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Nonmutual torques and the unimportance of motility for long-range order in two-dimensional flocks
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As the constituent particles of a flock are polar and in a driven state, their interactions must, in general, be fore-
aft asymmetric and nonreciprocal. Within a model that explicitly retains the classical spin angular momentum
field of the particles we show that the resulting asymmetric contribution to interparticle torques, if large enough,
leads to a buckling instability of the flock. More precisely, this asymmetry also yields a natural mechanism for
a difference between the speed of advection of polarization information along the flock and the speed of the
flock itself, concretely establishing that the absence of detailed balance, and not merely the breaking of Galilean
invariance, is crucial for this distinction. To highlight this we construct a model of asymmetrically interacting
spins fixed to lattice points and demonstrate that the speed of advection of polarization remains nonzero. We
delineate the conditions on parameters and wave number for the existence of the buckling instability. Our theory
should be consequential for interpreting the behavior of real animal groups as well as experimental studies of
artificial flocks composed of polar motile rods on substrates.
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I. INTRODUCTION

In the classic models of flocking [1,2] and much of the later
literature [3] each agent is assumed to adjust its direction of
motion to the mean of its neighbors including itself, plus a
random error. It has recently become clear [4,5] that, on time
and lengthscales relevant to observations on real bird flocks,
the inertial dynamics of this reorientation must be explicitly
taken into account, via a classical spin angular momentum on
which the aligning interaction acts as a torque [6]. This inertial
effect was shown [4,7,8] to give rise, on intermediate length
scales [9], to turning waves reminiscent of those predicted
for inertial flocks in fluids [10] or rotor lattices [11]. On
the longest scales, where damping by the ambient medium
overcomes inertia, the dynamics is effectively described by
the Toner-Tu [2] equations.

However, in [4,7] the aligning field was implicitly taken to
arise from an effective Hamiltonian, so the interactions were
perfectly mutual. A pair of birds exerted opposing torques
of equal magnitude on each other, conserving spin angular
momentum. This is, in principle, unduly restrictive: interac-
tions not governed by an energy function are permitted in
systems out of thermal equilibrium [12–14], and the dynamics
takes place in contact with an ambient medium with which
the birds can exchange both angular and linear momentum.
Indeed, self-propulsion consists precisely in drawing linear
momentum from the ambient medium, with directional bias
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determined by the structural polarity of the bird. In the
flocking models we consider, birds are individually achiral
and carry only a position and a vectorial orientation. Thus,
despite the possibility of drawing angular momentum from
the ambient air, self-propelling activity does not lead to a
net persistent rotational motion of an individual bird [15].
Transient chirality and, hence, spontaneous rotation can arise
only through interaction between birds. Consider a pair of
birds flying one ahead of the other. The basic assumption of
flocking models is that if the velocity vectors of the birds
depart slightly from being parallel, an aligning torque arises.
Each bird tries to rotate its motility direction to match that
of its neighbor, but one expects, in general, that the aligning
response of the leading bird to the trailing bird should be
different from that of the trailer to the leader (Fig. 1). Such
asymmetry of information transfer or response could arise,
inter alia, from vision [16] or airflow [17]. Our focus is distinct
from that of the authors of [18] in which pairwise asymmetry,
distributed statistically across a collection of birds, gives rise
to an ultrarapid response and relaxation, and from [19] in
which a spin-overdamped description is used from the start
[20]. In all three works, however, motility and asymmetric
aligning torques enter as two distinct manifestations of the
nonequilibrium nature of the system. Furthermore, our gen-
eral mechanism for nonmutual interaction can arise even in
nonmotile but active polar systems such as spins on a lattice.

Here we consider this physically natural asymmetry of
interaction, within the continuum description of [7] flocks
with turning inertia [4]. The interaction between birds flying
precisely side-by-side is taken to be symmetric. The asym-
metric interaction is an explicit microscopic nonequilibrium
ingredient distinct from motility in this model. To highlight
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FIG. 1. A pair of fore-aft-separated birds with misaligned ve-
locities; for reasons of vision or airflow, the bird in front is slower
to adjust its orientation. This asymmetric coupling leads to a net
rotation of the overall alignment of the birds.

this, we construct a model of spins on a lattice which interact
via nonmutual interactions and demonstrate that the equation
of motion for the magnetization is essentially equivalent to
that of the velocity of motile flocks. We also consider the
opposite situation (a model in which asymmetric interaction
is not an explicit microscopic nonequilibrium ingredient) to
demonstrate that asymmetric interactions may arise at the
macroscopic level purely due to a microscopic motility. We
construct the dynamical equations of a system of polar motile
rods on a substrate, explicitly taking the angular momentum
density into account [21], and show that an antisymmetric con-
tribution to the interaction matrix determining the reorienting
torques emerges purely due to motility and the tendency of
polarization in such systems to align with both an imposed
mean flow and its gradient. Taken together this establishes that
an asymmetric aligning interaction, either emergent or due
to an explicit microscopic interaction, is a generic property
of all active polar systems [2,19,22] and must be accounted
for. Doing so, we find that if the antisymmetric part A of the
aligning interaction exceeds a threshold |Ac| ∝ √

J where J
is the symmetric part, the uniform ordered state undergoes a
spontaneous long-wavelength buckling instability with wave
vector along the mean direction of alignment of the flock.
In other words, the effective longitudinal diffusivity for the
relaxation of the orientation of the polar phase generically
turns negative signifying a destruction of the ordered state. We
demonstrate this by constructing the hydrodynamic equation
for the velocity (or polarization) field alone, after system-
atically eliminating the fast spin angular momentum field,
obtaining an equation that has the same form as the Toner-
Tu model, as required by symmetry, but with a longitudinal
diffusivity that changes sign at a critical |Ac|. While one
may directly examine the effect of a negative longitudinal
diffusivity in the Toner-Tu model, which is the spin over-
damped limit of our model, our examination here, retaining
the spin angular momentum of the flock explicitly, provides a
physically appealing mechanism via which this may happen
and connects it to an effective or explicit antisymmetric part
of the interaction between the microscopic polar units. We
calculate the full dispersion relation implied by our model
when there is a small wave vector instability, and demonstrate

that while the imaginary part of the eigenfrequency does
turn negative at large enough wave vectors or small enough
scales, this does not lead to a mechanism for wave vector
selection unlike other active models with a diffusive instability
[23–25]: the dispersion relation features an extended wave-
vector-independent plateau before decaying at larger wave
vectors.

Before showing how we arrive at these results, a remark
is in order regarding advective effects in flocking models. In
the Toner-Tu [2] equation the velocity or the polarization field
is not advected at the same rate as the density. While it is
tempting to attribute this asymmetry simply to the absence of
Galilean invariance in the theory, both Galilean invariance and
detailed balance have to be absent for this effect to emerge,
as was demonstrated in [26]. For a stable flock, i.e, A < Ac,
the dynamics implied by our theory on long timescales is
equivalent to the Toner-Tu equations, with the coefficient of
the advective term shifted by a contribution proportional to A.
Thus, through the connection to an explicitly nonequilibrium
aligning interaction, our results also provide a physically clear
and appealing demonstration of the role of broken detailed
balance in dictating distinct advection speeds for the density
and the polarization or velocity fields. The antisymmetric cou-
pling thus plays a dual role, providing a natural mechanism for
a difference between the speeds of information transfer about
orientation and density and, if large enough, destabilizing the
flock. The role of the antisymmetric coupling in leading to
different speeds of orientation and density advection is best
understood in a system without a motility (polar spins on a
lattice) in which the sole presence of nonmutual torques leads
to the self-advection of the polarization field, a well-known
feature of flocking models normally associated with motility
[22], without any mass motion.

We now discuss how we obtain these results. In Sec II we
arrive at the continuum equations for a flock with asymmetric
aligning interactions by starting with a microscopic model in
which it is an explicit ingredient. We also demonstrate that a
microscopic model of immotile spins on a lattice interacting
via asymmetric interactions has a continuum equation for the
magnetization that is equivalent to the velocity equation of
a flock in which the number of flockers is not conserved. In
Sec III we consider the dynamics of a system of motile polar
rods on a substrate, without explicit microscopic antisymmetric
interactions [27], retaining the dynamics of the spin angular
momentum and demonstrate that motility induces such an
effective antisymmetry in the continuum equations. Then in
Sec. IV, we discuss the linear stability of a flock with an an-
tisymmetric contribution to the aligning torque. We conclude
with a summary of our findings in Sec. V.

