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ABSTRACT

Artificial Neural Networks (ANNs) are being advantageously applied for power system

problems. They possess the ability to  establish  complicated input-output

nuappings

through a learning process, without any explicit programming. In this paper, an ANN
based method for SSR analysis is presented. The designed NN outputs a measure of the
possibility of the occurrence of SSR and is fully trained to accommodate the variations

of the system parameters over the entire operating range. The cffectiveness

of (his

approach is tested by experimenting on the first bench mark model proposed by IEEF,

Task Force on SSR.

Keywords : Subsynchronous resonance,

Networks, Natural frequencies.

I INTRODUCTION

The use of series capacitor compensated transmission
lines to increcasc the maximum transmittable power, use of
Static VAR Compensators (SVC) for reactive power
management and the [TVDC converter links in tlic case of
integrated AC/DC systems arc some of the causes for
SSR in powcr systems. The Subsynchronous Resonance,
basically, involves tlie exchange o fenergy between
« Inductances and capacitances in the electrical system.
« Different masses in tlie mechanical counterpart of the
synchronous generator
e The mechanical and tlic clectrical systems mutually
coupled through tlie rotor of the synchronous
generator.,
The different manifestations of SSR viz tlie Induction
Generator effect, SubSynchronous Torsional Interaction
(SSTI) and the transient torques are already well studied
and documented [1,2.3,4]. Out of these, tlic exchange of
energy between the capacitances and inductances of the
system causes higher order power oscillations in a fast
way. tlence, a detailed study of tlie phenomena of SSR in
power systems involving serics capacitor compensation
and SVC is essential
Countermcasures for SSR problems are proposed by way
of installing supplementary control for thyristor controlled
shunt reactor {5}, Supplcmentary sclf tuning of a PID
controller for static VAR compensator {6], NGI| damping
scheme [7.8]. serics compensation driving unsymmetrical
currents in tlie three phases of armature windings of the
generator 9], co-ordinaled  SVC  controllers  with
SubSynchronous Damping Controllers (SSDC) o f HVDC
rectificr in casc of AC/DC systems [10], Power System
Stabilizer  (PSS)  designed  using  Eigen  structure
assignment technique [I1.12] etc The Eigen value
analysis of tlie system under consideration is required as
an indicative of tlic performance of any of these
countermeasures Further, in some of the countermeasures
involving Cigen structure assignment, the values of the
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Eigen  value

analysis, Artificial Neural

pre-specified Eigen values arc chosen arbtrarily

governed only by tlie expectations of the damping of the

SSR modes in such situations, a knowledge of tlic

existing Eigen values iS necessary for an optinml Cigen

structure assignment. By an optimal Eigcii structure

assignment, it is possible 1o tune the parameters of the

SSR countermeasure so as to demand minimal control

effort flowever, Eigen value analysis is computationally

intensive and the modeling complexity required for this

method of analysis is quite high. Further, this method

also suffers from tlie gencral level ofdifficulty i writing

efficient Eigen value programs. |lence, it is necessary to
design an efficient technique for Eigen valuc analysis {or

tlie study of SSR which could avoid tlic conventional

computation of Eigen values and alleviatc tlic modcling
complexity, as well.

Artificial Neural Networks (ANN), Fuzzy Logic (FL)
and their variations constitute a class ol' techimiques
which, in a generic sense, maps a set of inpuls to a set
of owlputs hascd on sonic fundamental simplificd
knowledge which is derived with minimum dependency
on the exact model of tlie system under consideration.
ANNSs are massively parallel system of interconnected
neurons each of wliicli may be viewed as a miniaturized
processing element. The characteristic feature of a NN is
the ability to achieve complicated input-ontput mappings
through a learning process, witliout explicit programming

Whereas ANN acquires this capability by way of
training, tlie TFL based system is provided with this
knowicdge in the form of a rule basc where cach of the
rules is an if...then...else... statcment involving the input-
output parameters quantificd by mcans of linguistic
variables viz tiny, small, big, very big etc.

