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We show an exponential separation between two well-studied models of algebraic computation, namely, read-

once oblivious algebraic branching programs (ROABPs) and multilinear depth-three circuits. In particular, we

show the following:

(1) There exists an explicit n-variate polynomial computable by linear sized multilinear depth-three

circuits (with only two product gates) such that every ROABP computing it requires 2Ω(n) size.

(2) Any multilinear depth-three circuit computing IMMn,d (the iterated matrix multiplication poly-

nomial formed by multiplying d , n × n symbolic matrices) has nΩ(d ) size. IMMn,d can be easily

computed by a poly(n,d) sized ROABP.

(3) Further, the proof of (2) yields an exponential separation between multilinear depth-four and mul-

tilinear depth-three circuits: There is an explicit n-variate, degree d polynomial computable by a

poly(n) sized multilinear depth-four circuit such that any multilinear depth-three circuit computing

it has size nΩ(d ) . This improves upon the quasi-polynomial separation of Reference [36] between

these two models.

The hard polynomial in (1) is constructed using a novel application of expander graphs in conjunction with

the evaluation dimension measure [15, 33, 34, 36], while (2) is proved via a new adaptation of the dimension

of the partial derivatives measure of Reference [32]. Our lower bounds hold over any field.

CCS Concepts: • Theory of computation → Algebraic complexity theory;

Additional Key Words and Phrases: Multilinear depth-three circuits, read-once oblivious algebraic branching

programs, evaluation dimension, skewed partial derivatives, expander graphs, iterated matrix multiplication

ACM Reference format:

Neeraj Kayal, Vineet Nair, and Chandan Saha. 2020. Separation Between Read-once Oblivious Algebraic

Branching Programs (ROABPs) and Multilinear Depth-three Circuits. ACM Trans. Comput. Theory 12, 1, Ar-

ticle 2 (February 2020), 27 pages.

https://doi.org/10.1145/3369928

Authors’ addresses: N. Kayal, Microsoft Research, Vigyan 9, Lavelle Road, Shanthala Nagar, Ashok Nagar, Bengaluru,

Karnataka, 560001, India; email: neeraka@microsoft.com; V. Nair and C. Saha, Indian Institute of Science, Bengaluru,

Karnataka, 560012, India; emails: {vineet, chandan}@iisc.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1942-3454/2020/02-ART2 $15.00

https://doi.org/10.1145/3369928

ACM Transactions on Computation Theory, Vol. 12, No. 1, Article 2. Publication date: February 2020.

https://doi.org/10.1145/3369928
mailto:permissions@acm.org
https://doi.org/10.1145/3369928


2:2 N. Kayal et al.

1 INTRODUCTION

Proving lower bounds and separating complexity classes lie at the heart of complexity theory. In al-
gebraic complexity, separating classes VP and VNP (the algebraic analogues of P and NP) equates to
proving super-polynomial lower bounds for arithmetic circuits. Another prominent and pertinent
problem is polynomial identity testing (PIT). To solve PIT, we need to determine whether a multi-
variate polynomial computed by an arithmetic circuit over some field is identically zero. A polyno-
mial time randomized algorithm for PIT follows easily from References [10, 40, 45]. PIT is one of
the very few natural problems in BPP (in fact, in co-RP) not known to be in P. Showing arithmetic
circuit lower bounds and derandomizing PIT are closely related: Reference [23] showed that a poly-
nomial time PIT over integers implies a super-polynomial arithmetic circuit lower bound for the
family of permanent polynomials or NEXP � P/poly. References [1, 20] showed that a polynomial
time blackbox1 PIT implies exponential lower bounds for circuits computing polynomials whose
coefficients can be computed in PSPACE. Conversely, Reference [23] also showed that a super-
polynomial (exponential) circuit lower bound for any family of exponential-time computable mul-
tilinear2 polynomials implies a sub-exponential (quasi-polynomial) time algorithm for blackbox
PIT, using Nisan-Wigderson generators [31] and Kaltofen’s [24] polynomial factorization algo-
rithm. Reference [13] showed a similar connection between lower bounds and PIT for low-depth
circuits, that is lower bounds for bounded depth circuits imply efficient PIT for bounded depth cir-
cuits computing polynomials with low individual degree. So, in this certain sense the complexity
of proving strong lower bounds and devising efficient PIT algorithms are quite similar. Derandom-
izing PIT is also interesting in its own right. It is well-known that such a derandomization would
imply the problem of checking existence of a perfect matching in a given graph is in NC [28, 43].

Research over the the past several years has made notable progress on both lower bounds and
PIT for interesting special cases of arithmetic circuits and helped identify the frontiers of our
current knowledge. In particular, we understand better the reason why super-polynomial lower
bounds and poly-time PIT have remained elusive even for depth-three circuits: An exponential
lower bound (similarly, a poly-time blackbox PIT) for depth-three circuits over fields of character-
istic zero implies an exponential lower bound (similarly, quasi-polynomial-time PIT) for general
circuits [17]. For more on lower bounds and PIT refer to the surveys in References [8, 26, 37–39,
41].

A potentially useful and interesting restriction to consider at depth three is multilinearity. Most
of the hard polynomials used in the literature are multilinear, e.g., determinant, permanent, iterated
matrix multiplication, Nisan-Wigderson polynomials, and so on. So, it is worthwhile to develop a
fuller understanding of multilinear models [12, 33–36] (meaning, every product gate computes a
multilinear polynomial). We do know of strong lower bounds for multilinear depth-three circuits
due to Reference [36] and also this article (Theorem 1.7), but as yet no efficient (meaning, quasi-
polynomial) PIT is known for this model. One reason for this is the absence of hardness versus
randomness tradeoff results for bounded depth multilinear circuits. Recently, Reference [9] has
given a sub-exponential time blackbox PIT algorithm for multilinear depth-three circuits using
recently found quasi-polynomial time blackbox PIT for another model, namely, read-once obliv-
ious algebraic branching programs (ROABPs) [2, 15] (Definition 1.2), thereby connecting these
two interesting models of computation. Could there be a more efficient reduction from multilinear
depth-three circuits to ROABPs? If so, then that would readily imply an efficient PIT algorithm for
multilinear depth-three circuits. This question has lead us to this work.

1Here, blackbox means we are only allowed to evaluate the circuit at points from Fn , where n is the number of inputs and

F the underlying field.
2A polynomial is multilinear if the degree of every variable in it is at most one.
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Related work and motivation. The model ROABP (see Definition 1.2) has been studied intensely
in the recent years in the context of black-box PIT, equivalently hitting-set generators (Defini-
tion 2.10). This has resulted in deterministic, quasi-polynomial time hitting-set generators for
ROABPs [2, 15] and other associated models like set-multilinear algebraic branching programs
[14, 15] (a special case of which is set-multilinear depth-three circuits [3, 15]), non-commutative
algebraic branching programs [15] and diagonal depth-three circuits [3, 15]. Quite recently, Refer-

ence [9] has given a 2Õ (n
2
3 (1+δ ) ) time hitting-set generator for multilinear depth-three circuits of size

at most 2nδ
by “reducing” a multilinear depth three circuit to a collection of ROABPs and “putting

together” the hitting-sets of the ROABPs. This “putting together” process raises the hitting-set
complexity from quasi-polynomial (for a single ROABP) to sub-exponential (for a composition of
several ROABPs). Had it been the case that a multilinear depth-three circuit can be directly reduced
to a single small size ROABP, an efficient hitting set for the former would have ensued immediately
from References [2, 15]. One of the results in the article (Theorem 1.6), rules out this possibility.
In fact, Theorem 1.6 shows something stronger as described below.

A closer look at References [2, 9] reveals an interesting, and potentially useful, intermediate
model that we call superposition of (two or more) set-multilinear depth-three circuits (see Defini-
tion 1.5). An example of superposition of two set-multilinear depth-three circuits is

C (X ,Y ) = (1 + 3x1 + 5y2) (4 + x2 + y1) + (6 + 9x1 + 4y1) (2 + 5x2 + 3y2).

The variable setsX = {x1,x2} andY = {y1,y2} are completely disjoint and are called the base sets of
C (X ,Y ). When projected onX variables (i.e., after putting theY variables to zero),C (X ,Y ) is a set-
multilinear depth-three circuit in the X variables. A similar thing is true for the Y variables. Thus,
every base set is associated with a set-multilinear depth-three circuit and vice versa. Any multilin-
ear depth-three circuit can be trivially viewed as a superposition of n set-multilinear depth-three
circuits with single variable in every base set, where n is the number of variables. A crucial ob-
servation in Reference [9] is that every multilinear depth-three circuit is “almost” a superposition
of nϵ set-multilinear depth-three circuits for some ϵ < 1, and further the associated nϵ base sets
can be found in sub-exponential time using k-wise independent hash functions. Once we know the
r = nϵ base sets corresponding to r set-multilinear depth-three circuits whose superposition forms
a circuit of size s , finding a hitting set for the circuit in time sr . log s follows easily by taking a direct
product of hitting sets for r many set-multilinear depth-three circuits (in fact r many ROABPs,
as polynomial sized set-multilinear depth-three circuits reduces to polynomial sized ROABPs).
We think a useful model to consider at this juncture is superposition of constantly many set-
multilinear depth-three circuits with unknown base sets. In this case knowing the r = O (1) base
sets readily gives us a quasi-polynomial time hitting set generator, but finding these base sets from
a given circuit is NP-hard for r ≥ 3 (as we show in Observation 1.1), which rules out the possibility
of knowing the base-sets even if we are allowed to see the circuit (as in the white-box case). In-
deed, even in this special case where the given multilinear depth-three circuit is promised to be a
superposition of constantly many (say, 2) set-multilinear depth-three circuits, the algorithm in Ref-
erence [9] finds and works with many base sets and the resulting hitting set complexity grows to
roughly exp(

√
n). Could it be that the superposition of constantly many set-multilinear depth-three

circuits efficiently reduce to ROABPs? Unfortunately, the answer to this also turns out to be nega-
tive as Theorem 1.6 gives an explicit example of a superposition of two set-multilinear depth-three

circuit computing an n-variate polynomial f such that any ROABP computing f has width 2Ω(n) .
While comparing two models (here multilinear depth-three circuits and ROABPs), it is desirable

to show a separation in both directions whenever an efficient reduction from one to the other
seems infeasible. In this sense, we show a complete seperation between the models under
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consideration by giving an explicit polynomial computable by a polynomial sized ROABP such
that every multilinear depth-three circuit computing it requires exponential size. In fact, this
explicit polynomial is simply the Iterated Matrix Multiplication IMMn,d —the (1, 1)th entry of
a product of d n × n symbolic matrices (Theorem 1.7). IMMn,d can be easily computed by a

polynomial-sized ROABP (see Observation 1.3). Although, a 2Ω(d ) lower bound for multilinear
depth-three circuit computing Detd is known [36], this does not imply a lower bound for IMMn,d