II. MICROSCOPIC MODEL

Consider a flock in the xy plane. Let the ith bird have
velocity vα ≡ v0v̂α with fixed magnitude v0 and classical
“spin” angular momentum sα , about its center of mass, along
ẑ. Let us describe the aligning interaction of neighboring birds
as a torque

ṡi =
∑

j

Ji j v̂i × v̂ j (1)

052601-2



NONMUTUAL TORQUES AND THE UNIMPORTANCE OF … PHYSICAL REVIEW E 101, 052601 (2020)

due to birds j neighboring i, which rotates the direction of the
velocities

v̇i = si

χ
× vi, (2)

where χ is a rotational inertia [4,7]. As remarked above we
must allow for processes that do not conserve angular momen-
tum [28]. Specifically, we must allow for the possibility that
the coupling Ji j is nonsymmetric. The result is that the rate at
which bird i turns to align with j differs from that at which j
turns to align with i. Such nonreciprocal torques are analogous
to an antisymmetric exchange coupling [29,30]. They violate
angular momentum conservation while preserving rotation
invariance because the aligning field does not arise from
an energy function [31] and is under no obligation to do
so. Making the physically reasonable approximation that the
interactions of birds are left-right symmetric implies that Ji j

should have an antisymmetric part when birds i and j are
one behind the other (possibly through polar asymmetries
of airflow or vision) and not when they are side-by-side. Of
course, even the symmetric part of Ji j should, in general, be
anisotropic and should thus differ for longitudinal and lateral
neighbors. However, this latter asymmetry is not of much
consequence for the issues considered here; at least within a
linearized theory it can be removed by anisotropic rescaling
of coordinates.

With these considerations, the total change of the spin
angular momentum of a bird i, interacting with all other birds
j in a neighborhood Ri around it is

ṡi + η

χ
si =

∑
r j∈Ri

[J̃ + Ã(v̂i · r̂i j )]v̂i × v̂ j, (3)

where η is the friction with the ambient medium. We examine
the dynamics of two particles interacting via this asymmetric
interaction in Appendix A. One distinctive feature of the
two-particle dynamics of (1) and (2), when compared to
the case of symmetric interactions, can, however, be seen
immediately: if the asymmetry is so large that Ā > J̄ , particles
tend to align with those in front of them while tending to
anti-align with those directly behind them. Therefore, two
back-to-back particles will experience a torque which will
reinforce their anti-alignment, in contrast to a model with a
purely symmetric interaction. However, it could be argued that
this distinction, while important in a model without motility,
may be less consequential in a motile system (two back-to-
back particles would move in opposite directions out of each
others interaction range and, therefore, would stop interacting
almost immediately) with a particle interacting longer with
those in front of it than those behind it, on average, purely
due to motility. Therefore, to examine whether asymmetric
aligning torques have any qualitative effect on the dynamics of
a flock, we now construct the continuum equations of motion
for this system.

We define the density ρ(x, t ) = ∑
i δ(x − xi ), the spin

angular momentum density s(x, t ) = ∑
i siδ(x − xi ), and the

velocity (not the momentum density) or equivalently the local
polarization as

v(x, t ) =
∑

i viδ(x − xi )∑
i δ(x − xi )

. (4)

A favored mean speed v0 in the coarse-grained model is
implemented through a potential

U = 1

2

∫
x

[
−v · v + 1

2v2
0

(v · v)2 + K (∇v)2

]
, (5)

where we also additionally include an elastic term that penal-
izes gradients in v. In terms of these coarse-grained variables,
the equations of motion have the form

Dtρ = −ρ∇ · v, (6)

Dt v = 1

χ
s × v − 1

ρ
∇ f (ρ) − �v

δU

δv
, (7)

where f (ρ) is a function of the density and �v is a kinetic
coefficient,

Dt s = A
v3

0

v × (v · ∇v) + J

v2
0

v × ∇2v + JA

v4
0

v × [(v · ∇ )2v]

− η

χ
s, (8)

where Dt = ∂t + v · ∇ is the material derivative, without the
possibility at this stage of an arbitrary advection coefficient,
and the antisymmetric coupling A acts between fore-aft
neighbors as defined locally by v. In going from (3), which has
the form of a difference equation to the continuum differential
equation for the coarse-grained spin angular momentum (8),
we have implicitly assumed that the interaction neighborhood
of a bird is local and based on distance, and thus introduced
a mean interbird spacing a ∼ ρ

−1/d
0 , where ρ0 is the mean

density and d is the dimensionality, in terms of which J =
a2J̃ ∼ ρ

−2/d
0 J̃ and A = 2aÃ ∼ 2ρ

−1/d
0 Ã. The ratio J/A thus

has units of length. Equations (7) and (6) are as in the original
inertial spin model [4], but, crucially, (8) has a qualitatively
new term Av̂ × ∂‖v̂ from the antisymmetric coupling, where
∂‖ = v̂ · ∇. We also introduced a term ∝JA which arises from
an allowed anisotropic contribution to the symmetric coupling
J . In equilibrium, A has to be 0 and both J and JA have to
arise from the potential in (5); i.e., J|eq = K and JA|eq = 0 for
the potential defined by (5). To obtain an anisotropic contri-
bution to the interaction, one has to introduce an anisotropic
energy cost for gradients in v in equilibrium. However, in the
nonequilibrium model we consider here, J and JA should be
considered to be arbitrary coefficients which are not obliged
to have any relation with K , the energy cost for gradients in v.

Note that a spin dynamics of the form (3) requires polarity
but not motility. To see this more clearly, take v̂i to be the
direction of the X–Y spin permanently assigned to site i on
a lattice with r̂i j being one of the lattice vectors and the
summation over Ri denoting a sum over nearest neighbors.
Then, the coarse-grained variable v(x, t ) has the interpretation
of the polarization of this spin system. The equation of motion
for v, replacing (7), in this case is

∂t v = 1

χ
s × v − �v

δU

δv
. (9)

Since there is no mass motion and density variation, due to
the spins being associated with lattice points, the material
derivative is replaced by a simple time derivative and the
gradient of density in (7) is absent. Similarly, there is no
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density equation and the equation of motion for the spin
angular momentum is simply (8) with Dt replaced by ∂t

[32]. However, while the equations of motion are similar, we
emphasize that the physical situation that this set of equations
model is very different from the one described by (7), (8), and
(6); the last of these deals with the dynamics of a motile flock
with asymmetric interaction while this with a static spins on a
lattice which exert nonmutual torques on each other.

III. ADSORBED ACTIVE POLAR LIQUID CRYSTALS
WITH SPIN

In the last section we considered a model in which individ-
ual birds have explicitly asymmetric interactions. However,
the continuum equations that we arrived at also describe
the collective dynamics of aligning motile polar rods on a
substrate, such as those in [27] or multiple other systems
described using the Vicsek model in which the microscopic
polar, aligning interaction is purely due to contact mechanics
and, therefore, symmetric [33]. In other words, the breaking
of time-reversal invariance through motility [26] generates an
asymmetric effective interaction even when the microscopic
interaction of the constituents is purely symmetric as it arises
from a pair potential. To see this, we start with a theory of
polar liquid crystal hydrodynamics [34] modified to include
the dynamics of spin angular momentum [21] and a momen-
tum sink. We discuss this theory in detail in Appendix B, and
point out in the main text how an antisymmetric contribution
effectively emerges due to the motility from this descrip-
tion. We construct the coupled hydrodynamic equations for
separate velocity and orientation fields u and v and spin
angular momentum density field s, together with continuity
∂tρ + ∇ · (ρu) = 0 for the density field ρ

Dt v = 1

χ
s × v − �vh − �′

u

|v|2 v(v · u), (10)

Dt s = −v × h + �ωω − η

χ
s − �Dv × (v · D)

+�′
Dv × (∇ · D) − �u(v × u), (11)

where D = [∇u + (∇u)T ]/2 is the symmetric part of the
velocity gradient, ω = (∇ × u)/2 is the vorticity �ω and
η/χ govern the relaxation of the spin angular momentum
to the fluid vorticity and the damping of s by the substrate
respectively, and the term with the coefficient �u denotes the
torque exerted on the polarization by an imposed flow. The
equation of motion for the velocity field is

ρ(∂t + u · ∇ )u + �u = ζv + · · · , (12)

where � denotes damping by a substrate and the ellipsis
denotes terms arising from pressure, viscosity, and
order-parameter stresses. Equations (10) and (11) are exactly
the equations that one would have obtained for a uniaxial polar
liquid crystal on a substrate with a vector orientational order
parameter v. That the system is intrinsically nonequilibrium
enters only at one point: the forcing term ζv in (12). If
one integrated out s, by taking its dynamics to be fast, the
two terms with the coefficients �u and �′

u would yield the
“weathercock” term [27] familiar from theories of polar
liquid crystals on substrates [26,35,36]. Further, �ω and �D

together would yield the flow alignment term familiar from
theories of nematic liquid crystal [21,37,38] in this limit. If
we now take the opposite limit, which is relevant for inertial
spin models, and eliminate u in favor of v, u ∼ (ζ/�)v, it
is immediately obvious that a term of the form v × (v · ∇v)
in the Dt s equation emerges via the term ∝�D in (11). This
has exactly the form of the antisymmetric coupling discussed
above, though no microscopic antisymmetric interaction is
implied in this case. Furthermore, it is clear that extra active
contributions to the symmetric coupling also arise from the
�′

D term, when u is replaced by (ζ/�)v. This emergence of
an effective asymmetric interaction due to motility can be ra-
tionalized as follows: since the particles move in the direction
they are pointing in, they move towards the particles in front
of them and away from those that are behind them. Since the
interaction range is finite, the particle on average interacts
for a longer time with the particles in front of it. Therefore,
when the particles motion is averaged over a coarse-graining
time, an effective asymmetric interaction should emerge (in
the sense it should on average be more affected by particles in
front of it than behind it) since, on average, particles in front
of it should remain in its neighborhood for longer.

