
Parallel Smoothers in Multigrid Method
for Heterogeneous CPU-GPU Environment

Neha IYER and Sashikumaar GANESAN 1

Department of Computational and Data Sciences,
Indian Institute of Science, Bangalore 560012, India

Abstract. Modern-day supercomputers are equipped with sophisticated graphics
processing units (GPUs) along with high-performance CPUs. Adapting existing al-
gorithms specifically to GPU has resulted in under-utilization of CPU computing
power. In this respect, we parallelize Jacobi and successive-over relaxation (SOR),
which are used as smoother in multigrid method to maximize the combined uti-
lization of both CPUs and GPUs. We study the performance of multigrid method
in terms of total execution time by employing different hybrid parallel approaches,
viz. accelerating the smoothing operation using only GPU across all multigrid lev-
els, alternately switching between GPU and CPU based on the multigrid level and
our proposed novel approach of using combination of GPU and CPU across all
multigrid levels. Our experiments demonstrate a significant speedup using the hy-
brid parallel approaches, across different problem sizes and finite element types, as
compared to the MPI only approach. However, the scalability challenge persists for
the hybrid parallel multigrid smoothers.
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1. Introduction

Supercomputers today are equipped with multi-core CPU and multi-GPU to gain max-
imum performance. A single node of the top supercomputers supports up to 64 CPU
cores with multiple GPUs. To utilize such massive computing power, there has been a
significant effort to adapt existing algorithms onto the GPU architecture. In general, the
compute extensive tasks are off-loaded to GPU while the CPU acts as a mediator per-
forming data transfer, launching kernel call to the GPU or waiting idly in cases of block-
ing device API calls. Such practices have resulted in under-utilization of available CPU
cores. The pressing need to utilize the combined computing capability of both GPUs and
CPUs is even more relevant in case of small scale systems like personal computers that
can support up to two GPU cards and up to eight CPU cores.

One of the centrepiece tasks that demand acceleration in the scientific computing
community is solving a linear system of equations that generally arise from discretiza-
tion of partial differential equations (PDEs) using a numerical method such as finite el-
ement. The multigrid method is considered to be the most efficient solver for such large
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Table 1. Time taken by different operations at each level of multigrid V-cycle

Level N
Pre-Smoothing

Time (msec)

Post-Smoothing

Time (msec)

Restriction

(msec)

Prolongation

(msec)

6 2,146,689 980.0 980.0 768.0 725.0

5 274,625 119.0 118.0 97.0 92.0

4 35,937 14.0 14.0 12.0 11.0

3 4,913 1.6 1.6 1.3 1.1

2 729 0.1 0.1 0.1 0.1

1 125 0.04

sparse system of equations, with O(N) computational complexity where N is the num-
ber of unknowns. Among the key operations of multigrid method, viz. smoothing, re-
striction and prolongation, smoothing is significantly time-consuming. Table 1 shows the
time taken by different operations in a six-level geometric multigrid V-cycle. There is
a notable difference in time taken by smoothing compared to other operations for fine
mesh. In this respect, our main contribution is to improve the performance of geometric
multigrid solver by developing hybrid parallel smoothers that concurrently utilizes all
available computing resources in heterogeneous distributed systems. The hybrid parallel
smoothers are implemented in our in-house finite element package ParMooN [1].

The rest of the paper is organized as follows: Section 2 discusses relevant work
to accelerate the multigrid method. Section 3 gives a brief introduction to the geomet-
ric multigrid solver, the framework of ParMooN package and the model equation used
for experiments. Section 4 describes the three different hybrid parallel approaches for
smoothers. The experimental results and analysis are presented in Section 5 and Section
6 concludes the paper with key takeaways and future work.

2. Related Work

The problem of concurrent utilization of different computing resources has been previ-
ously studied in the literature. In [2], a parallel Jacobi iterative algorithm has been devel-
oped to exploit the computing capability of CPU along with the accelerators Xeon-Phi
and GPU on a single node. In the case of multigrid method, existing approaches have
adapted the key operations of smoothing and grid transfer to GPU architecture. The per-
formance effect of combining the MPI only implementation of smoothers and grid trans-
fer operators with either OpenMP or accelerators has been investigated in [3]. Another
approach of mapping the fine level operations of geometric multigrid V-cycle to GPU
and coarse level operations to CPU has been studied in [4]. The challenges of integrat-
ing existing MPI-based finite element package FEAST with GPU accelerated multigrid
solvers has been presented in [5].