(despite the fact that Det and IMM are both complete for algebraic branching programs (ABPs)
[29]) as the projection from IMM to Det can make the circuit non-multilinear. Another related
work by Reference [12] showed a separation between multilinear ABPs and multilinear formulas
by exhibiting an explicit polynomial (namely, an arc-full-rank polynomial) that is computable by
a linear size multilinear ABP but requires super-polynomial size multilinear formulas. But again
multilinearity of a circuit can be lost when IMM is projected to the arc-full-rank polynomial used
in Reference [12], and hence this result too does not imply a lower bound for IMM. An extension
of Theorem 1.7 to a super-polynomial lower bound for multilinear formulas computing IMM will
have interesting consequences in separating noncommutative formulas and noncommutative
ABPs. In a contemporary work [25], some of the authors of this work and Sébastien Tavenas have

been able to show an nΩ(
√

d ) lower bound for multilinear depth-four circuits computing IMMn,d

by significantly extending a few of the ideas present in this work and building upon (thereby
improving) the work of Reference [16]. In summary, the models poly-sized ROABPs and poly-sized
multilinear depth-three ciruits have provably different computational powers, although they share
a non-trivial intersection as poly-sized set-multilinear depth-three circuits is harbored in both.

An interesting outcome of the proof of the lower bound for multilinear depth-three circuits com-
puting IMM is an exponential separation between multilinear depth-three and multilinear depth-
four circuits. Previously, Reference [36] showed a super-polynomial separation between multi-
linear constant depth h and depth h + 1 circuits, which when applied to the depth-three versus
depth-four setting gives a quasi-polynomial separation between the two models. In comparison,
Theorem 1.8 gives an exponential separation.

The models and our results. We define the relevant models and state our results now.

Definition 1.1 (Algebraic Branching Program). An Algebraic Branching Program (ABP) in the
variables X = {x1,x2, . . . ,xn } is a directed acyclic graph with a source vertex s and a sink vertex
t. It has (d + 1) sets or layers of vertices V1,V2, . . . ,Vd+1, where V1 and Vd+1 contain only s and t,
respectively. The width of an ABP is the maximum number of vertices in any of the (d + 1) layers.
All the edges in an ABP are such that an edge starts from a vertex inVi and is directed to a vertex in
Vi+1, whereVi belongs to the set {V1,V2, . . . ,Vd }. The edges in an ABP are labelled by polynomials3

over a base field F . The weight of the path between any two vertices u and v in an ABP is computed
by taking the product of the edge labels on the path from u to v. An ABP computes the sum of the
weights of all the paths from s to t.

A special kind of ABP, namely, ROABP, is defined in Reference [15].

Definition 1.2 (Read-Once Oblivious Algebraic Branching Program). A Read-Once Oblivious Al-
gebraic Branching Program(ROABP) over a field F has an associated permutation π : [n]→ [n] of
the variables in X . The number of variables is equal to the number of layers of vertices minus one;
i.e., n = (d + 1) − 1 = d . The label associated with an edge from a vertex inVi to a vertex inVi+1 is
an univariate polynomial over F in the variable xπ (i ) .

3The edges are labeled by linear polynomials in the standard definition of an ABP.
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Definition 1.3 (Multilinear Depth-four and Depth-three Circuits). A circuitC =
∑s

i=1

∏di

j=1 Qi j (X i
j )

is a multilinear depth-four (ΣΠΣΠ) circuit in X variables over a field F , if X = �di

j=1X
i
j

4 and Qi j ∈
F[X i

j ] is a multilinear polynomial for every i ∈ [s] and j ∈ [di ]. IfQi j ’s are linear polynomials, then

C is a multilinear depth-three (ΣΠΣ) circuit. The parameter s is the top fan-in of C .

Definition 1.4 (Set-multilinear Depth-three Circuit). A circuit C =
∑s

i=1

∏d
j=1 li j (X j ) is a set-

multilinear depth-three (ΣΠΣ) circuit in X variables over a field F , if X = �d
j=1X j and li j ∈ F[X j ]

is a linear polynomial for every i ∈ [s] and j ∈ [d]. The sets X1,X2, . . . ,Xd are called the colors
of X . If |X j | = 1 for every j ∈ [d], then we say X has singleton colors and C is a set-multilinear
depth-three circuit with singleton colors.

As a bridge between multilinear and set-multilinear depth-three circuits, we define a model
called superposition of set-multilinear depth-three circuits.

Definition 1.5 (Superposition of Set-multilinear Depth-three Circuits). A multilinear depth-three
(ΣΠΣ) circuit C over a field F is a superposition of t set-multilinear depth-three circuits over
variables X = �t

i=1Yi , if for every i ∈ [t], C is a set-multilinear depth-three circuit in Yi variables
over the field F (X \ Yi ). The sets Y1, . . . ,Yt are called the base sets of C. Further, we restrict the Yi

to have singleton colors for every i ∈ [t].

Note that although the notion of superposition makes sense even if Yi ’s do not have singleton
colors, we restrict to singletons as this model itself captures multilinear depth-three circuits. We
make the following initial observation for superposition of set-multilinear depth-three circuits.

Observation 1.1. Given a circuit C, if C is a superposition of t set-multilinear circuits on unknown

base sets Y1,Y2, . . . ,Yt , finding t base sets Y
′
1,Y

′
2, . . . ,Y

′
t such that C is a superposition of t set-

multilinear circuits on base sets Y
′
1,Y

′
2, . . . ,Y

′
t is NP-hard when t > 2.

The proof of the observation appears in Section 6.1. We now state the main results of this article.
In Theorem 1.6, we use P to denote the set of prime numbers.

Theorem 1.6 (Main Theorem 1).

(1) There is an explicit family of 2n-variate polynomials { fn }n∈P, n≥11 over any field F such that
the following hold: fn is computable by a multilinear depth-three circuit C over F with top
fan-in three and C is also a superposition of two set-multilinear depth-three circuits. Any

ROABP over F computing fn has width 2Ω(n) .
(2) There is an explicit family of 3n-variate polynomials {дn }n∈P over any field F such that the

following hold: дn is computable by a multilinear depth-three circuitC over F with top fan-in
two and C is also a superposition of three set-multilinear depth-three circuits. Any ROABP

over F computing дn has width 2Ω(n) .

We prove Theorem 1.6 in Section 3. The tightness of the theorem is exhibited by this observation.

Observation 1.2. A polynomial computed by a multilinear ΣΠΣ circuit with top fan-in two and
at most two variables per linear polynomial can also be computed by an ROABP with constant width.

The proof of Observation 1.2 is in Section 6.1. Thus, it follows from Theorem 1.6 that if we
increase either the top fan-in or the number of variables per linear polynomial from two to three
in multilinear depth-three circuits then there exist polynomials computed by such circuits such
that ROABPs computing these polynomials have exponential width. We now state the “converse”
of Theorem 1.6.

4Here � is used to denote the disjoint union of sets.
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2:6 N. Kayal et al.

Theorem 1.7 (Main Theorem 2). Any multilinear depth-three circuit (over any field) computing

IMMn,d , the (1, 1)th entry of a product of d n × n symbolic matrices, has top fan-in nΩ(d ) for n ≥ 6.

Theorem 1.7 also implies a lower bound for determinant, see Corollary 4.2. We prove Theo-
rem 1.7 in Section 4. It is not hard to observe the following.

Observation 1.3. IMMn,d can be computed by an n2 width ROABP.

The proof of Observation 1.3 given in Section 6.1 presents a brute force way to compute IMMn,d

by an ROABP, whereas a more careful analysis yields a width 2n ROABP computing IMMn,d . Thus,
Theorem 1.6, Theorem 1.7 and Observation 1.3 together imply a complete separation between
multilinear depth-three circuits and ROABPs. As a consequence of the proof of Theorem 1.7, we
also get an exponential separation between multilinear depth-three and multilinear depth-four
circuits. We prove Theorem 1.8 in Section 4.

Theorem 1.8. There is an explicit family ofO (n2d )-variate polynomials of degree d , { fd }d ≥1, such
that fd is computable by aO (n2d )-sized multilinear depth-four circuit with top fan-in one (i.e., a ΠΣΠ
circuit) and every multilinear depth-three circuit computing fd has top fan-in nΩ(d ) for n ≥ 11.

The hard polynomials used in Theorem 1.6 belong to a special class of multilinear depth-three
circuits—they are both superpositions of constantly many set-multilinear depth-three circuits and
simultaneously a sum of constantly many set-multilinear depth-three circuits. Here is an example
of a circuit from this class:

C (X ,Y ) = (1 + 3x1 + 5y2) (4 + x2 + y1) + (9 + 6x1 + 4y2) (3 + 2x2 + 5y1)

+(6 + 9x1 + 4y1) (2 + 5x2 + 3y2) + (3 + 6x1 + 9y1) (5 + 8x2 + 2y2).

C (X ,Y ) is a superposition of two set-multilinear depth-three circuits with base setsX = {x1} ∪ {x2}
and Y = {y1} ∪ {y2}. But C (X ,Y ) is also a sum of two set-multilinear depth-three circuits with
{x1,y2}, {x2,y1} being the colors in the first set-multilinear depth-three circuit (corresponding to
the first two products) and {x1,y1}, {x2,y2} the colors in the second set-multilinear depth-three
circuit (corresponding to the last two products). For such a subclass of multilinear depth-three
circuits, we give a quasi-polynomial time hitting set by extending the proof technique of
Reference [3].

Theorem 1.9. Let Cn,m,l,s be a subclass of multilinear depth-three circuits computing n-variate
polynomials such that every circuit in Cn,m,l,s is a superposition of at most m set-multilinear depth-
three circuits and simultaneously a sum of at most l set-multilinear depth-three circuits, and has top

fan-in bounded by s . There is a hitting-set generator for Cn,m,l,s running in (ns )O (lm log s ) time.