IV. STABILITY ANALYSIS

The wave-vector-independent damping ∝η in (8) or the
equation obtained by replacing u by (ζ/�)v in (11) im-
plies that s is a fast variable, relaxing on nonhydrodynamic
timescales to a value determined by v and ρ. Therefore, our
model which has two true hydrodynamic quantities (trans-
verse fluctuations of broken rotational symmetry and con-
served density) must belong to the Toner-Tu universality class.
In other words, upon eliminating s, one should obtain the
equations of motion first discussed in [39]. We use (7) and
(8) to demonstrate this explicitly. A formal solution of s in
terms of a function of v can be obtained from (8) as

s = χ

η

[
1 +

∞∑
n=1

(−χ

η

)n

Dn
t

][A
v3

0

v × (v · ∇v)

+ J

v2
0

v × ∇2v + JA

v4
0

v × [(v · ∇ )2v]

]
. (13)

We insert this solution in (7) and expand in 1/η. We calculate
the dynamics of the component of the velocity field transverse
to the mean motion, δv⊥, where ⊥ and ‖ denote the directions
perpendicular to and along the mean motion, and only retain
linear terms with up to two gradients and nonlinear terms with
two fields and one gradient (see Appendix C for details), as is
traditional in the Toner-Tu model

∂tδv⊥ +
(

1 − A
v0η

)
v · ∇δv⊥

= − 1

ρ
∂⊥ f (ρ) + J

η
∇2δv⊥ + �vK∇2δv⊥

+
(

JA

η
− χA2

η3

)
∂2
‖ δv⊥ + 2χAσ

η2
∂‖∂⊥δρ, (14)

where we wrote (v · ∇ )2 as v2
0∂

2
‖ since the other non-

linear terms originating from it are subdominant to the
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advective nonlinearity on the left-hand side (L.H.S.). Here,
σ = f ′(ρ0)/ρ0 with the prime denoting differentiation with
ρ and ρ0 being the steady state density and ρ = ρ0 + δρ.
While this equation is formally obtained via a 1/η expansion,
it is correct to all orders in 1/η at this order in gradients
and fields. It can be easily checked that higher order in 1/η

terms to do not modify the equation for Dtv⊥ at this order
in gradients and fields. The continuity equation (6) remains
unchanged. We thus recover the equation of motion for the
transverse fluctuations that are obtained from the Toner-Tu [2]
model. Interestingly, the antisymmetry parameter A provides
a natural mechanism for a coefficient different from unity
for the advection term in (14), a feature of the Toner-Tu
formulation [2], often simply ascribed to the lack of Galilean
invariance in the model. However, losing Galilean invariance
alone cannot generate such a term: the absence of detailed
balance, as signalled by A, is crucial [26]. In an equilibrium
fluid moving in contact with a momentum sink the coefficients
in the momentum and density equations must agree. Note
that A leads to a fore-aft asymmetry in the local transfer of
orientational information. It is therefore natural that it should
give rise to a disturbance speed different from the flock speed.
This becomes clearer in the spin system on a lattice discussed
at the end of Sec. II [see (9)] for which the expression for
the coarse-grained spin polarization is similar to the velocity
equation (14):

∂tδv⊥ − A
v0η

v · ∇δv⊥ = J

η
∇2δv⊥ + �vK∇2δv⊥

+
(

JA

η
− χA2

η3

)
∂2
‖ δv⊥. (15)

Note that there is no dependence on density in (15) due
to the assumption that the spins are on a lattice. This is
therefore equivalent to the equation used for the velocity
field in Malthusian Toner-Tu [40] albeit here realized not
in a motile system but on a lattice-based system [41]. We
therefore successfully constructed an on-lattice variant of the
usual flocking model, which may significantly simplify its
simulation [42]. Furthermore, the presence of an advection
term, even in this immotile system, implies that this model of
spins on a lattice must have long-range order [43] at low noise-
strengths when all the diffusive terms in (15) are stabilizing.

Both (14) and (15) demonstrate that beyond a critical value
of A

Ac ≡ η

√
J̄/χ, (16)

where J̄ = J + JA + �vKη, the effective diffusivity for lon-
gitudinal perturbations turns negative signaling a buckling
instability of the ordered phase. Such a long-wavelength in-
stability implies that one must include terms at higher order
in the wave number to stabilize the system at small scales.
Such higher order terms in the δv⊥ equation, upon eliminating
the spin variable, can be obtained using the method described
above. However, it is quite cumbersome in practice. Instead,
we examine the full mode structure (i.e., at arbitrary wave
number) implied by the equations (6), (7), and (8) and from
that obtain the different scaling regimes of the relaxation rate

as a function of wave number including, finally, the wave
numbers above which the system is stable.

To this end we linearize (6), (7), and (8) about an ordered
steadily moving state: v = v0 + δv, ρ = ρ0 + δρ, s = 0 + sẑ.
In a frame moving with the mean velocity of flock,

∂tδv⊥ = −σ∂⊥δρ + v0

χ
s + �vK∇2δv⊥, (17)

∂t s = J

v0
∇2δv⊥ + JA

v0
∂2
‖ δv⊥ + A

v0
∂‖δv⊥ − η

χ
s, (18)

∂tδρ = −ρ0∂⊥δv⊥. (19)

We first consider the dynamics in the absence of density

fluctuations, which is technically acceptable in flocks in which
birth and death keep the density fixed on average without a
strict conservation law and, as discussed earlier, also models
spins on a lattice interacting via asymmetric interaction [44],
and discuss the mode structure including the density fluctua-
tions in Appendix D. To first check that our elimination of the
spin variable presented above was consistent, we calculate the
eigenfrequencies implied by (17) and (18) in the limit of small
wave vectors, i.e., in the Toner-Tu regime

ω1 = −i
η

χ
+ A

η
k‖, (20)

ω2 = −A
η

k‖ − i

η

[
(J + �vKη)k2 + JAk2

‖ − A2χ

η2
k2
‖

]
, (21)

ω1 corresponds to the fast decay of s, at a rate η/χ in the limit

of zero wave number. Unsurprisingly, ω2 implies a buckling
instability whose effect is largest for the disturbances with
wave vectors aligned precisely along the ordering direction
since the coupling of orientation to spin angular momentum
through A enters only the modes with k‖ �= 0. For A > 0,
which corresponds to the case where a polar spin responds
more to the one ahead of it than to the one behind, we see from
(21) that the unstable disturbance travels towards the rear of
the ordered phase, which is physically reasonable.

To examine the behavior at high wave vectors, we spe-
cialize to distortions with wave vectors purely along k‖,
nondimensionalize ω̄ ≡ ωχ/η and k̄‖ ≡ (Aχ/η2)k‖ and de-
fine the nondimensional quantities α1 = �vKη3/A2χ and
α2 = (J + JA)η2/A2χ to obtain the eigenfrequencies

ω̄± = 1

2

[ − i
(
1 + α1k̄2

‖
)

±
√

−(
α1k̄2

‖ − 1
)2 + 4

( − ik̄‖ + α2k̄2
‖
)]

. (22)

Now, examining the eigenvalue ω̄+, it is easy to see that
at small k̄‖, it goes as −k̄‖ − i(α1 + α2 − 1)k̄2

‖ , i.e., has a
positive growth rate for α1 + α2 < 1 which is simply the
condition A > Ac while at large k̄‖ 
 1 it goes as −iα1k̄2

‖ +
iα2/α1 i.e., it decays as −k̄2

‖ . ω− is always stabilizing and
decays as −i at small k̄‖ and as −i(α1 + α2)/α1 at large k̄‖.
However, the crossover of Im[ω+] from a growth rate ∝k̄2

‖
at small wave vectors to a decay rate ∝k̄2

‖ at large wave
vectors passes through two intermediate scales. First, for
1/α1, 1/α2 
 k̄‖ 
 1/4, Im[ω̄+] crosses over from a growth

rate of k̄2
‖ to

√
k̄‖ , then (assuming α2 > α1) for k̄‖ > 1/α2,
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FIG. 2. Log-log plot of the absolute value of the imaginary part
of the eigenfrequency ω̄+ in (22) showing the different scaling
regimes. To distinguish stable and unstable regimes we multiply the
ordinate by sgn(Im[ω̄+]).

it becomes independent of the wave vector before finally
decaying as −k̄2

‖ for k̄2
‖ > 1/α1

√
α2 (see Fig. 2). Somewhat

unusually, the mode structure displayed in Fig. 2 and implied
by (22) passes through a k̄0

‖ plateau before decaying. Thus,
as we said in the Introduction, there is a broad band of
growing modes, instead of a sharply defined wave number
of fastest growth. Possibly therefore, the emergent patterns
beyond the linear instability will have a broad range of length
scales unlike in multiple other active systems with a diffusive
instability [23–25]. Further, it is clear from (17) to (19) that
the density fluctuations are unaffected by the orientation and
spin fields for distortions with wave vector k‖ and therefore,
the eigenfrequncies ω̄± for perturbations purely along the
ordering direction remain the same even for systems with a
fixed number of particles.