3. Background and Model Problem

3.1. Geometric Multigrid Method

Geometric multigrid (GMG) method is the most efficient iterative technique for solving a
system of equations derived from a structured mesh. It operates on a hierarchy of meshes
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ranging from coarse to fine level l, where l = 0, ...,L. The fine mesh is obtained by
successively refining the coarse mesh L times uniformly. A typical multigrid γ-cycle is
shown in Algorithm 1. For γ = 1 and γ = 2, the cycle becomes a V-cycle and W-cycle
respectively. Classical iterative methods such as Jacobi or Successive-over relaxation
(SOR) is used as a smoother due to their property of quick dampening of oscillatory
modes. Multigrid method further leverages this property by recursively projecting the
residual onto a coarser mesh where the smooth modes appear oscillatory. Few iterations
of Jacobi or SOR work effectively on the coarse mesh and the computed correction is
projected back to the fine mesh and used to update the original solution.

Algorithm 1 Multigrid γ-Cycle
1: Procedure MG-CYCLE(l)
2: if l == 0 then

3: Solve Alul = fl exactly {coarsest level}
4: else

5: Apply pre-smoothing α times on Alul = fl with an initial guess for ul
6: Restrict the residual to the next coarse level fl−1 = Rl−1

l ( fl−Alul), where R is the
restriction operator from l to (l−1) level

7: Set ul−1 = 0
8: for j = 0 to γl do

9: MG-CYCLE(l−1)
10: end for

11: Prolongate ul−1 to next fine level as ũl = ul +Pl
l−1ul−1, where P is the prolongation

operator from (l−1) to l level
12: Apply post-smoothing α times on Alul = fl with an initial guess as ũl
13: end if

3.2. Parallel Framework of ParMooN

In the parallel framework of ParMooN package [1], the input mesh is partitioned using
METIS [6] software and the collection of cells is distributed across the MPI processes.
Each process is allocated a sub-domain of cells on which it performs computations. Dis-
cretization of the domain leads to defining the degrees of freedom (DOFs) that consti-
tute the unknowns. For a 3D mesh geometry, DOFs may be defined on vertices, edges,
faces and in the interior of the cell based on the type of finite element used. Further,
there are three types of finite element, viz. conforming, nonconforming and discontin-
uous type and we have considered conforming Q1, Q2 and nonconforming Qnc

1 type of
finite elements as shown in Figure 1.

NDOF = 8 NDOF = 27 NDOF = 6

Figure 1. Conforming Q1, Q2 and nonconforming Qnc
1 finite element
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Each MPI process classifies the DOFs into different types to facilitate communication of
the solution with the neighbouring processes. The marking of DOFs in an individual pro-
cess for a 2D domain is shown in Figure 2. The DOFs defined on the sub-domain bound-
aries are called Interface DOFs. These DOFs are shared by neighbouring MPI processes
and the process that computes the solution at these DOFs mark the DOFs as Master DOF.
All other processes sharing this DOF, mark it as Slave DOF. The DOFs that belong to
the same process and are connected to Interface DOFs are called as Dependent DOFs.
The Dependent DOF connected to a Slave DOF is called as Dependent1 DOF, otherwise
it is called as Dependent2 DOF. The DOFs that belong to neighbouring processes but are
connected to Interface DOFs are tagged as Halo DOFs. Further, Halo DOF connected
to Master DOF is marked as Halo1, otherwise it is marked Halo2 DOF. The remaining
DOFs owned by the process are defined as Independent DOFs.

D2D2D2D1

D1

D1

D1

I

I

I

I

II

I

I

I

H1H1H1H1H1H2

H2

H2

H2

H2

H2

MMMMM

S

S

S

SP0

P1P2

P3

Master

Dependent1

Dependent2

Independent

Slave

Halo

Figure 2. DOF Nomenclature using Q1 finite element in a 2D domain for P0 process

The Master DOF in one process corresponds to Slave DOF in neighbouring processes.
Similarly, Dependent1 and Dependent2 DOF correspond to Halo1 and Halo2 DOF.
Hence, during each smoothing iteration, it is sufficient for each process to communicate
the Master and Dependent1 DOFs with the neighbouring processes while the Depen-
dent2 DOFs are communicated for every restriction and prolongation operations. The
smoothing operation at each multigrid level including the coarsest level is performed us-
ing either Jacobi and SOR. The restriction and prolongation operators in ParMooN are
as per [7] that proposed a general grid transfer operator between arbitrary finite element
spaces.