Whenm and l are bounded by poly(logns ), we get quasi-polynomial time hitting sets. The proof
of Theorem 1.9, which extends the shift and rank concentration technique of Reference [3], is given
in Section 5. To our understanding, even ifm and l are constants, Reference [9]’s algorithm yields

an exp (
√
n) hitting set complexity. Also, Reference [18] has recently given a (ndw )O (l2l log(ndw ))

time hitting set generator for n-variate, individual (variable) degree d polynomials computed by
sum of l ROABPs each of width less thanw . Sum of l set-multilinear depth-three circuits reduces to
sum of l ROABPs as set-multilinear depth-three circuits readily reduce to poly-sized ROABPs. But,
observe the doubly exponential dependence on l in their result. On the contrary, in Theorem 1.9
the dependence is singly exponential in l . So, the hitting-set complexity remains quasi-polynomial

for l = (logn)O (1) , whereas Reference [18] gives an exponential time hitting-set generator when
applied to the model in Theorem 1.9. However, it is also important to note that the model con-
sidered in Theorem 1.9 is somewhat weaker than the sum of ROABPs model in Reference [18]
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because of the additional restriction that our model is also a superposition of m set-multilinear
depth-three circuits.

Proof ideas for Theorems 1.6 and 1.7. Theorem 1.6 is proved by connecting the notion of edge
expansion (Definition 2.4) with the evaluation dimension measure (Definition 2.1). Starting with
an explicit 3-regular bipartite expander G, we associate distinct variables with distinct vertices.
Every edge now corresponds to a linear polynomial—it is the sum of the variables associated with
the vertices on which the edge is incident upon. A multilinear depth-three circuit C is derived
from the expander G as follows: C has three product terms, each term formed by taking product
of the linear polynomials associated with the edges of a matching inG. Now, edge expansion ofG
can be used to argue that for every subset S of variables of a certain size there exists of a product
term in C that has high evaluation dimension with respect to S . Further, one can show that high
evaluation dimension of a product term implies high evaluation dimension of C with respect to S
by restricting the circuit modulo two linear polynomials to nullify the other two product terms.
However, for every ROABP there is a set S (of any size) such that the evaluation dimesion of the
ROABP with respect to S is bounded by its width. This gives a lower bound on the width of the
ROABP computing the same polynomial as C thereby proving part 1 of Theorem 1.6. Part 2 is
proved similarly, but now we associate edges and vertices of a bipartite expanderG with variables
and linear polynomials, respectively. Circuit C is formed by adding two product terms, each term
formed by multiplying the linear polynomials associated with the left or the right vertex set of G.
As before, edge expansion ofC implies for every set S of variables of a certain size there is a product
term ofC with high evaluation dimension and this in turn implies high evaluation dimension ofC .

While writing this article, we came to know about a recent work by Jukna [22] that uses Ra-
manujan graphs to give an alternate proof of a known exponential lower bound for monotone
arithmetic circuits. To our understanding, it does seem that Jukna’s proof also implictly relates
expansion with evaluation dimension, but the argument in Reference [22] is directed towards
monotone circuits and it does not seem to imply any of the lower bounds shown in this work.
In particular, the hard polynomial in Reference [22] could have any complexity, whereas in our
case we need the hard polynomial to be computable by a small multilinear depth-three circuit.

Theorem 1.7 is proved by introducing a new variant of the dimension of the space of partial
derivatives measure that is inspired by References [32, 34]. At a high level, the idea is to consider
a polynomial f in two sets of variables X and Y such that |Y | 	 |X |. If we take derivatives of
f with respect to all degree k monomials in Y -variables and set all the Y -variables to zero after
taking derivatives, then we do expect to get a “large” space of derivatives (especially, when f is
a “hard” polynomial), simply because |Y | is large. However, in any depth-three multilinear circuit
C computing f , the dimension of the space of derivatives of a product term is influenced only
by the number of linear polynomials containing the X -variables as all the Y -variables are set to
zero subsequently. Thus, the measure is somewhat small for a product term of C as |X | 
 |Y |. By
subadditivity of the measure (Lemma 2.3), this implies high top fan-in ofC computing f . A notable
difference with References [34, 36] is that the variable sets X and Y are fixed deterministically, a
priori, and not by random partitioning of the entire set of variables.

2 PRELIMINARIES

Measures. We have used two complexity measures, namely, evaluation dimension and a novel
variant of the dimension of the space of partial derivatives, to prove Theorem 1.6 and 1.7, respec-
tively. Evaluation dimension was first defined in Reference [15].5 Let X be a set of variables.

5They attributed the notion to Ramprasad Saptharishi.
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Definition 2.1 (Evaluation Dimension). The evaluation dimension of a polynomial д ∈ F[X ] with
respect to a set S ⊆ X , denoted as EvaldimS (д), is defined as

dim(spanF {д(X ) |∀x j ∈S x j=α j
: ∀x j ∈ S α j ∈ F }).

Evaluation dimension is a nearly equivalent variant of another measure, the rank of the partial
derivatives matrix, first defined in Reference [30] to prove lower bounds for non-commutative
models. Rank of the partial derivatives matrix measure was also used in References [12, 33–36]
to prove lower bounds and separations for several multilinear models. These two measures are
identical over fields of characteristic zero (or sufficiently large size).

The partial derivatives measure was introduced in Reference [32]. The following is a simple
variant of this measure that is also inspired by the measure used in Reference [34].

Definition 2.2 (“Skewed” Partial Derivatives). Let f ∈ F[X ,Y ], where X and Y are disjoint sets of
variables, and Yk be the set of all monomials in Y variables of degree k ∈ N . Define the measure
PDYk

( f ) as

dim ��spanF

⎧⎪⎨⎪⎩
[
∂ f (X ,Y )

∂m

]
∀y∈Y y=0

: m ∈ Yk

⎫⎪⎬⎪⎭
� .
In proving Theorem 1.7, we apply the above measure with a significant difference (or skew)

between the number of X and Y variables—it is this imbalance that plays a crucial role in the
proof. Both the above measures obey the property of subadditivity. The proof of Lemma 2.3 is in
Section 6.2.

Lemma 2.3 (Subadditivity).

(1) Let д1,д2 ∈ F[X ] and S ⊆ X , then EvaldimS (д1 + д2) ≤ EvaldimS (д1) + EvaldimS (д2).
(2) Let f1, f2 ∈ F[X ,Y ], then PDYk

( f1 + f2) ≤ PDYk
( f1) + PDYk

( f2).

Expander Graphs. A vital ingredient that helps us construct the hard polynomials in Theorem 1.6
is a family of explicit 3-regular expanders. We recall a few basic definitions from Reference [21].

Definition 2.4 (Edge Expansion and Family of Expanders). Let G = (V ,E) be an undirected d-

regular graph. For S ⊆ V , let E (S, S ) be the set of edges with one end incident on a vertex in S and

the other incident on a vertex in S = V \S . The edge expansion of G denoted h(G ) is defined as

h(G ) = min
S : |S | ≤ |V |2

|E (S, S ) |
|S | .

A sequence of d-regular graphs {Gi }i ∈N of size increasing with i is a family of d-regular expanders
if there exists an ϵ > 0 such that h(Gi ) > ϵ for every i .

Definition 2.5 (Spectral Expansion of a Graph). LetG = (V ,E) be a d-regular graph with |V | = n.
Let AG be the adjacency matrix of G and d = λ1 ≥ λ2 ≥ · · · ≥ λn the n eigenvalues of AG . Then

λ(G )
def
= max{|λ2 |, |λn |}. The ordered set of eigenvalues (λ1, λ2, . . . , λn ) is called the spectrum

of G.

We use Theorem 2.6 in the proof of Lemma 2.9. This theorem is due to References [4, 5, 6, 7, 11].

Theorem 2.6 (Cheeger’s Ineqality). LetG be ad-regular graph with spectrum (λ1, λ2, . . . , λn ).
Then,

d − λ2

2
≤ h(G ) ≤

√
2d (d − λ2).
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We use a three regular expander graph family to construct the hard polynomial families in
Theorem 1.6. Before we state an explicitly constructible three regular expander graph family, we
make precise the notion of explicit expander graphs.

Definition 2.7 (Mildly Explicit Expanders). Let G = {Gi }i ∈N be a family of d-regular expanders
such that the number of vertices inGi is bounded by a polynomial in i . G is mildly explicit if there
exists an algorithm that takes input i and constructs Gi in time polynomial in the size of Gi .

A family of mildly explicit expanders. We will use P to denote the set of prime numbers.
Reference [21] mentions a family of mildly explicit 3-regular p-vertex expanders {Gp }p∈P such

that for every graph Gp in the family: h(Gp ) > 3
2 10−4. The vertices of Gp correspond to elements

in Zp . A vertex x in Gp is connected to x + 1, x − 1 and to its inverse x−1 (operations are modulo
p and inverse of 0 is defined as 0, and a self-loop increases the degree of the vertex by one). We
refer the reader to Reference [21], Section 11.1.2, for more details. Denote this family of 3-regular
p-vertex expanders by S.

Double Cover. The proof of Theorem 1.6 works with bipartite expanders. It is standard to trans-
form ad-regular expander graph to ad-regular bipartite expander graph by taking its double cover.

Definition 2.8 (Double Cover). The double cover of a graph G = (V ,E) is the bipartite graph

G̃ = (L � R, Ẽ) where |L| = |R | = |V |. Corresponding to a vertexu ∈ V , we have two verticesuL ∈ L
and uR ∈ R. Edges (uL,vR ) and (uR ,vL ) ∈ Ẽ if and only if there is an edge (u,v ) ∈ E.

Lemma 2.9. Let S = {Gp }p∈P be the family of expanders as described above, and S̃ = {G̃p }p∈P the

family of double covers of graphs in S. Then h(G̃p ) > 3
2 · 10−4 for every p ∈ P .

Proof. The family S = {Gp }p∈P is such that λ(Gp ) < 3(1 − 10−4) for every p. This has been
argued in Section 11.1.2 of [21], where they show that the normalized value of λ(Gp ) is at most (1 −
10−4), i.e.,

λ (Gp )

3 < 1 − 10−4 . Observe that if (λ1, . . . , λp ) is the spectrum ofGp then {±λ1, . . . ,±λp }
are exactly the eigenvalues of the adjacency matrix of the bipartite graph G̃p . Hence, λ(Gp ) is

the second largest eigenvalue of AG̃p
. By applying Cheeger’s inequality (Theorem 2.6), h(G̃p ) >

3
2 · 10−4 for every p as G̃p is 3-regular. �

Hitting-set generators. In Theorem 1.9, we give a quasi-polynomial time hitting-set generator
for a subclass of multilinear depth-three circuits.