Finally, can we say something about the nonlinear dynam-
ics of this system? Within a “Malthusian” [41] approximation
(i.e., where the density has no conservation law but is constant
in the mean), the lowest order nonlinearity in (17) and (18)
arises from the antisymmetric coupling: (A/v2

0 )δv⊥∂⊥δv⊥
in the ṡ equation. This corresponds to the usual advective
nonlinearity in the Toner-Tu theory [2]. However, notice that
the flock is unstable for wave vectors along the direction of
motion, i.e., the effective longitudinal diffusivity in the Toner-
Tu regime turns negative. There can be no graphical correction
to the longitudinal diffusivity due to the advective nonlinearity
which vanishes for wave vectors along the ordering direction.
This would seem to imply that a nonlinear stabilization of
the ordered phase at large enough scales even when the linear
theory predicts an instability as in [45], via a change in sign
of the effective longitudinal diffusivity upon averaging over
small scales [46], is ruled out here. This is possibly the case.
However, we note that (i) the fact that nonlinearities cannot
renormalize the longitudinal diffusivity is only correct in the
Malthusian limit in which concentration is taken to be locally
fixed. (ii) Even for Malthusian flocks, higher order nonlin-
ear terms such as ∂⊥δv⊥∂‖δv⊥, which arises from a torque
∝v × [(∇ · v)v · ∇v], that are less relevant than the advective
nonlinearity, may nevertheless modify the effective longitu-
dinal diffusivity upon coarse-graining. We cannot, therefore,
conclusively rule out a nonlinear stabilization in active models

with asymmetric interactions. However, our preliminary sim-
ulations on microscopic spins on lattices interacting via (1)
and (2) suggest that this is not the case: instead, beyond the
threshold of the instability a family of inhomogeneous states
appear, transitioning to a statistically isotropic and homoge-
neous state at higher values of the asymmetry. We are now
working on establishing the stability of these inhomogeneous
states as well as characterizing the transition from them to the
statistically isotropic phase.

V. CONCLUSION

In this paper we demonstrated that the hallmark of flocking
models (distinct speeds of alignment information and density
disturbances) is usefully viewed as arising from a fundamen-
tally nonequilibrium antisymmetric interaction between spins,
either microscopically introduced or emergent, in a theory
that explicitly retains the nonhydrodynamic spin angular mo-
mentum field. This is most clearly evident in a model of
on-lattice spins exerting nonmutual torques on each other,
in which mass motion is forbidden, but alignment informa-
tion is advected at a nonzero speed, resulting in long-range
order. In conjunction with [26], this firmly establishes that
this feature of flocking models require both the breaking of
Galilean invariance and time-reversal symmetry. We further
established that a flock suffers a small wave number buckling
instability for sufficiently high values of this antisymmetric
interaction. Our theory should be testable in simulations of
microscopic models with inertial spin dynamics featuring
explicitly asymmetric aligning interactions [19] or in exper-
iments and mechanically faithful simulations of flocking in
motile polar rods on substrates [27] where, in principle, the
antisymmetric coupling coefficient can be measured. As the
instability sets in at long enough wavelengths, the message is
that a strong fore-aft asymmetry in sensing the orientation of
neighbours, together with a significant inertial lag in respond-
ing, is disadvantageous to the formation of large flocks. Apart
from serving as one more post facto explanation for limits on
group size, our instability mechanism should be borne in mind
when designing robotic swarms.
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APPENDIX A: TWO PARTICLE DYNAMICS

Consider two spins fixed in space. The angular dynamics
of the two spins are described by

ṡ1 + η

χ
s1 = Jv1 × v2 + A(v1 · r̂12)v1 × v2, (A1)

and

ṡ2 + η

χ
s2 = Jv2 × v1 + A(v2 · r̂21)v2 × v1, (A2)
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FIG. 3. Two fixed spins with the angle measured from the line
joining the red spin to the blue spin.

where r̂12 = −r̂21. Taking the spins v1 = (cos θ1, sin θ1) and
v2 = (cos θ2, sin θ2), where θ1 and θ2 are both measured from
the line joining the first spin to the second (see Fig. 3), these
equations become

χθ̈1 + ηθ̇1 = −J sin(θ1 − θ2) − A cos θ1 sin(θ1 − θ2), (A3)

and

χθ̈2 + ηθ̇2 = J sin(θ1 − θ2) − A cos θ2 sin(θ1 − θ2). (A4)

Defining θ̄ = θ1 + θ2 and δθ = θ1 − θ2. Then using the
trigonometric identities cos θ1 + cos θ2 = 2 cos[(θ1 +
θ2)/2] cos[(θ1 − θ2)/2] and sin θ1 + cos θ2 = −2 sin[(θ1 +
θ2)/2] cos[(θ1 − θ2)/2], we obtain

χ ¨̄θ + η ˙̄θ = −2A sin(
θ ) cos

(
θ̄

2

)
cos

(

θ

2

)
, (A5)

χ
θ̈ + η
θ̇ = −2 sin(
θ )

[
J − A sin

(
θ̄

2

)
sin

(

θ

2

)]
.

(A6)

The obvious and trivial static solution is 
θ = 0 which is
stable. The other static solutions are for 
θ = π and 
θ =
−π , i.e., spins that point away from each other. For π , to first
order in perturbation 
θ = π + ε, the linearized, overdamped
equations of motion for ε is

ηε̇ = 2ε

[
J − A sin

(
θ̄

2

)]
, (A7)

and for −π , it is

ηε̇ = 2ε

[
J + A sin

(
θ̄

2

)]
. (A8)

Thus, if A sin (θ̄/2) > J , deviations of 
θ away from π decay
and if A sin (θ̄/2) < 0 and |A sin (θ̄/2)| > J deviations of 
θ

away from −π decay. These situations correspond to the
following: take |A| > J , in which case, spins try to anti-align
with the ones behind them. Then, two spins that are back to
back with each other both have their partners behind them.
This situation is stable. It is easy to check that there is no
situation in which 
θ remains fixed, i.e., the right-hand side
(R.H.S.) of (A6) becomes 0 but θ̄ does not with the R.H.S. of
(A5) becoming a constant; this would mean that the two spins
rotate in concert, chasing each other forever, in an overdamped
system (ignoring the inertial term). Such a solution would
require the term in the square bracket in (A6) to vanish (since
sin 
θ would be a nonzero constant) for all θ̄ . However,

FIG. 4. Two motile spins making angles θ1 and θ2 measured from
a fiducial line with the angle of the line joining the two spins � also
measured from the same fiducial line.

when J < A another fixed point at θ̄ = π , sin(
θ0/2) = J/A
is possible. We check the stability of this fixed point by taking
θ̄ = π + δ and 
θ = 
θ0 + ε. The linearized, overdamped
equations of motion in this case are

ηδ̇ = δA cos

(

θ0

2

)
sin(
θ0)

= 2δA cos2

(

θ0

2

)
sin

(

θ0

2

)
= 2δJ cos2

(

θ0

2

)
,

(A9)

ηε̇ = εA cos

(

θ0

2

)
sin(
θ0)

= 2εA cos2

(

θ0

2

)
sin

(

θ0

2

)
= 2εJ cos2

(

θ0

2

)
.

(A10)

This implies that both the eigenvalues are equal and both are
positive since J > 0 implying that this fixed point is unstable.
Thus the only fixed points are at 
θ = 0 for arbitrary J and A
and 
θ = π or −π when A > J .

1. Motile overdamped spins

Now allow the spins to move in space (see Fig. 4). For
simplicity, we assume that the spins interact with the same
strength over arbitrary distances (a non-metric interaction).
The dynamics is described by

ṡ1 + η

χ
s1 = Jv1 × v2 + A(v1 · r̂12)v1 × v2, (A11)

and

ṡ2 + η

χ
s2 = Jv2 × v1 − A(v2 · r̂12)v2 × v1. (A12)

The particles also move in the direction they are pointing in:
ṙ1 = v1, ṙ2 = v2 where we have rescaled the particle speed to
1. This implies that

˙̂r12 = v1 − v2

|v1 − v2| = (cos θ1 − cos θ2)x̂ + (sin θ1 − sin θ2)ŷ√
(cos θ1 − cos θ2)2 + (sin θ1 − sin θ2)2

,

(A13)
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when v1 �= v2 and 0 when v1 = v2. Writing r12 as
R(cos �, sin �), we obtain the dynamics of � by projecting
˙̂r12 transverse to r̂12 (for θ1 �= θ2)

�̇ = − sin �(cos θ1 − cos θ2) + cos �(sin θ1 − sin θ2)√
2 − 2 cos(θ1 − θ2)

= sin(θ1 − �) − sin(θ2 − �)√
2 − 2 cos[(θ1 − �) − (θ2 − �)]

, (A14)

�̇ = 0 by definition when θ1 = θ2. The overdamped equations
for the angles are

ηθ̇1 = −J sin(θ1 − θ2) − A cos(θ1 − �) sin(θ1 − θ2) (A15)

and

ηθ̇2 = J sin(θ1 − θ2) − A cos(θ2 − �) sin(θ1 − θ2). (A16)

Defining the variables θR
1 = θ1 − � and θR

2 = θ2 − �, and
subtracting η times (A14) from (A15) and (A16), we get two
closed equations for θR

1 and θR
2 :