3.3. Model Problem

We consider the steady-state Poisson equation with Dirichlet boundary condition on do-
main Ω⊆ R

3 given by,

−Δu = f in Ω

u = 0 on ∂Ω.
(1)

Here, u is the unknown scalar quantity and the source term f is chosen in such a way that
the analytical solution u = sin(πx)sin(πy)sin(πz) satisfies equation (1). The equation is

N. Iyer and S. Ganesan / Parallel Smoothers in Multigrid Method 117



Figure 3. Cuboid domain partitioned among four MPI processes

solved in parallel by multiple MPI processes in ParMooN. The input domain is consid-
ered as a cuboid, shown in Figure 3 and is meshed using hexahedral cells. Equation (1) is
discretized using standard Galerkin finite element method and subsequently the system
of linear equations is solved up to a fixed precision using geometric multigrid V-cycles.

4. Implementation of Hybrid Parallel Smoother in Multigrid Method

4.1. DOF colouring

In SOR, each MPI process computes and communicates the DOFs in a pre-defined order
based on the DOF type as shown in Algorithm 2. To perform the SOR iteration on GPU,
the independent sets of DOFs that can be updated simultaneously must be identified. The
colouring algorithm assigns a colour to each DOF such that no two connected DOFs of
the same type have the same colour. A maximum of O(dm) colours will be used, where
dm is the maximum number of neighbours of the same type of DOF. The maximum
neighbours of a DOF depend on the mesh structure and on the type of finite elements.

Algorithm 2 SOR Iteration at each MPI process
for j = 0 to nsmooth do

Compute Master DOF
Communicate Master DOF
Compute Dependent1 DOF
Communicate Dependent1 DOF
Compute Dependent2 DOF
Compute Independent DOF

end for

Once the DOFs of all types are coloured, a CUDA kernel is launched to compute the
DOFs that are assigned the same colour. Kernels are launched sequentially for each type
of DOF as shown in Algorithm 2. DOF colouring step is not required in case of Jacobi
iterations as the updated DOFs are computed using old DOF values. Hence, all DOFs
can be updated in parallel.
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4.2. Sparse Matrix-Vector Multiplication on GPU

The smoothing iterations in both Jacobi and SOR, involve repeated sparse matrix-vector
multiplication (SpMV). The global stiffness matrix in ParMooN is stored in compressed
sparse row (CSR) format. The CUDA kernels, CSR Scalar and CSR Vector proposed in
[8] for performing SpMV in CSR format on GPU, are modified to perform the smoothing
iterations. The CSR Scalar approach assigns a single CUDA thread whereas CSR Vector
approach assigns a warp (32 threads) to perform a matrix row and vector multiplication.
The performance benefits of both approaches are studied in our experiments.

4.3. Hybrid Parallel Approaches

We have designed three major approaches that decides whether the smoothing iteration
is to be performed on GPU or CPU. The approaches are described as follows.

4.3.1. GPU only

In this approach, the smoothing iterations are performed on GPU for all types of DOFs
and across all levels of multigrid. The iteration proceeds in the same manner as in Al-
gorithm 2. For each type of DOF, a CUDA kernel is launched for each colour in case of
SOR otherwise a single CUDA kernel is launched in case of Jacobi.

4.3.2. CPU-GPU non-overlapping

In this approach, the smoothing iterations are performed on GPU or CPU based on the
level of the multigrid. A threshold multigrid level is empirically chosen such that the
iterations on and above the chosen multigrid level are performed on GPU whereas the
iterations below the threshold level are performed on CPU for all types of DOFs. As the
system size is large on fine levels of multigrid, the ratio of number of DOFs to the total
number of colours is high, thus allowing us to exploit fine-grained parallelism on GPU.
At coarse levels of multigrid, the small system size makes CPU more suitable solver as
it is better optimized for memory access.