Definition 2.10 (Hitting-set Generators). A hitting-set generator for a class of circuits C is a Tur-
ing machineH that takes (1n , 1s ) as input and outputs a set {a1, . . . ,am } ⊆ Zn such that for every
circuit C ∈ C of size bounded by s and computing a nonzero n-variate polynomial over a field
F ⊃ Z, there is an i ∈ [m] for which C (ai ) � 0. Complexity ofH is its running time.6

Hitting set generators are also defined as a polynomial mapH = (h1,h2, . . . ,hn ), where each hi

is a t-variate polynomial (t 
 n), such that for every circuitC ∈ C computing a nonzero n-variate
polynomial, C (h1,h2, . . . ,hn ) is a nonzero t-variate polynomial. If |F | > n, then it is not hard to
argue that the two definitions are equivalent (see Section 4.1 [42]).

Technical Lemmas. The following lemmas are used in the proof of Theorem 1.6. Lemma 2.11
follows from Hall’s marriage Theorem [19].

Lemma 2.11. A d-regular bipartite graph can be split into d edge-disjoint perfect matchings.

6Hitting-set generators can be defined similarly over finite fields by considering field extensions.
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Lemma 2.12. Suppose д1 (X ),д2 (X ), . . . ,дm (X ) ∈ F[X ] are F -linearly independent polynomials in
the variablesX = {x1,x2, . . . ,xn } wherem = 2n . If Y = {y1,y2, . . . ,yn } are n variables different from
X , then (by identifying an i ∈ [m] with an S ⊆ [n]),

EvaldimY
���
∑

S ⊆[n]

yS · дS (X )
�� =m, where for S ⊆ [n], yS :=
∏
j ∈S

yj .

Proof. Consider the following F-evaluations of {y1,y2, . . . ,yn }: for every S ⊆ [n], if j ∈
S set yj = 1 else set yj = 0. There are m = 2n such evaluations. By taking appropriate F-
linear combinations of these evaluations of the polynomial

∑
S ⊆[n] yS · дS , one can get the

m polynomials {дS }S ⊆[n]. Since these m polynomials are given to be F-linearly independent,
EvaldimY (

∑
S ⊆[n] ySдS (X )) ≥ m. However, any F-evaluation of the Y -variables of the polyno-

mial
∑

S ⊆[n] yS · дS (X ) is a F-linear combination of the m polynomials {дS }S ⊆[n] and hence
EvaldimY (

∑
S ⊆[n] yS · дS (X )) ≤ m. �

Lemma 2.13. If R is a width-k ROABP that computes д(X ), then for every i ∈ [0, |X |] there exists
a set S ⊆ X of size i such that EvaldimS (д) ≤ k .

Proof. Without loss of generality, assume the permutation π associated with the ROABP
R is the identity permutation. Hence, R can be equivalently viewed as a product of n matri-
ces M1, . . . ,Mn computing д(X ) = M1 ·M2 · · ·Mn , where M1 is a 1 × k matrix with entries from
F[x1], Mn is a k × 1 matrix with entries from F[xn], and Mj is a k × k matrix with entries
from F[x j ] for every j ∈ [2,n − 1]. Let S = {x1,x2, . . . ,xi }. Consider any F-evaluation of the S
variables in д(X ). Denote the resulting polynomial by д1 (X \ S ) ∈ F[xi+1, . . . ,xn]. Observe that
д1 (X \ S ) = Meval ·Mi+1 · · ·Mn where Meval ∈ F1×k . Let M = Mi+1 · · ·Mn be the k × 1 column
vector with entries from F[xi+1, . . . ,xn]. Thus, д1 (X \ S ) = Meval ·M is an F-linear combination
of k polynomials in F[xi+1, . . . ,xn] that do not depend on which evaluation of the {x1, . . . ,xi }-
variables we began with. Hence, evaluation dimension of д(X ) with respect to S is upper bounded
by k . �

3 LOWER BOUNDS FOR ROABP: PROOF OF THEOREM 1.6

Proof of Part 1

Construction of the polynomial family. We construct a family of 2n-variate multilinear poly-
nomials { fn }n∈P,n≥11 from the explicit family of 3-regular expander graphs S (described in sec-
tion 2). From an n-vertex graph G = (V ,E) in S, construct a polynomial f (X ,Y ) in variables

X = {x1, . . . ,xn } and Y = {y1, . . . ,yn } as follows: Let G̃ = (L � R, Ẽ) be the double cover of G. By

Lemma 2.9, h(G̃) > 3
2 10−4. With every vertex in L (similarly, R) associate a unique variable in X

(respectively, Y ), thus vertices in L and R are identified with the X and Y variables, respectively.

An edge between xi and yj is associated with the linear polynomial (xi + yj ). By Lemma 2.11, G̃
can be split into three edge-disjoint perfect matchings. Corresponding to every perfect matching,
we have a product term formed by taking product of the linear polynomials associated with the
edges of the matching. Polynomial f (X ,Y ) is the sum of the three product terms corresponding to

the three edge-disjoint perfect matchings of G̃. It is easy to show the following claim, proof given
in Section 6.3.

Claim 3.1. Polynomial f (constructed above) is computed by a multilinear depth-three circuitC of
size Θ(n) and top fan-in three, and C is a superposition of two set-multilinear depth-three circuits.

High evaluation dimension of f (X,Y ). It turns out that the evaluation dimension of f (X ,Y )
with respect to any subset of variables of size n/10 is large.
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Lemma 3.1. For any set S ⊆ X � Y of size n/10, EvaldimS ( f ) ≥ 2ϵn where ϵ > 0 is a constant.

Proof. Consider any subsetS ofn/10 variables fromX � Y . With respect to set S , we can classify
the linear polynomials in the product terms of f (X ,Y ) into three types: untouched—if none of the
two variables in the linear polynomial belong to S , partially touched—if exactly one of the variables
in the linear polynomial belongs to S , and completely touched—if both variables belong to S . Call
the three product terms of f : P1, P2, and P3. �

Claim 3.2. There exists a set X0 ⊆ X of ( 7n
10 − 4) X -variables such that every x ∈ X0 appears in an

untouched linear polynomial in every Pi (for i ∈ [3]), and further if (x + yj1 ), (x + yj2 ) and (x + yj3 )
are the linear polynomials occurring in P1, P2, and P3, respectively, then yj1 � yj2 � yj3 .

Proof. For every i ∈ [3], let Di represent the set of touched linear polynomials in product gate
i . Hence, |D1 | + |D2 | + |D3 | ≤ 3n

10 . Thus, the number of X -variables that are part of these touched

linear polynomials is at most 3n
10 as every linear polynomial has exactly oneX -variable. This implies

at least 7n
10 X -variables are part of untouched linear polynomials in every product gate. As f (X ,Y )

is constructed from G̃, two product gates contain the same linear polynomial l if and only if there

is a double edge between the endpoints of the edge corresponding to the linear polynomial l in G̃.

Graph G̃ is the double cover of the n-vertex graph G ∈ S where n ≥ 11 is a prime. A double edge

between vertices uL and vR in G̃ implies existence of a double edge between vertices u and v in
G. Vertices of G are identified with elements of Zn . A vertex a in Gn is connected to a + 1,a − 1
and a−1 (operations are modulo n and inverse of 0 is 0). Thus, there is a double edge incident on a
vertex a inG if and only if any two of the vertices a + 1,a − 1 and a−1 are the same. If a + 1 = a − 1
mod n, then 2 = 0 mod n,which cannot be true asn ≥ 11. Hence, if there is a double edge incident
on a then either a + 1 = a−1 mod n, or a − 1 = a−1 mod n. This means G has exactly two sets of

double edges – between −1−
√

5
2 and 1−

√
5

2 , and between −1+
√

5
2 and 1+

√
5

2 – if 5 is a square in Zn ;

otherwise, G has no double edge. As a double edge in G gives rise to two double edges in G̃,
the latter has at most four double edges. Thus, at most four out of the 7n

10 X -variables are part
of untouched linear polynomials that appear in more than one product gate. We remove these
four variables. X0 is the set of the remaining X -variables of size at least ( 7n

10 − 4). Naturally, every
variable in X0 has the desired property as stated in the claim. �

For i ∈ [3], let Bi be the set of partially touched linear polynomials in term Pi .

Claim 3.3. There is an i ∈ [3] such that |Bi | ≥ ϵn where ϵ = 10−6.

Proof. Let T = maxi ∈[3] {|Bi |}. Recall that f has been constructed from the bipartite expander

G̃, and vertices in G̃ identified with the variable setX � Y . We denote the vertices in G̃ correspond-

ing to the variables in S also by S , and denote the set of edges going out from S to S = L � R\S in

G̃ by Ẽ (S, S ). Using the expansion property of G̃,

|Ẽ (S, S ) | ≥ h(G̃ ) · |S | ≥ 3

2
10−4 ·

( n
10

)
.

Every edge in Ẽ (S, S ) corresponds to a partially touched linear polynomial. Since G̃ is 3-regular, at

least
|Ẽ (S,S ) |

3 of the edges correspond to distinct partially touched linear polynomials. By assump-

tion, the number of such partially touched linear polynomials is at most 3T ; and soT ≥ 10−6 · n. �

The next claim completes the proof of Lemma 3.1.

Claim 3.4. If there exists an i ∈ [3] such that |Bi | ≥ ϵn for ϵ > 0, then EvaldimS ( f ) ≥ 2ϵn .
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Proof. Without loss of generality, assume |B1 | ≥ ϵn. Pick two variables, say x and x ′, from the
setX0 (as described in Claim 3.2). Here, |X0 | ≥ 7n

10 − 4 ≥ 2, forn ≥ 11. Let (x + yj2 ) and (x ′ + y ′j3
) be

the linear polynomials appearing in P2 and P3, respectively. By substituting x = −yj2 and x ′ = −y ′j3

in д, the terms P2 and P3 vanish but P1 does not (by Claim 3.2). Let f̂ be the polynomial f after

the substitution. Polynomial f̂ has only one product term P̂1 (i.e., P1 under the substitution), and

P̂1 has as many partially touched linear polynomials as P1. At this point, we use the following
observation. �

Observation 3.1. EvaldimS ( f ) ≥ EvaldimS ( f̂ ) = EvaldimS (P̂1) ≥ 2ϵn .