ηθ̇R
1 = −J sin

(
θR

1 − θR
2

) − A cos θR
1 sin

(
θR

1 − θR
2

)
− η cos

(
θR

1 + θR
2

2

)
(A17)

(for θR
1 �= θR

2 . For θR
1 = θR

2 , the last term vanishes),

ηθ̇R
2 = J sin

(
θR

1 − θR
2

) − A cos θR
2 sin

(
θR

1 − θR
2

)
− η cos

(
θR

1 + θR
2

2

)
. (A18)

Defining 
θ = (θR
1 − θR

2 )/2 = (θ1 − θ2)/2 and θt = (θR
1 +

θR
2 )/2 = (θ1 + θ2 − 2�)/2 (note the different definitions

from earlier) we finally get

ηθ̇t = −2A sin 
θ cos θt cos2 
θ − η cos θt , (A19)

η
θ̇ = −2 sin 
θ cos 
θ [J − A sin θt sin 
θ ], (A20)

for 
θ �= 0. For 
θ = 0, the final term in (A19) vanishes.
Since the final term ∝η in the R.H.S. of (A19) is not present
for 
θ = 0, it is clear that there is a line of stable fixed points
for 
θ = 0 and arbitrary θt . There are also unstable fixed

points with 
θ = π/2 an θt = π/2. The linearized equations
about this point are ηδ̇ = ηδ, ηε̇ = 2ε(J − A). For A > J , the
angular difference 
θ is stable, while the θt is unstable. Are
there dynamical states with 
θ = π/2? With 
θ = π/2 and
an arbitrary but fixed θt = θt0 , ηθ̇t = −η cos θt0 and η
θ̇ = 0.
The linear perturbation about this with θt = θt0 + δ and 
θ =
π/2 + ε leads to

ηθ̇t = −η cos θt0 + δη sin θt0 , (A21)

η
θ̇ = 2ε(J − A sin θt0 ). (A22)

Thus, when sin θt0 < 0 and A sin θt0 > J , perturbations decay
to the state with steadily increasing (at a constant rate) θt

with 
θ = π/2, i.e., with spins pointing opposite to each
other. However, recall that θt = (θ1 + θ2 − 2�)/2. Thus, this
state does not correspond to a spontaneous rotation of the two
spins, but two spins pointing away from each other and flying
away from each other. When two spins fly away from each
other at constant speeds, if they are not collinear, the angle
that a line joining them makes with a fiducial line, increases
continuously. This is the situation that this corresponds to.
This is trivial since two spins flying away from each other
would stop interacting if a distance cutoff were implemented.

Further, for |A| > J , there is a fixed point for θt = π/2 and
sin 
θ = J/A. This fixed point is still always unstable since
J > 0 and η > 0. Finally, there is another fixed point for

sin 
θ0 cos2 
θ0 = − η

2A
; sin θt0 sin 
θ0 = J

A
. (A23)

The first condition requires A > η and the second A > J .
Furthermore, it is clear from the first condition that sin 
θ0

has a sign opposite to A and from the second condition, sin θt0
is always negative. For the final fixed point, the linearized
equations are

ηδ̇ = εA cos(
θ0)(1 − 3 cos(2
θ0) cos θt0 , (A24)

ηε̇ = A sin(2
θ0)[sin 
θ0 cos θt0δ + cos 
θ0 sin θt0ε],

(A25)

or

η

(
δ̇

ε̇

)
=

(
0 A cos(
θ0)(1 − 3 cos(2
θ0) cos θt0

A sin(2
θ0) sin 
θ0 cos θt0 2A sin 
θ0 cos2 
θ0 sin θt0

)(
δ

ε

)
. (A26)

Since A sin 
θ0 sin θt0 = J > 0, 2A sin 
θ0 cos2 
θ0 sin θt0 >

0. Since the trace of the matrix is the sum of the two eigen-
values, and since this implies that the trace is positive, it
immediately implies that at least one of the two eigenvalues
is positive. Thus this fixed point is also always unstable. Thus
both for fixed and motile spins we find that when J > A, two
spins always align. When J < A, spins which are behind each
other tend to anti-align and therefore, move away from each
other, which when a distance cutoff is implemented implies
that they quickly stop interacting.

APPENDIX B: DYNAMICAL THEORY OF MOTILE POLAR
RODS, WITH SPIN ANGULAR MOMENTA, ON A

SUBSTRATE

In this Appendix we construct the dynamical equations
of motion for a system of motile polar rods on a substrate,
explicitly retaining their spin angular momenta. The dynam-
ical fields are the density ρ(x, t ), the polarization v(x, t ), the
velocity u(x, t ), and the spin angular momentum s(x, t ) [21].
The conserved equation for the density field is

Dtρ = −ρ∇ · u. (B1)
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The polarization field has the dynamical equation

Dt v = 1

χ
s × v − �vh + λ1

χ
∇ × s − �′

u

|v|2 v(v · u), (B2)

where the first term denotes the rotation of the polarization
with the angular frequency s/χ , the second relaxation to the
minimum of a standard Landau-de Gennes free energy for
polar liquid crystals [34]

F =
∫

dd r
[
−α

2
v · v + β

4
(v · v)2 + K

2
(∇v)2

+ Kp(v · v)∇ · v + γ ρ∇ · v
]

(B3)

with h = δF/δp, the third term is a second passive reactive
coupling between s and v, and the final term implies that the
magnitude of polarization changes with imposed flow. Since
this implies that the polarization field can respond to a mean
velocity and not only its gradient, it is only allowed in systems
that do not conserve momentum. The equation of motion for
the spin is

Dt s = −v × h − λ1∇ × h − �u(v × u) − �ω

(
s
χ

− ω

)

+�Dv × (v · D) + �′
Dv × (∇ · D) − η − �ω

χ
s, (B4)

where the first two terms are the reactive Onsager partners
to the terms involving s/χ in (B11), �u, �ω, �D, and �′

D are
dissipative cross-couplings with the velocity field u, where
Di j = (∂iu j + ∂ jui )/2 and ω = (∇ × u)/2, and the final dissi-
pative term is due to the friction with the substrate. The terms
proportional to �u and η are only allowed in systems that do
not conserve momentum and angular momentum

ρDt u = −�u + ζv + �u

χ
v × s + �′

u

|v|2 vv · h − ρ∇ δF

δρ

+∇ · σ, (B5)

where σ contains standard Onsager symmetric partners of the
terms �ω, �D, and �′

D in (B4) [21]. Since these terms are all
subdominant to those retained in (B5), and will be ignored in
what follows, we do not explicitly write them here.

To check the consistency of these equations, let us first
eliminate s in terms of the other fields to obtain

s ≈ −χ

η
[v × h + λ1∇ × h + �u(v × u)], (B6)

ignoring all gradient terms in the fluid velocity. This, when
replaced in the velocity and the polarization equations, yields

Dt v = 1

η
v × v × h − �vh + �u

η
v × (v × u) − �′

u

|v|2 v(v · u)

+ λ1�u

η
∇ × (v × u), (B7)

�u + �2
u

η
v × (v × u) = ζv − �u

η
v × (v × h) + �′

u

|v|2 vv · h

+ �uλ1

η
v × (∇ × h)

− ρ∇ δF

δρ
+ · · · . (B8)

These are the equations of motion for a polar motile fluid
on a substrate [26,27,35,36]. Specifically, the two terms �vh
and (1/η)v × v × h in (B7) together constitute an anisotropic
relaxation of the polarization to the minimum of the poten-
tial, the two terms (�u/η)v × (v × u) − (�′

u/|v|2)v(v · u) and
their Onsager anti-ymmetric counterparts in (B8) together
constitute an anisotropic analog of the “weathercock” term
in [35] (which has an isotropic coefficient � there), and the
term ∝∇ × (v × u) is a higher order Onsager antisymmetric
coupling between the polarization and the velocity (which
would also be forbidden in a momentum-conserved system).
The terms on the L.H.S. of (B8) constitute an anisotropic
friction and ζv is the motility (which is the only source of
activity in this model) as discussed earlier.