In tlie present papa, a muliilayer ANN is used (o1 the
first time to implement Eigen value niialysis for the study
of SSR phenomena on the first benchmark  modet
proposed by HZEL Task Force on SSR I he components
of tlic input vector are tlic serics compensation levels and
tlie mechamcal damping imtroduced at tlic ligh pressme
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turbine and at the generator rotor mass. The components
of the output vector are the real parts of the Eigen values
of tlie system and the frequencies of oscillation
corresponding to the electrical network. The NN is trained
lo learn tlie underlying features of the relationship
between the inputs and the outputs {13]. For the purpose
of training, several input vectors and the corresponding
output vectors are evaluated by off-line simulation. These
input-output vector pairs fonn tlie training set. The
training set is supplemented by a leaming algorithm in
implementing tlie training process. The Error Back
Propagation (EBP) Leaming Algorithin (LA) is used to
train tlie NN. Once trained, the NN is validated by
subjecting it to input vectors and evaluating the error
between tlie desired output vector and the output
generated by tlie NN.

2 THE TEST SYSTEM

Tlie test systein considered for our study is the IEEE first
bench mark model whose one-line diagram is given
in Fig.l [2,4). The synclhronous machine has two stator
circuits, one field winding, one d-axis damper winding
and two g-axis damper windings. The transmission
network is a single series compensated transmission line
connected to the generator and is tenninated at an infinite
bus. The mass-spring-dashpot representation of the
turbine gencrator (TG) set which forns the mechanical
counterpart of the test system is depicted in Fig.2. The
mechanical systein consists of six masses viz. one high
pressure turbine (tIP), one medium pressure turbine (IP),
two low pressure turbines (I.PA and LPB), Generator
rotor mass (GEN) and the exciter (EXC)[14). 7.,.7.,.7.,
and 7., are the mechanical input torques at different
masses of the TG shafl and are negative. 7, is tlie
electrical torque owtpwt and is positive. d, thro' o, are the
damping coefficients at different masses constituting tlie
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mechanical system The electrical and mechatical systein
parameters are given in appendix - |

Tlic athematical description of the system usmg
state-spaceformulation consists of a set of twenty. first
order differential equations linearized at the initial
operating point The state variables are the sx currents
m different windings of the generator, sk angular
displacements, six angular velocities and tlie d- and g-
axis components Of the capacitor voltage The resulting
linearized equation & of the form

AX = AAX + BAU M

where AX is a vector of dimension 20 representing the
incremental changes in the statc variables. A is a square
matrix of order 20 x 20 whose terms depend on the
system parameters and the initial conditions. AU is a
vector representingthe changes in the forcing functions
and B isamatrix of constant coefTicients.

3 ANN APPROACII TO SSR ANALYSIS

ANNs are the recent class of computing paradigms
which can implement human-like reasoning  while
solving  problems with complex  functionalities.
Fundamentally, ANNs map a set of input vectors onto a
set Of output vectors in a typical Multi-lnput Multi-

Output (MIMO) type of system using a nou-linear
transfer function, usually a sigmoid This capability of

establishing correspondence between the iupul.a.nd
output vectors is accrued by means of the training
wherein the ANN is presentedwith a set of (input,output)
pairs. Further, ANN, by virtue of being (rained,
possesses the capability to predict the output against
an inputsituation which is not covered during training,
with acceptable accuracy. This property of interpolation
is termed the generalisation capability and is an important
performance measure Of any NN. The design of an ANN
based System consists of the following steps{!5]:

« Training Set creation

» Training process

o Testing

These design steps are explained in tlie following
paragraphs in reference to the problem of SSR analysis of
our test systein.

3.1 Training Set Creation :The test system described
in section 2 is, mathematically, represented using 20
linearized differential equations in state space fonn. To
indicate the possibility of SSR, it is necessary to monitor
tlie real part of those Eigen values of the system matrix
whose imaginary part corresponds to frequencies of tlie
oscillations Of tlie TG shaft, Further, it is also required to
monitor the frequencies Of oscillation corresponding to the
electrical network to assess the possibility of occurrence
of resonance. The dimension of the input vector is 3
which include the series compensation level X, the
mechanical damping at the high pressure turbine and at
the gencrator mass d and d,. The dimension of the
output vector is equal to nine whicli include the real
parts of the Eigen values corresponding to tlie mechanical
counterpart of the system and the Eigen valucs (both real

and imaginary part) corresponding to the electrical
network. Note that there are two modes of oscillations

corresponding to tlie electrical network one in
subsynchronous range and the other in supersynchronous
range
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For tlie training of the ANN, 15 levels of series
cotnpensation were considered between 0% to 70% which
is the practical range of compensation provided in series
compensated transmission system. Further, six levels of
damping were provided at each of the high pressure
turbine end at the generator rotor mass with which tlie
total number of operating points became 540. For each of
these operating points, the systeni matrix A is modified by

adjusting tlie initial values and Eipen value analysis was
carried out, off-line using MATLAB, thus computing the
output vector. The impedances of tlie generator rotor
circuits are maintained constant for convenience. These
540 input-output vector pairs fonii the training set.