Proof. It is easy to see EvaldimS ( f ) ≥ EvaldimS ( f̂ ) = EvaldimS (P̂1) as follows. Let

V = spanF { f (X ,Y ) |∀uj ∈S uj=α j
: ∀uj ∈ S α j ∈ F },

V̂ = spanF {P̂1 (X ,Y ) |∀uj ∈S uj=α j
: ∀uj ∈ S α j ∈ F },

and t = EvaldimS ( f ). Let {h1, . . . ,ht } be a basis of V . Since the linear polynomials (x + yj2 ) and
(x ′ + y ′j3

) are untouched, the variables x ,x ′,yj2 ,yj3 do not belong to S and hence the polynomials

{ĥ1, . . . , ĥt } span the space V̂ , where ĥi is polynomial hi under the substitution x = −yj2 and x ′ =

yj3 . Below, we show EvaldimS (P̂1) ≥ 2ϵn .

Suppose P̂1 has T ≥ ϵn partially touched linear polynomials {l1, l2, . . . , lT }. For every r ∈ [T ],
let lr = zr + ur where zr ∈ S and ur ∈ (X ∪ Y )\S . Let Z = {z1, z2, . . . , zT }. Then substitute all vari-
ables in S\Z to 1. Suppose P̃1 is equal to P̂1 after this substitution. Then it follows easily that

EvaldimZ (P̃1) ≤ EvaldimS (P̂1) as Z ⊆ S . Let q be the polynomial formed by multiplying all linear

polynomials in P̃1 that are free of variables in Z . Then,

P̃1 =
���
∑

ν ⊆[T ]

zνu[T ]\ν

�� · q,

where zν =
∏

j ∈ν zj and u[T ]\ν =
∏

j ∈[T ]\ν uj . Since q is Z -free, by Lemma 2.12, we have

EvaldimZ (P̃1) = EvaldimZ (
∑

ν ⊆[T ] zνu[T ]\ν ) = 2T . �

This completes the proof of Claim 3.4.
From Lemmas 2.13 and 3.1, we conclude that any ROABP computing f (X ,Y ) has width at least

2ϵn .

Proof of Part 2

Construction of the polynomial family. Similar to part 1, we construct a family of 3n-variate
multilinear polynomials {дn }n∈P from the explicit family of 3-regular expanders S – but this
time edges will be associated with variables and vertices with linear polynomials. From an n-
vertex graph G = (V ,E) in S, construct a polynomial д(X ,Y ,Z ) in variables X = {x1, . . . ,xn },
Y = {y1, . . . ,yn } and Z = {z1, . . . , zn } as follows: Let G̃ = (L � R, Ẽ) be the double cover of G, and

as before h(G̃ ) > 3
2 10−4. Edges of G̃ can be split into three edge-disjoint perfect matchings (by

Lemma 2.11). Label the edges of the first perfect matching by distinct X -variables, the edges of the
second matching by distinctY -variables, and the edges of the third by distinctZ -variables. Vertices

of G̃ now correspond to linear polynomials naturally—if the three edges incident on a vertex are
labelled xi , yj , and zk , then associate the linear polynomial (xi + yj + zk ) with the vertex. Let P1

be the product of the linear polynomials associated with the vertices of L, and P2 the product of
linear polynomials associated with the vertices of R. Polynomial д(X ,Y ,Z ) is the sum of P1 and P2.
The following claim is easy to show (just like Claim 3.1). For completeness, we prove Claim 3.5 in
Section 6.3.
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Claim 3.5. Polynomial д (constructed above) is computed by a multilinear depth-three circuitC of
size Θ(n) and top fan-in two, and C is a superposition of three set-multilinear depth-three circuits.

High evaluation dimension of д(X,Y ). The proof of the following lemma is similar to that of
Lemma 3.1, differences arise only due to the “dual” nature of д.

Lemma 3.2. For any S ⊆ X � Y � Z of size n/10, EvaldimS (д) ≥ 2ϵn where ϵ > 0 is a constant.

Proof. Let S be any set of n
10 variables from X � Y � Z . The definitions of untouched, par-

tially touched and completely touched linear polynomials are almost the same as in the proof of
Lemma 3.1. The difference is we have three variables instead of two in a linear polynomial in д. So,
a linear polynomial is partially touched if at most two of the three variables belong to S . For i ∈ [2],
let Bi be the set of partially touched linear polynomials andCi the set of completely touched linear
polynomials in product term Pi of д. �

Claim 3.6. There is an i ∈ [2] such that |Bi | ≥ ϵn where ϵ = 10−7.

Proof. Let T = maxi ∈[2] {|Bi |}. It is easy to observe the following. �

Observation 3.2. |C1 | + |C2 | is at least n
15 −

8T
3 .

Proof. The number of variables in S that are part of partially touched linear polynomials in ei-
ther of the product gates is at most 4T ; 2T from each product gate. Hence, at least n

10 − 4T variables
in S are part of completely touched linear polynomials in each of the product gates. Since the num-
ber of variables per linear polynomial is 3, the number of completely touched linear polynomials
in each of the product gates is at least ( n

30 −
4T
3 ). Hence, |C1 | + |C2 | ≥ ( n

15 −
8T
3 ). �

Let C be the set of vertices in G̃ corresponding to the completely touched linear polynomials

in either of the product gates, thus |C | = |C1 | + |C2 | and n
15 −

8T
3 ≤ |C | ≤

n
15 . Each edge in Ẽ (C,C )

connects a vertex that corresponds to a completely touched linear polynomial to a vertex that

corresponds to a partially touched linear polynomial. Using expansion of G̃,

|Ẽ (C,C ) | ≥ h(G̃ ) · |C | ≥ 3

2
10−4 ·

( n
15
− 8T

3

)
.

Since edges in Ẽ (C,C ) are associated with variables in S , a vertex corresponding to a partially

touched linear polynomial has at most two edges from Ẽ (C,C ) incident on it. Hence, the num-

ber of vertices corresponding to partially touched linear polynomials is at least |Ẽ (C,C ) |
2 . But, by

assumption, the number of such vertices is at most 2T . Thus,

2T ≥ |Ẽ (C,C ) |
2

≥ 3

2
10−4 ·

( n
15
− 8T

3

)
⇒ T ≥ 10−7n.

The proof of the next claim is much like that of Claim 3.4.

Claim 3.7. If there exists an i ∈ [2] such that |Bi | ≥ ϵn for ϵ > 0, then EvaldimS (д) ≥ 2ϵn .

Proof. Without loss of generality assume |B1 | ≥ ϵn. Since G̃ is the double cover of a graph

G ∈ S, it is easy to argue that no two vertices in G̃ have all the three edges in common. Hence,
the linear polynomial l is unique to a product gate, i.e., if l is a linear factor of P2 then l is not a
linear factor of P1. Pick an untouched linear polynomial: (x + y + z) in P2 such that x is part of
an untouched linear polynomial in P1—we know there are at least n − 2n

10 =
4n
5 such X -variables.

By substituting x = −(y + z), P2 vanishes but P1 remains nonzero. Let д̂ be the polynomial we get

after this substitution. д̂ has just one product term P̂1 (corresponding to P1 after substitution). P̂1

has as many partially touched linear polynomials as P1. From here on a similar argument used to
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Fig. 1. ABPM.

prove Observation 3.1 above can be used to show EvaldimS (д) ≥ EvaldimS (д̂) = EvaldimS (P̂1) ≥
2ϵn . �

This completes the proof of Lemma 3.2. From Lemmas 2.13 and 3.2, we conclude that any ROABP
computing д has width at least 2ϵn .

4 LOWER BOUNDS FOR MULTILINEAR DEPTH THREE CIRCUITS

The proofs of Theorems 1.7 and 1.8 are inspired by a particular kind of projection of IMMn,d con-
sidered in Reference [16]. We say a polynomial f is a simple projection of another polynomial д if
f is obtained by simply setting some variables to field constants in д.

Proof of Theorem 1.7. The proof proceeds by constructing an ABP M of width n and with
d + 1 layers of vertices such that (a) the polynomial computed byM, say f , is a simple projection

of IMMn,d , and (b) any multilinear depth-three circuit computing f has top fan-in nΩ(d ) . Since
an ABP can be viewed equivalently as a product of matrices, we will describeM using matrices.
Figure 1 depicts the ABPM.

Description ofM. The polynomial f , computed byM, is defined over two disjoint sets of vari-

ables, X and Y . The Y variables are contained in k matrices, {Y (1), . . . ,Y (k ) }; the (u,v )th entry in

Y (i ) is a formal variable y (i )
u,v . There are (k − 1) matrices {A(1), . . . ,A(k−1) }, such that all the en-

tries in these matrices are ones. The X variables are contained in 2k matrices, {X (1), . . . ,X (2k ) }.
Matrices X (1) and X (2k ) are row and column vectors of size n, respectively. The uth entry in X (1)

(similarly, X (2k )) is x (1)
u (respectively, x (2k )

u ). All the remaining matrices {X (2), . . . ,X (2k−1) } are di-

agonal matrices in the X variables, i.e., the (u,u)th entry in X (i ) is x (i )
u and all other entries are

zero for i ∈ [2, 2k − 1]. The matrices are placed as follows: Between two adjacent Y matrices, Y (i )

and Y (i+1) , we have three matrices ordered from left to right as X (2i ),A(i ) , and X (2i+1) for every

i ∈ [1,k − 1]. Ordered from left to right, X (1) is on the left of Y (1) and X (2k ) is on the right of Y (k ) .

Naturally, we have the following relation among k and d : d = 4k − 1, i.e., k = d+1
4 . Thus, |X | = 2nk

and |Y | = n2k . This imbalance between the number of X and Y variables plays a vital role in the
proof. Denote the polynomial computed by this ABPM as f (X ,Y ).

The following claim is easy to verify as f is a simple projection of IMMn,d . The proof of Claim 4.1
is given in Section 6.4.

Claim 4.1. If IMMn,d is computed by a multilinear depth-three circuit having top fan-in s, then f
is also computed by a multilinear depth-three circuit having top fan-in s .

We show every multilinear depth-three circuit computing f has top fan-in nΩ(d ) for n ≥ 6.
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Lower bounding PDYk
( f ). Let Ỹk ⊆ Yk be the set of monomials formed by picking exactly one

Y -variable from each of the matrices Y (1), . . . ,Y (k ) and taking their product. Then, |Ỹk | = n2k .
Recall PDYk

( f ) denotes the skewed partial derivative of f as defined in Definition 2.2.

Claim 4.2. PDYk
( f (X ,Y )) = |Ỹk | = n2k .

Proof. The derivative of f with respect to a monomialm ∈ Yk is nonzero if and only ifm ∈ Ỹk .