We now look at the opposite situation (when the veloc-
ity field is eliminated but the spin angular momentum is
retained)- as appropriate for inertial spin models. To lowest
order in gradients

u ≈ ζ

�
v + �u

χ�
v × s + �′

u

�|v|2 vv · h. (B9)

First, using this in (B1) we get

∂tρ + ζ

�
v · ∇ρ = −ρ

ζ

�
∇ · v − �u

χ�
∇ · (v × s), (B10)

where we, anticipating slightly, have only retained terms that
will have any contribution at the linear order and have not
retained a term with h since in the ordered phase, h is
subdominant to v. From (B11), we obtain

∂t v + ζ

�
v · ∇v = 1

χ
s × v − �vh − �′2

u

�|v|2 v(v · h)

+ λ1

χ
∇ × s − �′

uζ

�
v, (B11)

where we again only retained terms that have any contribution
at the linear order, and from which we see that at this stage,
both the density and the polarization fields are advected with
the same speed. Finally, the equation of motion for the spin
variable is

∂t s + ζ

�
v · ∇s

= −v × h − �2
u

χ�
v × (v × s) + �ωζ

2�
∇ × v

+ �ω�u

2χ�
∇ × (v × s) + �Dζ

2�
v ×

(
v · ∇v + 1

2
∇|v2|

)

+ �′
Dζ

2�
v × [∇2v + ∇(∇ · v)] + �D�u

2χ�
v

× [v · ∇(v × s)] − η

χ
s, (B12)

where we only retained terms that will contribute to the linear
equations, ignored terms that are higher order in gradients of
h and terms that are second order in gradients of s. This is
a generalized version of the model that we obtained earlier
from the microscopic theory. Specifically, the term that was
characteristic of antisymmetric coupling there, ∝v × [v · ∇v]
in the ṡ equation, arises here from terms that in a passive
system would lead to flow alignment. The symmetric terms
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arise both from the free energy and a higher order, polar
flow alignment term. All the terms on the R.H.S. of (B12)
containing s are dissipative, with the ones ∝�2

u/χ� and η/χ

leading to an anisotropic friction and the remaining ones to
dissipative terms at first order in gradients in s. This may seem
somewhat counterintuitive; after all, the nonfrictional dissipa-
tive terms are expected to be ∼∇2. However, in polar systems
on substrates, the momentum field and the angular momentum
fields can both have dissipative terms ∼v · ∇δF/δg and ∼v ·
∇δF/δs where F is the free energy including the kinetic terms
which in the ordered polar phase leads to linear terms ∼∂‖u in
the velocity equation and ∼∂‖s in the spin angular momentum
equation. The first order in gradient dissipative terms in s in
(B12) are essentially of this form.

To underscore the equivalence of this formulation with
the one starting from a model with microscopic antisym-
metric aligning torques, we now linearize the dynamical
equations about a state with s = 0, v = v0x̂, with v0 =√

(α + �′
uζ/�)/β, ignoring all anisotropies in the spin fric-

tion and the dissipative kinetic coefficient for the polarization
field, ignoring the first order in gradient dissipative terms in s,
transforming to a frame moving with the mean flock velocity
and defining ρ̄0 ≡ ρ0ζ/�

∂tδρ = −ρ̄0∂⊥δv⊥ + �uv0

χ�
∂⊥s, (B13)

∂tδv⊥ = v0

χ
s + �vK∇2δv⊥ − �vγ ∂⊥δρ − λ

χ
∂‖s, (B14)

∂t s = − η

χ
s +

(
K + �′

Dζv0

2�

)
∇2δv⊥ + (�ω + �Dv2

0 )ζ

2�
∂‖δv⊥

+ �′
Dζ

2�
∂2
⊥δv⊥. (B15)

This model is a more general variant of the model with in-
trinsic antisymmetric coupling and indeed, the antisymmetric
term induces a longitudinal instability, when its coefficient
(�ω + �Dv2

0 )ζ/2� is large enough. Indeed, the frequencies
for the two modes along k‖ (the density equation is decoupled
for perturbations in direction) are, to leading order in wave
vectors,

ω1 = −i
η

χ
+ v0

η

(�ω + �Dv2
0 )ζ

2�
k‖, (B16)

ω2 = −v0

η

(�ω + �Dv2
0 )ζ

2�
k‖ −

[
�vK +

(
K + �′

Dζv0

2�

)
v0

η

− 1

η3

(�ω + �Dv2
0 )ζ

2�

(
λη2 + χv2

0
(�ω + �Dv2

0 )ζ

2�

)]
k2
‖ .

(B17)

The term in the square bracket for ω2 turns negative due to
the flow alignment terms in this formulation. Note that in the
model with microscopic anisotropy, we ignored a term ∝∇ ×
s in the v̇ equation.

APPENDIX C: ELIMINATION OF THE FAST SPIN VARIABLE

To eliminate the fast spin variable, which only couples to the velocity, we start with the coupled equations

Dt v = − 1

χ
v × s − �v

δU

δv
− 1

ρ
∇ f (ρ), (C1)

and

η

χ

(
1 + χ

η
Dt

)
s = J

v2
0

v × ∇2v + A
v3

0

v × (v · ∇ )v + JA

v4
0

v × (v · ∇ )2v. (C2)

Then, a formal solution of s has the form

s = χ

η

[
1 +

∞∑
n=1

(−χ

η

)n

Dn
t

][A
v3

0

v × (v · ∇v) + J

v2
0

v × ∇2v + JA

v4
0

v × [(v · ∇ )2v]

]
, (C3)

which, when inserted into (C1) yields

Dt v = −�v

δU

δv
− 1

ρ
∇ f (ρ) − 1

η
v ×

[{
1 +

∞∑
n=1

(−χ

η

)n

Dn
t

}(
J

v2
0

v × ∇2v + A
v3

0

v × (v · ∇ )v + JA

v4
0

v × (v · ∇ )2v
)]

. (C4)

We now solve for Dt v perturbatively in 1/η and only nonlinear retain terms with at most two fields and one gradient and linear
terms with at most two gradients. To zeroth order in 1/η,

Dt v = −�v

δU

δv
− 1

ρ
∇ f (ρ) (C5)

and defining T = I − v̂v̂, Dt v to first order in 1/η reads

Dt v = −�v

δU

δv
− 1

ρ
∇ f (ρ) + 1

η
T ·

(
J∇2v + A

v0
(v · ∇ )v + JA

v2
0

(v · ∇ )2v
)

. (C6)
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To write the O(1/η2) contribution, we note that to zeroth order in gradient, −δU/δv ≈ −2δv‖v̂0 where v̂0 is the unit vector
along the ordering direction. Then, expanding the term

χ

η2
v × Dt

(
J

v2
0

v × ∇2v + A
v3

0

v × (v · ∇ )v + JA

v4
0

v × (v · ∇ )2v
)

(C7)

and replacing every instance of Dt v by its zeroth order in 1/η value, we obtain the O(1/η2) correction, restricting ourselves to
linear terms with two gradients and nonlinear ones with a single gradient and two fields

2χ�v

η2
T ·

(
J∇2δv‖v̂0 + A

v0
(v · ∇ )δv‖v̂0 + A

v0
(δv‖∂‖)v + JA

v2
0

(v · ∇ )2δv‖v̂0

)
+ 2χA f ′(ρ0)

η2ρ0
T · (∂‖∇ )δρ, (C8)

where the prime denotes differentiation with ρ and ρ0 is the steady-state density with ρ = ρ0 + δρ. To find the O(1/η3)
correction, we need to replace every instance of D2

t v in the term

−χ2

η3
v × D2

t

(
J

v2
0

v × ∇2v + A
v3

0

v × (v · ∇ )v + JA

v4
0

v × (v · ∇ )2v
)

, (C9)

with its zeroth order in 1/η value and Dt v in the term

χ

η2
v × Dt

(
J

v2
0

v × ∇2v + A
v3

0

v × (v · ∇ )v + JA

v4
0

v × (v · ∇ )2v
)

(C10)

with the O(1/η) correction to Dt v. To zeroth order in 1/η and to linear order,

D2
t v = −�uDt

δU

δv
− f ′(ρ0)

ρ0
∇Dtδρ ≈ −2�uDtδv‖v̂0 + f ′(ρ0)∇∇ · v ≈

(
4�2

uδv‖ + f ′(ρ0)

ρ0
∂‖δρ

)
v̂0, (C11)

where we only retained the lowest order in gradient terms since these are the only ones that will contribute to the final expression
for Dt v to O(1/η3) up to the order in gradients and fields we are interested in. When this expression for D2

t v is used, we obtain
the term

χ2

η3
T ·

[(
4�2

uJ∇2δv‖ + 4�2
uA

v0
(v · ∇ )δv‖ + 4�2

uJA

v2
0

(v · ∇ )2δv‖ + f ′(ρ0)A
ρ0

∂2
‖ δρ

)
v̂0 + 4�2

uA
v0

(δv‖∂‖)v
]
. (C12)

Finally, by replacing Dt v with its O(1/η) expression, we obtain only one term to second order in gradients:

−χA2

η3v2
0

T · (v · ∇ )2v. (C13)

Putting all of these together, the expression for Dt v is

Dt v = −�v

δU

δv
− 1

ρ
∇ f (ρ) + 1

η
T ·

(
J∇2v + A

v0
(v · ∇ )v + JA

v2
0

(v · ∇ )2v
)

+ 2χ�v

η2
T ·

(
J∇2δv‖v̂0 + A

v0
(v · ∇ )δv‖v̂0 + A

v0
(δv‖∂‖)v + JA

v2
0

(v · ∇ )2δv‖v̂0

)
+ 2χA f ′(ρ0)

η2ρ0
T · (∂‖∇ )δρ

+ χ2

η3
T ·

[(
4�2

uJ∇2δv‖ + 4�2
uA

v0
(v · ∇ )δv‖ + 4�2

uJA

v2
0

(v · ∇ )2δv‖ + f ′(ρ0)A
ρ0

∂2
‖ δρ

)
v̂0 + 4�2

uA
v0

(δv‖∂‖)v
]

− χA2

η3v2
0

T · (v · ∇ )2v.