4.3.3. CPU-GPU overlapping

In the case of SOR, each iteration is divided between CPU and GPU based on the type
of DOF. The Independent DOFs constitute the major chunk of the total DOFs. Also, the
Independent and Dependent2 DOFs need not be communicated during an iteration and
hence these two types of DOFs are offloaded to GPU. The host process concurrently
computes Master and Dependent1 DOFs and handles communication with other pro-
cesses. The computation of boundary Independent DOFs require the updated Dependent1
DOF values and hence it is transferred from CPU to GPU and merged with GPU solu-
tion. Similarly, the Master DOFs are transferred to GPU and merged with GPU solution.
The Independent and Dependent2 DOFs are transferred to CPU and merged with CPU
solution at the end of the iteration. All merging operations are performed on the GPU and
transferred back to CPU whenever required. Figure 4 shows a schematic representation
of the various concurrent operations on CPU and GPU for a single SOR iteration.

In the case of Jacobi, the total DOFs are partitioned between GPU and CPU using an
empirically chosen ratio of 4:1. At the end of each iteration, the GPU solution is merged
with CPU solution.
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The kernel calls to compute Independent DOFs are performed based on the ratio of the
number of Independent DOFs to colours. If the ratio is greater than the empirically cho-
sen value then a single kernel is launched per colour else the kernel calls for different
colours are merged, thus trading off synchronous update to avoid kernel launch overhead.

CPU GPU

Compute
Independent
DOFs

Communicate
Master DOFs

Merge Dependent2 DOFs

Asynchronous HostToDevice
transfer CPU solution

Compute
Dependent2 DOFs

Asynchronous kernel call to merge

Asynchronous kernel call to compute

Asynchronous kernel call to merge

Asynchronous DeviceToHost
transfer of merged solution

Data Transfer

Compute
Master DOFs

Merge Master DOFs

Compute
Dependent1 DOFs

Asynchronous HostToDevice
transfer CPU solution

Asynchronous kernel call to merge

Merge Dependent1 DOFs

Asynchronous kernel call to merge

Asynchronous HostToDevice
transfer CPU solution

Communicate
Dependent1 DOFs

Asynchronous kernel call to compute

Merge Independent1 DOFs

Ti
m

e

Figure 4. Schematic representation of CPU-GPU overlapping algorithm for a single SOR iteration

4.4. CUDA optimizations

Different aspects of CUDA programming optimizations incorporated are as follows:

1. Minimum data transfer between CPU and GPU: The required data structures are
transferred only once before the start of the smoothing step. During smoothing,
only the solution array is transferred to merge the solution.

2. Maximum shared memory usage: The CUDA kernels use two separate shared
memory arrays, one to perform parallel warp-wide reduction while computing
the matrix row and vector dot product and the other to store the diagonal element
of each row which is needed to update the DOF during the iteration.

3. Maximum CUDA occupancy: The threads per block value is set to maximize the
occupancy value of each streaming multiprocessor (SM).

4. Implicit synchronization using warp-based operation: Since the CSR Vector ap-
proach uses warp-based approach to perform SpMV, no explicit synchronization
is required within the CUDA kernel call.

5. Use of Multi-Process Service (MPS): We use MPS that allows the kernel and data
transfer operations from multiple MPI processes to overlap on a single GPU.
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5. Experimental Results

Experiments are performed to compare the strong scaling performance of the different
hybrid parallel approaches with the existing MPI only approach of ParMooN for the
following three variants:

1. Types of smoother: Jacobi and SOR
2. Size of problem: Small (100 K), medium (1000 K) and large (10000 K)
3. Types of finite element: conforming Q1, Q2 and nonconforming Qnc

1

The variable multigrid parameters used for different experiments are listed in Table 2.
The experiments are executed on CRAY XC40 machine at SERC, Indian Institute of
Science, Bangalore [9]. A single node in the cluster has an Intel IvyBridge 2.4 GHz based
single CPU socket with 12 cores along with an NVIDIA Tesla K40 GPU card with 2880
cores and 12GB device memory. The small and medium size problem experiments are
performed using four nodes with up to eight CPU cores per node and large size problems
are performed using up to eight nodes with eight CPU cores per node.

