2.49	¹ INT6	2.40	¹ INT14	2.41	⁵ INT18	0.22

¹INT15

2.22

⁵INT20

0.30

2.07

¹INT7

¹INT3

2.44

Table S1. WBI (Wiberg Bond Index) for intermediates with short Cr-Cr distances at M06L level of theory with LANL2DZ basis set for Cr and 6-31G(d) basis set for all other atoms.