(C14)

This is the analog of the Toner-Tu equation that is obtained when the spin angular momentum is eliminated. Note that δv‖ is
not a slow variable. In fact, for the U we chose, δv‖ ∼ δv2

⊥ (i.e., it does not depend on density fluctuations). Therefore, all the
nonlinear terms involving δv‖ are subdominant to δv⊥∂⊥δv⊥. Therefore, projecting this equation transverse to the mean velocity,
we obtain (14) of the main text where we retain the linear term till second order in gradients and nonlinear terms with two slow
fields and one gradient. Note that while the equation for ∂tv⊥ was obtained through an expansion in 1/η, at this order in gradients
and fields, it is correct to all orders in 1/η. This is because it can be easily checked that no higher order 1/η contribution can
lead to a term at this order in gradients and fields in the equation for Dtv⊥.

APPENDIX D: MODE STRUCTURE FOR THE CONSERVED DENSITY MODEL

As discussed in the main text, the equations of motion for a model with asymmetric coupling and a conserved density is

∂tδv⊥ = −σ∂⊥δρ + v0

χ
s + K̄∇2δv⊥, (D1)
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where K̄ = �vK ,

∂t s = J

v0
∇2δv⊥ + JA

v0
∂2
‖ δv⊥ + A

v0
∂‖δv⊥ − η

χ
s, (D2)

∂tδρ = −ρ0∂⊥δv⊥. (D3)

This implies the mode structure

ω1 = −i
η

χ
+ A

η
k‖, (D4)

ω2 = − A
2η

k‖ +
√
A2k2

‖ + 4η2ρ0σk2
⊥

2η

+ i

2η3

⎡
⎣−(J + K̄η)η2k2 − (JAη2 − A2χ )k2

‖ + Ak‖
(J + K̄η)η2k2 + (JAη2 − A2χ )k2

‖ − 2ρ0η
2χσk2

⊥√
A2k2

‖ + 4η2ρ0σk2
⊥

⎤
⎦, (D5)

ω3 = − A
2η

k‖ −
i
√
A2k2

‖ + 4η2ρ0σk2
⊥

2η

+ i

2η3

⎡
⎣−(J + K̄η)η2k2 − (JAη2 − A2χ )k2

‖ − Ak‖
(J + K̄η)η2k2 + (JAη2 − A2χ )k2

‖ − 2ρ0η
2χσk2

⊥√
A2k2

‖ + 4η2ρ0σk2
⊥

⎤
⎦. (D6)

From this, we immediately see that for wave vectors along the ordering direction, ω2 vanishes and ω1 and ω3 yield the mode
structure derived for a model without density fluctuations in the main text for k‖. This is because along k‖, the density equation
decouples and since we had not included a diffusive term in the density equation, its relaxation rate vanishes.

[1] T. Vicsek et al., Phys. Rev. Lett. 75, 1226 (1995); T. Vicsek and
A. Zafeiris, Phys. Rep. 517, 71 (2012).

[2] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998); J. Toner, Y.
Tu, and S. Ramaswamy, Ann Phys (NY) 318, 170 (2005).

[3] G. Grégoire and H. Chaté, Phys. Rev. Lett. 92, 025702 (2004);
H. Chaté, F. Ginelli, G. Gregoire, and F. Raynaud, Phys. Rev.
E 77, 046113 (2008); P. Romanczuk et al., Eur. Phys. J. Spe-
cial Topics 202, 1 (2012); A. Baskaran and M. C. Marchetti,
Phys. Rev. E 77, 011920 (2008); H. Chaté and B. Mahault,
arXiv:1906.05542; H. Chaté, Annu. Rev. Cond. Matt. 11, 189
(2020), F. Peruani, A. Deutsch, and M. Bär, Eur. Phys. J. Spec.
Top. 157, 111 (2008).

[4] A. Cavagna et al., J. Stat. Phys. 158, 601 (2015); A. Attanasi
et al., Nat. Phys. 10, 691 (2014).

[5] For general considerations on inertia in active systems see H.
Löwen, J. Chem. Phys. 152, 040901 (2020).

[6] K. H. Nagai et al., Phys. Rev. Lett. 114, 168001 (2015).
[7] A. Cavagna, I. Giardina, T. S. Grigera, A. Jelic, D. Levine,

S. Ramaswamy, and M. Viale, Phys. Rev. Lett. 114, 218101
(2015).

[8] X. Yang and M. C. Marchetti, Phys. Rev. Lett. 115, 258101
(2015).

[9] For a similar effect in adsorbed fluids, see S. Ramaswamy and
G. F. Mazenko, Phys. Rev. A 26, 1735 (1982).

[10] R. A. Simha and S. Ramaswamy, Phys. Rev. Lett. 89, 058101
(2002).

[11] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics, (Cambridge University Press, New Delhi,
1998), Chap. 8.

[12] S. Saha, R. Golestanian, and S. Ramaswamy, Phys. Rev. E 89,
062316 (2014).

[13] S. Saha, S. Ramaswamy, and R. Golestanian, New J. Phys. 21,
063006 (2019).

[14] A. V. Ivlev, J. Bartnick, M. Heinen, C.-R. Du, V. Nosenko, and
H. Löwen, Phys. Rev. X 5, 011035 (2015).

[15] A. Maitra and M. Lenz, Nat. Commun. 10, 920 (2019).
[16] https://en.wikipedia.org/wiki/Bird_vision.
[17] See, e.g., P. Henningsson and A. Hedenström, J. Exp. Biol. 214,

382 (2011).
[18] A. Cavagna, I. Giardina, A. Jelic, S. Melillo, L. Parisi,

E. Silvestri, and M. Viale, Phys. Rev. Lett. 118, 138003
(2017).

[19] Q.-S. Chen, A. Patelli, H. Chaté, Y.-Q. Ma, and X.-Q. Shi, Phys.
Rev. E 96, 020601(R) (2017).

[20] Nonmutual interactions were considered numerically earlier
both in the context of models with a polarity or velocity aligning
mechanism such as M. Durve and A. Sayeed, Phys. Rev. E 93,
052115 (2016); P. T. Nguyen, S.-H. Lee, and V. T. Ngo, ibid.
92, 032716 (2015); and in the context of models in which there
is no velocity alignment in L. Barberis and F. Peruani, Phys.
Rev. Lett. 117, 248001 (2016). Further, asymmetric interaction
between active colloids have also been studied extensively; see
R. Soto and R. Golestanian, ibid. 112, 068301 (2014) for an
example.

[21] H. Stark and T. C. Lubensky, Phys. Rev. E 72, 051714
(2005).

[22] M. C. Marchetti et al., Rev. Mod. Phys. 85, 1143 (2013).
[23] A. Maitra et al., Proc. Natl. Acad. Sci. USA 115, 6934 (2018).

052601-12

https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1016/j.aop.2005.04.011
https://doi.org/10.1103/PhysRevLett.92.025702
https://doi.org/10.1103/PhysRevLett.92.025702
https://doi.org/10.1103/PhysRevLett.92.025702
https://doi.org/10.1103/PhysRevLett.92.025702
https://doi.org/10.1103/PhysRevE.77.046113
https://doi.org/10.1103/PhysRevE.77.046113
https://doi.org/10.1103/PhysRevE.77.046113
https://doi.org/10.1103/PhysRevE.77.046113
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1103/PhysRevE.77.011920
https://doi.org/10.1103/PhysRevE.77.011920
https://doi.org/10.1103/PhysRevE.77.011920
https://doi.org/10.1103/PhysRevE.77.011920
http://arxiv.org/abs/arXiv:1906.05542
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1140/epjst/e2008-00634-x
https://doi.org/10.1140/epjst/e2008-00634-x
https://doi.org/10.1140/epjst/e2008-00634-x
https://doi.org/10.1140/epjst/e2008-00634-x
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1007/s10955-014-1119-3
https://doi.org/10.1038/nphys3035
https://doi.org/10.1038/nphys3035
https://doi.org/10.1038/nphys3035
https://doi.org/10.1038/nphys3035
https://doi.org/10.1063/1.5134455
https://doi.org/10.1063/1.5134455
https://doi.org/10.1063/1.5134455
https://doi.org/10.1063/1.5134455
https://doi.org/10.1103/PhysRevLett.114.168001
https://doi.org/10.1103/PhysRevLett.114.168001
https://doi.org/10.1103/PhysRevLett.114.168001
https://doi.org/10.1103/PhysRevLett.114.168001
https://doi.org/10.1103/PhysRevLett.114.218101
https://doi.org/10.1103/PhysRevLett.114.218101
https://doi.org/10.1103/PhysRevLett.114.218101
https://doi.org/10.1103/PhysRevLett.114.218101
https://doi.org/10.1103/PhysRevLett.115.258101
https://doi.org/10.1103/PhysRevLett.115.258101
https://doi.org/10.1103/PhysRevLett.115.258101
https://doi.org/10.1103/PhysRevLett.115.258101
https://doi.org/10.1103/PhysRevA.26.1735
https://doi.org/10.1103/PhysRevA.26.1735
https://doi.org/10.1103/PhysRevA.26.1735
https://doi.org/10.1103/PhysRevA.26.1735
https://doi.org/10.1103/PhysRevLett.89.058101
https://doi.org/10.1103/PhysRevLett.89.058101
https://doi.org/10.1103/PhysRevLett.89.058101
https://doi.org/10.1103/PhysRevLett.89.058101
https://doi.org/10.1103/PhysRevE.89.062316
https://doi.org/10.1103/PhysRevE.89.062316
https://doi.org/10.1103/PhysRevE.89.062316
https://doi.org/10.1103/PhysRevE.89.062316
https://doi.org/10.1088/1367-2630/ab20fd
https://doi.org/10.1088/1367-2630/ab20fd
https://doi.org/10.1088/1367-2630/ab20fd
https://doi.org/10.1088/1367-2630/ab20fd
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1103/PhysRevX.5.011035
https://doi.org/10.1038/s41467-019-08914-7
https://doi.org/10.1038/s41467-019-08914-7
https://doi.org/10.1038/s41467-019-08914-7
https://doi.org/10.1038/s41467-019-08914-7
https://en.wikipedia.org/wiki/Bird_vision
https://doi.org/10.1242/jeb.050609
https://doi.org/10.1242/jeb.050609
https://doi.org/10.1242/jeb.050609
https://doi.org/10.1242/jeb.050609
https://doi.org/10.1103/PhysRevLett.118.138003
https://doi.org/10.1103/PhysRevLett.118.138003
https://doi.org/10.1103/PhysRevLett.118.138003
https://doi.org/10.1103/PhysRevLett.118.138003
https://doi.org/10.1103/PhysRevE.96.020601
https://doi.org/10.1103/PhysRevE.96.020601
https://doi.org/10.1103/PhysRevE.96.020601
https://doi.org/10.1103/PhysRevE.96.020601
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1103/PhysRevE.93.052115
https://doi.org/10.1103/PhysRevE.92.032716
https://doi.org/10.1103/PhysRevE.92.032716
https://doi.org/10.1103/PhysRevE.92.032716
https://doi.org/10.1103/PhysRevE.92.032716
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.112.068301
https://doi.org/10.1103/PhysRevLett.112.068301
https://doi.org/10.1103/PhysRevLett.112.068301
https://doi.org/10.1103/PhysRevLett.112.068301
https://doi.org/10.1103/PhysRevE.72.051714
https://doi.org/10.1103/PhysRevE.72.051714
https://doi.org/10.1103/PhysRevE.72.051714
https://doi.org/10.1103/PhysRevE.72.051714
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1073/pnas.1720607115
https://doi.org/10.1073/pnas.1720607115
https://doi.org/10.1073/pnas.1720607115
https://doi.org/10.1073/pnas.1720607115