3.2 Training : The Error Back Propagation (EBP)
learning algorithun (LA) developed by Rumelffart et af
which is one of the most popular LA is used for tlte
Purpose of training of tlie multilayer NN. Tlie EBP LA isa
generalization of delta nile wherein the synaptic weights
are changed to minimize the error which is the difference
between tlte actual output palterns and tlie target output
patterns. The error is given by

E, =\/2%(1, -0, )

where

4, = The target output at unitj for p-th pattem.
0, =The actual output of unit j for p-th pattern
0, = f,(2w,0,)

where

S, = The activation function which is typically a
continuous sigmoid.

o, = Strength of the synapse connecting neuron i to
neuron j.

The weight is adjusted as

o, (n+)=w, (m+IA,0,0)

where

n= The number of tlie epocli.

A,@,=Change in weight for the p-th pattern.
A,@,(n+1)=9n6,0, +a A o, ()

where

n = The learning rate

a = The momentum rate.

6 = Error tenn which depends on the derivative of the
activation function.

A tliree layer ANN consisting of an input layer, a hidden
layer and an output layer is considered. The schematic of
the NN used for the present work is given in Fig.3. The
input and the output layers consist of three and nine
neurons, respectively, corresponding to the number of
inputs and tlie number of outputs. The neural network
toolbox of the MATLAB was used to train this neural
network with 350 (out of 540) input-output pairs as the
training set. These 350 input-output pairs were selected
approximately to encoinpass tlie entire range of operating
points. The number of neurons for the hidden layer and
the momeniwn were detennined by trial and error and it
was possible to achieve convergence to a Sum Squared
Error (SSE) of 0.002 with 15 neurons in the hidden layer.
Fig.4 depicts, graphically, the variation of the SSE with
the number of epochs encountered during tlie training
procedure.
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3.3 Testing : After llie training process, the ANN is tested
by subjecting it to input patterns, from among the training
set as well as from outside the training set and computing
the error which is tlte difference between tlte desired
output and the output produced by the Neural Network,
The maximum percentage error, for input pattenis from
among the training set and for input pattenis outside the
training set is found to be, approximately, 10.0arid 15.0,
respectively. However, for ost of the situations
presented to the neural network, the error is found to be
less than 5%. Hence, by ajudicious selection of the input
patterns for die purpose of training frorii the entire
operating range, it is possible to reduce tlie maximum
error to acceptable levels. Table 1 depicts tlie comparison
of the desired (Computed) output with the output of the
NN for a few test pattenis applied at the input of tlie NN.

4 CONCLUSION

In this paper, the suitability of using an ANN for SSR
analysis is  investigated with the 1EEE firs! benchmark
model as the test systeni. The training set for llie NN is
designed to encompass all possible situations and as a
result, during the testing phase, a good generalisation
has been observed. Bui for the computationally
intensive task of training tlie NN, tite rest of the design
process is simple and so is tlie  operational
requirements of tlie systeni With the availability of tlie
Electrically ~ 'I'raiiiable  Artificial ~Neural Network
(ETANN) chips, it is possible to build a liardwnre driven



SSR monitor using the technique explained in this paper
So that it can be installed at the generating points where
the network involves series coinpensating capacitors,
SVC or HVYDC converters. Further, it is envisaged that
the NN based SSR inonitor shall be followed by a NN
based SSR countermeasure, using Static VAR
Compcnsalors in AC systeins or supplemental Damping
Controller for HVDC rectifier in the case of an AC/DC
systems. This further rescarch is the future work of the
authors,
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5l Computcd ontpits