Table 2. Multigrid Solver Parameters

Smoother FE type Levels N npre npost ncoarse ωsmoother

Jacobi
Q2 4 2000 K

5 5 10 0.67Qnc
1 5 6000 K

Q1 4 2000 K

SOR

Q2 4 2000 K

5 5 10 1.00
Qnc

1 5 6000 K

Q1

6 17000 K
5 2000 K
4 300 K

5.1. Scaling performance of hybrid parallel smoothers using different finite elements

Figure 5 shows the total time taken by the geometric multigrid solver using different hy-
brid parallel approaches for the smoother. We use CSR Vector approach for smoothing
iteration on GPU. The total time includes solving as well as communication time be-
tween neighbouring processes of the multigrid solver. At low scale, the hybrid parallel
approaches applied to smoothers have reduced the solving time significantly compared
to MPI only approach and that too, across different finite elements. The average reduc-
tion in solving time across different finite elements for two MPI processes is 39% and
77% using Jacobi and SOR, respectively. The hybrid parallel approaches however, are
not able to perform consistently at higher scales. The poor scaling performance of GPU
approaches may be attributed to the decrease in problem size per process causing reduced
parallelism and significant increase in data transfer and kernel launching overheads.

Among the three hybrid parallel approaches, the performance of GPU only and
CPU-GPU non-overlapping are quite comparable. The GPU only performs better at low
scale whereas the performance of CPU-GPU non-overlapping gets better at higher scales
because of the involvement of CPU at coarse levels of multigrid. CPU-GPU overlapping
approach performs slightly poorer at low scales since the CPU workload is higher and
hence takes more time to complete the computation as compared to GPU. However, the
performance matches with other approaches as the scale increases.
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Figure 5. Scaling performance of GMG solver using Jacobi and SOR smoothers for conforming Q1, Q2 and
nonconforming Qnc

1 finite elements for medium size problems (1000 K)

5.2. Performance of hybrid parallel smoothers across different problem sizes

The performance trend of the hybrid parallel approaches is tested across different prob-
lem sizes. Table 3 shows the speedup obtained across three different problem sizes of 300
K(small), 2000 K(medium) and 17000 K(large) with SOR smoother and Q1 finite ele-
ment. For small problem size, the performance slowly degrades with an increasing num-
ber of processes using hybrid parallel smoother. The speedup achieved using each of the
approaches increases on increasing the problem size. The speedup trend for GPU only
and CPU-GPU non-overlapping is almost comparable. The CPU-GPU non-overlapping
results in better speedup compared to GPU only, as the scale of processes increases.

Table 3. Speedup of hybrid parallel approaches to MPI only approach across different problem sizes

N GPU only
CPU-GPU

overlapping

CPU-GPU

non-overlapping

Number of processes Number of processes Number of processes
4 8 16 32 4 8 16 32 4 8 16 32

300 K 1.97 1.26 0.72 0.31 1.20 1.15 0.71 0.31 1.38 1.47 0.93 0.42
2000 K 3.73 3.09 2.25 1.31 3.17 2.62 1.80 1.16 3.61 2.99 2.32 1.32

17000 K 3.89 4.17 3.77 3.05 3.90 3.69 2.96 2.41 4.30 4.19 3.80 3.12

5.3. Performance gain using CSR Vector

The CSR Scalar and CSR Vector approaches are tested for conforming Q1, Q2 and
nonconforming Qnc

1 finite elements using SOR smoother. Figure 6 shows the speedup
achieved using CSR Vector compared to CSR Scalar using GPU only approach.

CSR Vector performs better across all the considered finite elements. The higher-
order finite element particularly Q2 type benefit more (∼ 3 times) using the CSR Vector
approach as there are more number of non-zeroes in each matrix row thus exploiting
fine-grained parallelism. This reduction in solving time can be leveraged to compensate
for higher communication time observed in general for higher-order finite elements.
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Figure 6. CSR Vector and CSR Scalar comparison for different finite elements

6. Conclusions

We have implemented and analyzed three different hybrid parallel approaches for multi-
grid smoother. The GPU only and CPU-GPU non-overlapping approaches give better
speedup in certain scales compared to MPI only, but fail to utilize all computing resources
simultaneously in a heterogeneous distributed system. The proposed novel CPU-GPU
overlapping approach overcomes this drawback and performs comparably to both GPU
only and CPU-GPU non-overlapping, provided the ratio of computing speed to workload
is balanced between CPU and GPU. Individually, the studied approaches shows poor
scalability. The GPU only gives good performance benefits at fine mesh having large
problem size. The CPU-GPU overlapping works well on the intermediate mesh where
there is better load balancing. On the coarse mesh, MPI only works best with small prob-
lem size. This leads us to explore the use of a combination of different approaches to
further optimize the performance of the multigrid method. In future, we have planned
to improve the scaling behaviour by deriving a heuristic to switch between the hybrid
parallel approaches based on the mesh size and the number of MPI processes.
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