Also, such a derivative
∂f

∂m
is a multilinear degree-r monomial in X -variables. The derivatives of

f with respect to two distinct monomials m and m′ in Ỹk give two distinct multilinear degree-r

monomials in X -variables. Hence, PDYk
( f ) = |Ỹk |. �

Upper bounding PDYk
of a multilinear depth-three circuit.

Lemma 4.1. LetC be a multilinear depth-three circuit having top fan-in s computing a polynomial

in X and Y variables. Then PDYk
(C ) ≤ s · (k + 1) · ( |X |

k
) if k ≤ |X |2 .

Proof. Let C =
∑s

i=1Ti , where each Ti is a product of linear polynomials on disjoint sets of
variables. From Lemma 2.3, PDYk

(C ) ≤ s ·maxi ∈[s] PDYk
(Ti ). We need to upper bound the dimen-

sion of the “skewed” partial derivatives of a termTi = T (say). LetT =
∏q

j=1 lj , where lj is a linear

polynomial. Among the q linear polynomials at most |X | of them contain theX variables. Without
loss of generality, assume the linear polynomials l1, . . . , lp contain X -variables and the remaining

lp+1, . . . , lq areX -free (here p ≤ |X |). LetQ =
∏q

j=p+1 lj . Then,T = Q ·∏p
j=1 lj . We take the deriva-

tive ofT with respect to a monomialm ∈ Yk and then substitute the Y variables to zero. Applying
the product rule of differentiation and observing that the derivative of a linear polynomial with
respect to a variable makes it a constant, we have the following:[

∂T

∂m

]
Y=0

=
∑

S ⊆[p]

|S | ≤k

αS

∏
j ∈[p]\S

[lj ]Y=0,

where αS ’s are constants from the field. Here, m is a representative element of the set Yk . Hence,

every such derivative can be expressed as a linear combination of
∑k

t=0 ( p
t

) ≤ (k + 1) · ( |X |
k

) poly-

nomials, where the last inequality is due to k ≤ |X |2 (if t > p, then ( p
t

)
def
= 0). Therefore, PDYk

(T ) ≤
(k + 1) · ( |X |

k
) and PDYk

(C ) ≤ s · (k + 1) · ( |X |
k

). �

It follows from Claim 4.2 and Lemma 4.1 that the top fan-in s of any multilinear depth-three
circuit computing f (X ,Y ) is such that

s ≥ n2k

(k + 1) · ( 2nk
k

)
≥ n2k

(k + 1) · (2ne )k
= nΩ(d ),

asn ≥ 6 and k ≤ |X |/2 (required in Lemma 4.1). Claim 4.1 now completes the proof of Theorem 1.7.
Theorem 1.7 implies the following corollary (already known due to Reference [36]) as IMMn,d

is a simple projection of Detnd×nd , the determinant of an nd × nd symbolic matrix [44].

Corollary 4.2 ([36]). Any multilinear depth-three circuit (over any field) computing Detd , the

determinant of a d × d symbolic matrix, has top fan-in 2Ω(d ) .

Proof of Theorem 1.8. We now show that the polynomial f (X ,Y ), computed by the ABPM,
can also be computed a multilinear depth-four circuit of size O (n2d ) and having top fan-in just

one. ABPM has k matrices, Y (1), . . . ,Y (k ) , containing the Y -variables. Associate with each matrix
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Y (i ) two matrices containing the X -variables, one on the immediate left X (2i−1) , and one on the

immediate right X (2i ) . Every monomial in f is formed by picking exactly one variable from every

matrix and taking their product. Once we picky (i )
u,v fromY (i ) , this automatically fixes the variables

picked fromX (2i−1) , andX (2i ) , as these are diagonal matrices. Moreover, any variable can be picked

from Y (i ) irrespective of which other Y-variables are picked from Y (1), . . . ,Y (i−1),Y (i+1), . . . ,Y (k ) .
This observation can be easily formalized to show that

f =
k∏

i=1

∑
u,v ∈[n]

x (2i−1)
u · y (i )

u,v · x (2i )
v .

The size of this multilinear ΠΣΠ circuit is O (n2k ) = O (n2d ).

5 PROOF OF THEOREM 1.9

We prove Theorem 1.9 in this section. In particular, we use the shift and rank concentration tech-
nique used in Reference [3] to give a quasi-polynomial time hitting set for a restricted class of
multilinear depth-three circuits. The model we consider is a multilinear depth-three circuit that
is both a superposition of m set-multilinear depth-three circuits and simultaneously a sum of l
set-multilinear depth-three circuits, where m and l are constants. Before we prove Theorem 1.9,
we briefly review the shift and rank concentration technique from [3].

Shift and rank concentration. Suppose we wish to check whether a polynomial computed
by a set-multilinear depth-three circuit is identically zero. Let the given circuit be C (X ) =∑s

i=1

∏d
j=1 li, j (X j ), where X = �d

j=1X j , X j = {x j,1,x j,2, . . . ,x j,n } and li, j ’s are linear polynomials

in variables X j . We view the polynomialC as a s coordinate vector where the ith coordintae is the

polynomial computed by the ith product gate. A dot product with the all ones vector 1, would give
us the polynomialC . In shift and rank concentration, we shift each variable x j,r to x j,r = x j,r + tj,r ,

where tj,r ’s are formal variables. Let Tj = {tj,1, tj,1, . . . , tj,n }, T = �d
j=1Tj , S ⊆ X , νS =

∏
x j,r ∈S x j,r

and ZνS
be the coefficient vector over F (T ) corresponding to the monomial νS in C (X ). The idea

is to use a map τ : tj,r → tωj,r , where t is a fresh variable different from X and T , such that

spanF (t ) {ZνS
: |S | ≤ �log s�} = spanF (t ) {ZνS

},
where spanF (t ) {ZνS

} denotes the span of the coefficient vectors over F (t ) corresponding to the
different monomials in the shifted polynomial and |S | equals the support7 of the monomial νS .
We say that such a map τ achieves �log s� concentration. [3] showed that it is sufficient to try

ndO (log s ) many maps to find a map that achieves �log s� concentration such that the ωjr ’s of such

a map are bounded by (nd )O (log s ) . After such a shift using the desired map, the polynomial C is
nonzero if and only if there a exists a monomial in the shifted polynomial with support less than or
equal to �log s� and a nonzero coefficient in F (t ). Thus, we check whether the shifted polynomial
has a nonzero monomial with support less than or equal to �log s�, by projecting over all possible
choices of �log s� variables and test if the shifted polynomial is nonzero using Reference [27] in

(nd )O (log s ) time. Now we prove Theorem 1.9.

Theorem 1.9 (restated). Let Cn,m,l,s be a subclass of multilinear depth-three circuits computing
n-variate polynomials such that every circuit in Cn,m,l,s is a superposition of at mostm set-multilinear
depth-three circuits and simultaneously a sum of at most l set-multilinear depth-three circuits, and

has top fan-in s . There is a hitting-set generator for Cn,m,l,s running in (ns )O (lm log s ) time.

7Support of a monomial is the number of variables in the monomial with degree at least 1.
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Proof. Circuit C is a superposition of m set-multilinear depth-three circuits in base sets
X1,X2, . . . , Xm . CircuitC is also a sum of l set-multilinear depth-three circuitsC1,C2, . . . ,Cl with
top fan-in s1, s2, . . . , sl , respectively, and s1 + s2 + · · · + sl = s . We make the following assumptions
on C:

(1) For all u ∈ [m], |Xu | = a and Xu = {xu,1,xu,2, . . . ,xu,a }.
(2) Every product node in C computes a degree a polynomial in X variables.

The second assumption allows us to associate m permutations σk,1, . . . ,σk,m corresponding to
base sets X1, . . . ,Xm , respectively, such that circuit Ck computes the polynomial

sk∑
i=1

a∏
j=1

(
αi, j + z

(i )
1,σk,1 (j )

x1,σk,1 (j ) + z
(i )
2,σk,2 (j )

x2,σk,2 (j ) + · · · + z (i )
m,σk,m (j )

xm,σk,m (j )

)
,

where αi, j , z
(i )
u,σk,u (j )

∈ F for all i ∈ [sk ], u ∈ [m], and j ∈ [a]. These assumptions are without loss

of generality and the arguments continue to hold in their absence. In particular, these assumptions
enable us to present the main ideas of the proof clearly. We outline these ideas in brief below after
we setup a few more notations. We havem sets of shift variables denotedTu = {tu,1, tu,2, . . . , tu,a },
for all u ∈ [m], and T = �u ∈[m]Tu . For convenience, we denote the union of the first r base sets of
variables as Ur , i.e., Ur = �u ∈[r ]Xu , andWr = X \Ur .

Proof outline. The variable xu, j is shifted to xu, j + tu, j , and at first we argue that after this shift
there is a monomial μ in X variables of support at mostm log s with a nonzero coefficient in F[T ]
if and only if C computes a nonzero polynomial. Naturally, this is true for any polynomial, but
the way we prove it for C (X ), enables us to importantly show in the second part that we can
construct a map that sets tu, j to tωu, j , where t is a fresh variable and ωu, j has an appropriate small
value, such that after applying the map μ has a nonzero coefficient polynomial in F[t]. We argue
the first part iteratively: in the first iteration we show there is a monomial μ1 in X1 variables of
support at most log s whose coefficient polynomial in F[W1 �T ] is nonzero. We induct on this
nonzero coefficient polynomial, which is computed by a depth-three circuit that is a superposition
ofm − 1 set-multilinear depth-three circuits and is a sum of l set-multilinear depth-three circuits.
In particular, at step r , we have a polynomial in F[Wr−1 �T ], that is computed by a depth-three
circuit that is a superposition ofm − (r − 1) set-multilinear depth-three circuits and a sum of l set-
multilinear depth-three circuits. Such a polynomial we show has a monomial μr in Xr variables
of support at most log s whose coefficient polynomial in F[Wr �T ] is nonzero. Thus, at the end
of step m, the product of the monomials μ =

∏m
r=1 μr has support at most m log s and a nonzero

coefficient polynomial in F[T ]. The next part of the proof is the most important, here we argue
that we can efficiently construct a map that sets tu, j to tωu, j , where t is a fresh variable and ωu, j

is bounded by (ns )O (lm log s ) , such that after applying the map, at every step r , μr has a nonzero
coefficient over F[t ,Wr ], and hence μ has a nonzero coefficient over F[t]. Once we show this,
finding a hitting set is easy: project over all possible choices of (m log s ) variables and test if the
shifted polynomial is nonzero over F[t] using sparse PIT [27].