NONMUTUAL TORQUES AND THE UNIMPORTANCE OF … PHYSICAL REVIEW E 101, 052601 (2020)

[24] M. M. Genkin, A. Sokolov, O. D. Lavrentovich, and I. S.
Aranson, Phys. Rev. X 7, 011029 (2017)

[25] J. Dunkel et al., New J. Phys. 15, 045016 (2013); B. Martínez-
Prat et al., Nat. Phys. 15, 362 (2019); A. Senoussi et al., Proc.
Natl. Acad. Sci. USA 116, 22464 (2019)

[26] L. P. Dadhichi, A. Maitra, and S. Ramaswamy, J. Stat. Mech.
(2018) 123201.

[27] N. Kumar et al., Nat. Commun. 5, 4688 (2014).
[28] The dynamics of the air, which does not appear explicitly

in our treatment, can be taken to balance the books in this
regard, as with linear momentum in standard “dry” flocking
models [22].

[29] This is not to be confused with the Dzyaloshinskii-Moriya
interaction; see I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241
(1958); T. Moriya, Phys Rev 120, 91 (1960).

[30] J. Das et al., Europhys. Lett. 60, 418 (2002).
[31] It should be kept in mind also that the torque is behavioral,

not mechanical, and that the birds could conceivably switch
properties such as the antisymmetry on or off according to
circumstances.

[32] If we instead consider a collection of nonmotile but spatially
diffusing polar particles with asymmetric spin interactions,
general symmetry arguments suggest that density fluctuations
will be advected by the polarization as in the Toner-Tu theory
of motile polar particles.

[33] Our use of the term symmetric and asymmetric interactions
differs from its usage in R. Großmann, I. Aranson, and F.
Peruani, arXiv:1906.00277 among other papers. These authors
use the term symmetric interaction to imply that the bare two-
body interaction potential is symmetric under particle rotation

by π . We use asymmetric interaction and nonmutual interaction
interchangeably for two-body interactions that are not derivable
from a potential and do not form an action-reaction pair.

[34] W. Kung, M. C. Marchetti, and K. Saunders, Phys. Rev. E 73,
031708 (2006).

[35] A. Maitra, P. Srivastava, M. C. Marchetti, S. Ramaswamy, and
M. Lenz, Phys. Rev. Lett. 124, 028002 (2020).

[36] T. Brotto, J.-B. Caussin, E. Lauga, and D. Bartolo, Phys. Rev.
Lett. 110, 038101 (2013).

[37] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals
(Clarendon, Oxford, 1993).

[38] D. Forster, Phys. Rev. Lett. 32, 1161 (1974); H. Stark and T. C.
Lubensky, Phys. Rev. E 67, 061709 (2003).

[39] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
[40] J. Toner, Phys. Rev. Lett. 108, 088102 (2012).
[41] L. Chen, C. F. Lee, and J. Toner, arXiv:2004.00129v1.
[42] A similar point was recently made in Ref. [41], albeit without

offering an explicit mechanism for its realisation.
[43] A regular lattice breaks rotation invariance not only in real space

but in "spin" space as well, as the order-parameter spin vector
points in real space. Rotation invariance can be restored by
averaging over an ensemble of random lattices.

[44] While the equation of motion of both s and v features the
material derivative ∂t + v · ∇ while that of the lattice model
simply has ∂t , the effect of the advection of the pattern due
to the steady-state motility of the flock is eliminated by the
transformation to the comoving frame.

[45] R. Chatterjee et al., arXiv:1907.03492
[46] C. Jayaprakash, F. Hayot, and R. Pandit, Phys. Rev. Lett. 71, 12

(1993).

052601-13

https://doi.org/10.1103/PhysRevX.7.011029
https://doi.org/10.1103/PhysRevX.7.011029
https://doi.org/10.1103/PhysRevX.7.011029
https://doi.org/10.1103/PhysRevX.7.011029
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1088/1367-2630/15/4/045016
https://doi.org/10.1038/s41567-018-0411-6
https://doi.org/10.1038/s41567-018-0411-6
https://doi.org/10.1038/s41567-018-0411-6
https://doi.org/10.1038/s41567-018-0411-6
https://doi.org/10.1073/pnas.1912223116
https://doi.org/10.1073/pnas.1912223116
https://doi.org/10.1073/pnas.1912223116
https://doi.org/10.1073/pnas.1912223116
https://doi.org/10.1088/1742-5468/aae852
https://doi.org/10.1088/1742-5468/aae852
https://doi.org/10.1088/1742-5468/aae852
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1038/ncomms5688
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1209/epl/i2002-00280-2
https://doi.org/10.1209/epl/i2002-00280-2
https://doi.org/10.1209/epl/i2002-00280-2
https://doi.org/10.1209/epl/i2002-00280-2
http://arxiv.org/abs/arXiv:1906.00277
https://doi.org/10.1103/PhysRevE.73.031708
https://doi.org/10.1103/PhysRevE.73.031708
https://doi.org/10.1103/PhysRevE.73.031708
https://doi.org/10.1103/PhysRevE.73.031708
https://doi.org/10.1103/PhysRevLett.124.028002
https://doi.org/10.1103/PhysRevLett.124.028002
https://doi.org/10.1103/PhysRevLett.124.028002
https://doi.org/10.1103/PhysRevLett.124.028002
https://doi.org/10.1103/PhysRevLett.110.038101
https://doi.org/10.1103/PhysRevLett.110.038101
https://doi.org/10.1103/PhysRevLett.110.038101
https://doi.org/10.1103/PhysRevLett.110.038101
https://doi.org/10.1103/PhysRevLett.32.1161
https://doi.org/10.1103/PhysRevLett.32.1161
https://doi.org/10.1103/PhysRevLett.32.1161
https://doi.org/10.1103/PhysRevLett.32.1161
https://doi.org/10.1103/PhysRevE.67.061709
https://doi.org/10.1103/PhysRevE.67.061709
https://doi.org/10.1103/PhysRevE.67.061709
https://doi.org/10.1103/PhysRevE.67.061709
https://doi.org/10.1103/PhysRevLett.75.4326
https://doi.org/10.1103/PhysRevLett.75.4326
https://doi.org/10.1103/PhysRevLett.75.4326
https://doi.org/10.1103/PhysRevLett.75.4326
https://doi.org/10.1103/PhysRevLett.108.088102
https://doi.org/10.1103/PhysRevLett.108.088102
https://doi.org/10.1103/PhysRevLett.108.088102
https://doi.org/10.1103/PhysRevLett.108.088102
http://arxiv.org/abs/arXiv:2004.00129v1
http://arxiv.org/abs/arXiv:1907.03492
https://doi.org/10.1103/PhysRevLett.71.12
https://doi.org/10.1103/PhysRevLett.71.12
https://doi.org/10.1103/PhysRevLett.71.12
https://doi.org/10.1103/PhysRevLett.71.12