Ne 9 q, v, o, O O, 0, Oy

1| vossi| o06s23] 09779] 07835 | 0.0000 | 0.0009 | 0.0002 | 0.0002
2| .0.937s] 0.7047] 0.R493] 07578 | 0.0000 { 0.0024 | 0.0003 | 0.000)
1| -09646] 0.7788] 0.6703] -0.7462 | 0.0000 [ G.04R4 | Q0018 | 0.0006
4| -v9evy | 08289 05473 -0.7758 | 0.0000 | 0.00R | 0.1353 | 0.0028
5| .09706] 0R357] 0.5309] 0.6476 | 00000 | 00015 | 0.0393 | 0.0055
ol -09741] oRI4] 04437] 05717 | coooo | 0.0007 | 0.0020 | 0.2479
7| -09754] ov.mRIGl 04116] 04948 | 0.0000 | 0.0006 | 0.0012§ 0.0394
al 097621 08924] 0.3891] 04678 | 0.0000 | 0.0005 | 0.0009 ] 0.0125
v | -09764] 0.8939] 0.3851] -0.4653 | 0.0000 | 0.0005 | 00009 | 00108
1ol -0.9774] 0.9053] 0.3544] 06171 | 0.0000 | 00004 | 0.0006 | 0.0047
1| .09794] 09258 0.3136| -0.3668 | v.0000 [ 00003 | 00004 | 0.0019
121 -09rt1] 0.9453) 02634] 00842 [ 00000 Faooos | o000z om0t
13| -0.9R28 0.9640 0.2176] -0.0215 | 0.0000 | 0.0003 0.0003 | 0.0008
11| .0.9843| 0.9819] 0.8746] 0.1856] 0.0000 | 0.000) 0.0002 | D.OVO?
1| ooasal 09991] 0.1342]  04546] 00000 | Q0002 1 00002 ] 00006
16 | -09ss1| 0.6523] 0.9779] -0.7835 f0.1727 [0.0093 | -0.1091 [U.0388

Table 1a. Computed Output for few sample cases
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s Output of ANN

No| O q, o, o, o, % 0y Uy

I -0.9551  0.6524 | 09780 | -0.7835 | 00000 | 0009 | 00002 | 00002
2| .09576] 07048} 011193 | -0.7578 | o0 | 00028 | 00004 | 00000
3| -0.9647] 0.7709] 06703 | -0.7445 | a.oo00 | 44 | 00021 0.0006
4] .09699] 0.8289 ) 03476 | 07611 | oooon | ooy | 0.t369 | 0.0029
s .0.9706] 0.8357] 03313 | -0.6290 | 00000 | 00018 | 00413 | 00003
61 09741 0.8704 | 0.4448 | -0.8272 | DONNO | a7 | o0ed | 02318
71 -0.9754] 0.8R36 | D.4126 04426 | 00000 1 oooob | omed | 0.0210
] -0.9763] 0.R924 | 0390t | -0.4089 | voxo | omons | 0006t 0.0081
o] 097641 0.8940 | vamee | -0.4159 | oy | 008 vooey | 00072
10| -0.9775] 0.9053 ] 01553 | -0.5652 | 00000 | omxd | 00057 § 0.0036
11} -0.9794] 0.9258 1 03143 | -0.3304 { oo | 00004 1 00040 | 0010
12| -0.9R12] 0.9454 | 01.263R8 L.1G5R | 0.0000 00001 O.0021 .50
131 .09828] 09640 | v2178 | -0.0147 | oo | 003 | 00009 1 0.0003
M| L0.9844| 0.9819 | 0.1746 0.IR7G | 0.xxx) 00003 0.0004 0.0006
151 _o.9858] 0.9991 | 04343 04551 [ voooo | ooy | oo | 00006
IG{ -0.9696] O.RIRR | L.5751 0.1567 101723 | gz 1 -nosat 00200

Table 1b. ANN Output for few sample cases

Table 1. Comparison of computed output with ANN output

APPENDIX = 1

Transmission :
Ry = 0.02pu Xa = 0.7pu X = 0.371pu
Generator:
d-axis rp = 0.001406pu rp = 0.004085pu
= 0.062pu 1, = 0.0055pu
14 = 0.31pu
gq-axis rgy = 0.014058pu gy = .008223pu
1Ql = 0.326pu 1Q2 = 0.095pu
1. = 0.13pu
q
Lap = kMp = kM = Mp = 1.66pu
L = kM = Kk = M, = 1.58pu
'AQ Q1 Q2 Q
Mechanical. system:
Mass Inertia Shaft Spring
H (eec.) section Constant
Hp 0.092897 HP-IP 7277.0
1P 0.155589 IP-LPA 13168.0
LPA 0.858B670 LPA-LPD 19618.0
LPB 0.004215 LPB-Gen 26713.0
Gen 0.868495 Gen-EXC 1064.0
EXC 0.034216