Part 1: The polynomial computed by C after shifting the variables xu, j to xu, j + tu, j , for all u ∈
[m] and j ∈ [a] is denoted as C (X �T ). We argue inductively that C (X �T ) when viewed as a
polynomial over F[T ] has a monomial μ of support at mostm log s with a nonzero coefficient over
F[T ]. We present the inductive step here, the base case can be argued similarly. At step r , we
are ensured that there are monomials μ1, μ2, . . . , μr−1 in variables X1,X2, . . . ,Xr−1, respectively,
each having support at most log s such that

∏r−1
i=1 μi has a nonzero coefficient over F[Wr−1 �T ].

An easy to see observation is that such a coefficient, when viewed as a polynomial over F[T ]
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is computed by a circuit C (r ) that is a superposition of m − (r − 1) set-multilinear depth-three
circuits in base sets Xr , . . . ,Xm , and is a sum of l set-multilinear depth-three circuits. For k ∈ [l],

the k-th set-multilinear depth-three circuit, denoted C (r )
k

, is the circuit computing the coefficient

of the monomial
∏r−1

i=1 μi in Ck . Without loss of generality and reusing symbols, the polynomial

C (r )
k

(Wr−1 �T ) computed by circuit C (r )
k

can be represented as

sk∑
i=1

a∏
j=1+

(r−1) log s

(
αi, j + z

(i )
1,σk,1 (j )

(t1,σk,1 (j ) ) + · · · + z (i )
r−1,σk,r−1 (j )

(tr−1,σk,r−1 (j ) )

+z (i )
r,σk,r (j )

(xr,σk,r (j ) + tr,σk,r (j ) ) + · · · + z (i )
m,σk,m (j )

(xm,σk,m (j ) + tm,σk,m (j ) )
)
.

Without loss of generality, we may assume for all k ∈ [l] σk,r is the identity permutation. Fur-
ther for convenience of notation, in each product gate we can include the first (r − 1) log s linear

polynomials by assuming for all k ∈ [l] i ∈ [sk ], u ∈ [m] and j ∈ [(r − 1) log s] z (i )
u,σk,u (j )

= 0 and

αi, j = 1. Also using the same argument as in [3], we may also assume for allk ∈ [l] i ∈ [sk ],u ∈ [m]

and j ∈ [a] \ [(r − 1) log s] αi, j = 1. Thus, reusing symbols, we may represent C (r )
k

(Wr−1 �T ) as

sk∑
i=1

a∏
j=1

(
1 + z (i )

1,σk,1 (j )
t1,σk,1 (j ) + · · · + z (i )

r−1,σk,r−1 (j )
tr−1,σk,r−1 (j )

+ z (i )
r,σk,r (j )

(xr,σk,r (j ) + tr,σk,r (j ) ) + · · · + z (i )
m,σk,m (j )

(xm,σk,m (j ) + tm,σk,m (j ) )
)
.

For convenience, we define ρi, j as

z (i )
1,σk,1 (j )

t1,σk,1 (j ) + · · · + z (i )
r−1,σk,r−1 (j )

tr−1,σk,r−1 (j ) + z
(i )
r+1,,σk,r+1 (j )

(xr+1,σk,r+1 (j )

+ tr+1,σk,r+1 (j ) ) + · · · + z (i )
m,σk,m (j )

(xm,σk,m (j ) + tm,σk,m (j ) ),

and hence we express C (r )
k

(Wr−1 �T ) as

sk∑
i=1

a∏
j=1

(
1 + ρi, j + z

(i )
r, j (xr, j + tr, j )

)
. (1)

We view the polynomial C (r ) (Wr−1 �T ) =
∑l

k=1C
(r )
k

(Wr−1 �T ) as a polynomial in Xr variables
over the function field F (Wr �T ), and we will prove that there is monomial μr in Xr variables of
support at most log s with a nonzero coefficient polynomial in F[Wr �T ]. To this end, we rewrite
Equation (1) as follows:

C (r )
k

(Wr−1 �T ) =

sk∑
i=1

��
a∏

j=1

(1 + ρi, j + z
(i )
r, jtr, j ) ·

a∏
j=1

(
1 +

z (i )
r, jxr, j

1 + ρi, j + z
(i )
r, jtr, j

)
�.
Let

z̃ (i )
r, j =

z (i )
r, j

1 + ρi, j + z
(i )
r, jtr, j

⇒ z (i )
r, j =

z̃ (i )
r, j (1 + ρi, j )

1 − z̃ (i )
r, jtr, j

. (2)

Then,

C (r )
k

(Wr−1 �T ) =

sk∑
i=1

( a∏
j=1

(
1 + ρi, j + z

(i )
r, jtr, j

)
·

a∏
j=1

(
1 + z̃ (i )

r, jxr, j

))
.
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Recall, circuit C (r ) is a depth-three circuit with top fan-in s , and is the sum of l set-multilinear

depth-three circuitsC (r )
1 , . . . ,C

(r )
l

with top fan-in s1, . . . , sl , respectively, where s1 + s2 + · · · + sl =

s . In the remaining part of the proof, we use the index i to either refer to a product gate in circuit

C (r ) , in which case i ∈ [s], or to a product gate in circuitC (r )
k

, in which case i ∈ [sk ], for all k ∈ [l].
This will be clear from the context.

For a set J ⊂ [a], we associate the monomial ν J =
∏

j ∈J xr, j with J , and with every monomial

ν J , we associate two vectors Zν J
, Z̃ν J

∈ F (Wr �T )s . For all i ∈ [s], the i-th entry of Zν J
is equal

to (
∏

j ∈J z
(i )
r, j ) (
∏

j ∈[a]\J (1 + ρi, j )), and the ith entry of Z̃ν J
is
∏

j ∈J z̃
(i )
r, j . Since the coefficient of

a monomial ν J in C (r ) (Wr−1 �T ), for all J ⊆ [a], is the dot product of Z̃ν J
with another vector

whose ith component is
∏a

j=1 (1 + ρi, j + z
(i )
r, jtr, j ), for all i ∈ [s], the following claim implies that if

C (r ) (Wr−1 �T ) � 0 thenC (r ) (Wr−1 �T ) has a monomial μr in Xr variables of support at most log s
with a nonzero coefficient polynomial in F[Wr �T ]. �

Claim 5.1. spanF (Wr�T ) {Z̃ν J
|J ⊆ [a]} = spanF (Wr�T ) {Z̃ν J

|J ⊆ [a], |J | ≤ log s}.

Proof. Pick a monomial ν J , such that |J | = log s + 18, and consider all monomial νI such that

I ⊆ J . Since there are 2log s+1 > s many monomials, the coefficient vectors of these monomials are
F (Wr �T )-linearly dependent, i.e., ∑

I ⊆ J

bIZνI
= 0, (3)

where for all I ⊆ J , bI ∈ F (Wr �T ) and there is a I ⊆ J such that bI � 0. We write Equation (3)
corresponding to the i-th entry of the vectors ZνI

, where i ∈ [s], and I ⊆ J∑
I ⊆ J

bI

(∏
j ∈I

z (i )
r, j

∏
j ∈[a]\I

(1 + ρi, j )
)
= 0. (4)

Since
∏

j ∈[a]\J (1 + ρi, j ) � 0, we have∑
I ⊆ J

bI

(∏
j ∈I

z (i )
r, j

∏
j ∈J \I

(1 + ρi, j )
)
= 0. (5)

In the above equation, we substitute the value of z (i )
r, j from Equation (2),

∑
I ⊆ J

bI
��
∏
j ∈I

( z̃ (i )
r, j (1 + ρi, j )

1 − z̃ (i )
r, jtr, j

) ∏
j ∈J \I

(1 + ρi, j )
� = 0 ,

⇒
∑
I ⊆ J

bI
��
∏
j ∈I

( z̃ (i )
r, j

1 − z̃ (i )
r, jtr, j

)∏
j ∈J

(1 + ρi, j )
� = 0 .

Again, as
∏

j ∈J (1 + ρi, j ) � 0, we have

∑
I ⊆ J

bI
��
∏
j ∈I

z̃ (i )
r, j

1 − z̃ (i )
r, jtr, j


� = 0 .

Multiplying both sides of the above equation by
∏

j ∈J (1 − z̃ (i )
r, jtr, j ), we have∑

I ⊆ J

bI

∏
j ∈I

z̃ (i )
r, j

∏
j ∈J \I

(
1 − z̃ (i )

r, jtr, j
)
= 0. (6)

8We avoid ceil, floor notation for ease of exposition.
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Since this is true for all i ∈ [s], from Equation (6), we get the following relation among the vectors

Z̃νI
, for all I ⊆ J :

��
∑
I ⊆ J

bI · (−1)log s+1−|I |
∏

j ∈J \I
tr, j 
�︸�������������������������������������︷︷�������������������������������������︸

дJ (Wr�T )

·Z̃ν J
+
∑
I ⊂ J

дI (Wr �T ) · Z̃νI
= 0. (7)

Since among all bI ∈ F (Wr �T ), where I ⊆ J , there is a nonzero bI , дJ (Wr �T ) is nonzero in the

above equation. Thus, we conclude Z̃ν J
is F (Wr �T )-linearly dependent on vectors Z̃νI

for I ⊂ J .

Similarly, for every I ⊆ [a], Z̃νI
can be inductively expressed as an F (Wr �T )-linear combination

of the vectors Z̃νK
, where K ⊆ [a] and |K | ≤ log s . �

Part 2: In part 1, we iteratively showed that there is a monomial μ =
∏

i ∈[m] μi , with a nonzero
coefficient over F[T ]. Corresponding to every iteration r ∈ [m] in part 1, we have an equation
similar to Equation (7), and the correctness of the proof hinges on the coefficient of the log s + 1
support monomial (i.e., дJ (Wr �T )) being nonzero in these equations. In this part, we analyze
the structure of дJ (Wr �T ) for all r ∈ [m], and J ⊆ [a] such that |J | = log s + 1, to argue that it

is possible to construct a map ψ in time (ns )O (lm log s ) that sets tu, j to tωu, j , where ωu, j ’s are also

bounded by (ns )O (lm log s ) , such that дJ (t ,Wr ) ∈ F (t ,Wr ) remains nonzero after applying this map.
It follows immediately that after applying ψ the monomial μ has a nonzero coefficient over F[t].
We begin by proving the following claim.

Claim 5.2. The expression denoted дJ (Wr �T ) in Equation (7) is a rational function in F (Wr �T )
with at most O (lm log s ) distinct T variables appearing in it. Further, the degree of the polynomials
in the numerator and denominator of дJ (Wr �T ) is bounded by O (s2 log s ).

Proof. Recall Equations (3), (4), and (5). We rewrite Equation (5) below∑
I ⊆ J

bI

(∏
j ∈I

z (i )
r, j

∏
j ∈J \I

(1 + ρi, j )
)
= 0. (8)

Define vectorsZνI
∈ F[Wr �T ]s , for all I ⊆ J , such that the ith entry ofZνI

is
∏

j ∈I z
(i )
r, j

∏
j ∈J \I (1 +

ρi, j ). Then, ∑
I ⊆ J

bIZνI
= 0. (9)

Since for all i ∈ [s] and j ∈ [J ], ρi, j is a linear polynomial in 2(m − 1) variables from Wr �T , the
expression

∏
j ∈J \I (1 + ρi, j ) is a polynomial in O (m log s ) variables fromWr �T . We call the vari-

ables appearing in the expression
∏

j ∈J \I (1 + ρi, j ) as the variable set of the expression. Recall that

circuit C (r ) is a sum of l set-multilinear depth-three circuits, and if two expressions correspond
to product gates from the same set-multilinear depth-three circuit then they have the same vari-
able set, i.e., for all k ∈ [l], and i, i ′ ∈ [sk ], the expressions

∏
j ∈J \I (1 + ρi, j ) and

∏
j ∈J \I (1 + ρi′, j )

have the same variable set of size O (m log s ). Hence, there is a set of variables S ⊂Wr �T of size

O (lm log s ) such that the variable sets of the entries in ZνI
for all I ⊆ J are subsets of S . From

Cramer’s rule, we infer that bI , for all I ⊆ J is a rational function in the variables from S , and
the degree of the numerator/denominator in bI is O (s log s ). Thus, дJ (Wr �T ) is also a rational
function inO (lm log s ) variables fromWr �T and the degree of the polynomials in the numerator/
denominator in дJ (Wr �T ) is O (s2 log s ). �

From Claim 5.2 it follows that the number of monomials in T variables in the numerator and
denominator of дJ (Wr �T ) is equal to sO (lm log s ) . Thus, the number of monomials in T variables
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in the numerator/denominator of дJ (Wr �T ), at every iteration r ∈ [m], and for all J ⊂ [a] of size

log s + 1 is (ns )O (lm log s ) . The mapψ maps these (ns )O (lm log s ) monomials inT variables to distinct

monomials in F[t], and it is standard to compute such a map ψ (tu, j ) = tωu, j in (ns )O (lm log s ) time

such that the values of ωu, j are also bounded by (ns )O (lm log s ) [27].

6 PROOF OF TECHNICAL CLAIMS

6.1 Proofs of Observations in Section 1

Observation 1.1 (restated). Given a circuit C, if C is a superposition of t set-multilinear circuits

on unknown base sets Y1,Y2, . . . ,Yt , finding t base sets Y
′
1,Y

′
2, . . . ,Y

′
t such thatC is a superposition of

t set-multilinear circuits on base sets Y
′
1,Y

′
2, . . . ,Y

′
t is NP-hard when t > 2.

Proof. We will reduce the t-coloring problem to this problem. Given a graph G, the t-coloring
problem asks to color the vertices of G with t colors such that no two adjacent vertices of G have
the same color. Suppose we are given a graph G = (V ,E). From G construct a circuit C as follows.
LetV = {u1, . . . ,un }, identify these vertices with n-variables. The circuitC contains a product gate
P multiplying the n variables (u1) · · · (un ). If there exists an edge between two vertices u1 and u2

in G, then add a product gate Pu1,u2 in C having a single linear polynomial (u1 + u2). We argue
below that the circuit C is a superposition of t set-multilinear depth-three circuits if and only if
the graph G is t-colorable.

Suppose G is t-colorable. Then the set of vertices in G with the same color form a valid base
set. Thus, the t sets of vertices of G with t different colors correspond to t valid base sets in C
and thusC is a superposition of t set-multilinear depth-three circuits. In the reverse direction, say
C is a superposition of t set-multilinear depth-three circuits, which implies C has t base sets. A
t-coloring of G can be obtained by giving every base set a unique color. If two variables ui and uj

belong to the same base set, then as ui and uj appear in different linear polynomials in product
gate P there is no product gate in C in which ui and uj appear in the same linear polynomial. But
this implies there is no edge between ui and uj in G else there would have been a product gate
Pui ,uj

having a single linear polynomial (ui + uj ) in C . �

Observation 1.2 (restated). A polynomial computed by a multilinear ΣΠΣ circuit with top fan-
in two and at most two variables per linear polynomial can also be computed by an ROABP with
constant width.

Proof. LetC be a multilinear depth-three circuit with top fan-in two and at most two variables
per linear polynomial computing the polynomial f (X ) in n variables {x1, . . . xn }. Let σ : [n]→ [n]
be a permutation function. Then without loss of generality f (X ) can be expressed as

f (X ) =
∏

i ∈[n],i odd

(1 + xi + xi+1) +
∏

i ∈[n],i odd

(1 + xσ (i ) + xσ (i+1) ).

We have assumed that the coefficients of xi ’s and the constant term in every linear polynomial is
1, and n is even for simplicity. The arguments for this case can be adapted appropriately to prove it
for the general case. Let P1 =

∏
i ∈[n],i odd (1 + xi + xi+1) and P2 =

∏
i ∈[n],i odd (1 + xσ (i ) + xσ (i+1) ).

Product gates P1 and P2 can be easily computed individually by ROABPs of width two but with
different variable orderings. We express the two ROABPs in the same variable ordering and add
the polynomials computed by them (P1 and P2) to get an ROABP computing f .

We partition the linear polynomials in P1 and P2 into sets {L11,L12, . . . ,L1k } and {L21,
L22, . . . ,L2k }, respectively, such that the sets of variables appearing in the linear polynomials in
L1t and L2t , where t ∈ [k], are equal and this set is completely disjoint from the set of variables
appearing in the linear polynomials in Lmr , where m ∈ [2] and r ∈ [k] \ {t }. We give a “greedy”
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Fig. 2. ROABPs corresponding to L1t and L2t .

partition procedure below. Mark all the linear polynomials in P1 and P2 as unpicked. Initialize t = 1
and i = 1:

(1) Pick an unpicked linear polynomial lp = (1 + xi + xi+1) in P1 and put it in L1t . Mark lp as
picked. Store the value i in temp: temp = i .

(2) Let the linear polynomial in which the variable xi+1 appears in P2 be lq = (1 + xi+1 + x j ).
Put lq in L2t and mark lq as picked.

(3) If j is equal to temp, then increment t and start from step 1.
(4) Else set i = j and let the linear polynomial in which the variable xi appears in P1 be lr =

(1 + xi + xi+1). Put lr in L1t and mark lr as picked.
(5) Repeat from step 2.

Clearly, the sets of variables appearing in the linear polynomials in L1t and L2t , where t ∈ [k],
are equal and this set is disjoint from the set of variables appearing in the linear polynomials
in Lmr , for m ∈ [2] and r ∈ [k] \ {t }. Notice that if some of the coefficients of the variables in
the linear polynomial were zero (instead of 1 as in the assumption made by us) or some of the
linear polynomials involved just a single variable then the sets of variables appearing in the lin-
ear polynomials in L1t and L2t may not be the same but their union will still be completely dis-
joint from the set of variables appearing in the linear polynomials in Lmr , where m ∈ [2] and
r ∈ [k] \ {t }. Also, the above partition procedure can be changed appropriately to handle these
cases.

We express the two ROABPs computing P1 and P2 in the same variable ordering as a sequence
of k parts. In part t , we compute the product of linear polynomials in L1t and L2t separately us-
ing two ROABPs such that the variable orderings in these two ROABPs are the same. Finally,
we connect the ROABPs from these k parts to give a single ROABP of width six. We argue how
to construct an ROABP corresponding to the linear polynomials in L1t and L2t . Arrange the lin-
ear polynomials in L1t and L2t in the order they are picked during the partition process. Sup-
pose after this arrangement we haveL1t = {(1 + xi + xi+1), (1 + x j + x j+1), . . . , (1 + xl + xl+1)} and
L2t = {(1 + xi+1 + x j ), (1 + x j+1 + xk ), . . . , (1 + xl+1 + xi )}. Figure 2 shows the two ROABPs com-
puting the product of linear polynomials in L1t and L2t , respectively. Consider the input and output
nodes of L1t and L2t marked in Figure 2 as the sources and sinks of these two ROABPs, respec-
tively. The variables are arranged such that except xi all variables are in the same order in the
two ROABPs. We order xi by breaking the second ROABP in two parts as shown in Figure 3. The
first part computes the polynomial in which xi does not appear and the second part brings xi to
the beginning and computes the polynomial in which xi appears. Finally, we add these two parts
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Fig. 3. ROABPs (with same variable ordering) corresponding to L1t and L2t .

by adding an extra layer.9 In a general case where some of the coefficients of the variables in the
linear polynomial are zero or some of the linear polynomials involved just a single variable, the
variables in the linear polynomials in L1t and L2t may define a path instead of a cycle. But no-
tice that handling this case is easier, as both the ROABPs can be expressed in the same variable
ordering to begin with. Finally, we have directed acyclic graphs each consisting of two ROABPs
with consistent variable ordering from all the k pairs of sets of linear polynomials. We connect
these k graphs by adding weight 1 edges between the input nodes of L1r ,L2r and the output nodes
of L1(r+1),L2(r+1) , respectively, where r ∈ [k − 1]. The resulting graph is an ROABP of width six
computing f . �

Observation 1.3 (restated). IMMn,d can be computed by an n2 width ROABP.

Proof. We transform the width n ABP computing IMMn,d to a width n2 ROABP computing

the same. Let {X (1),X (2), . . . ,X (d ) } be the d matrices in IMMn,d . The (j,k )-th entry in X (i ) is x (i )
j,k

.

We replace matrix X (i ) by n2 + 2 matrices: A(i,1) , A(i,2) and A(i, j,k ) where j,k ∈ [n]. A(i,1) and A(i,2)

are rectangular matrices of dimension n × n2 and n2 × n, respectively. For j,k ∈ [n], A(i, j,k ) are

diagonal matrices of dimension n2. Ordered from left to right A(i,1) and A(i,2) are first and last,

respectively, and A(i, j1,k1 ) comes before A(i, j2,k2 ) if j1 < j2 or if j1 = j2 and k1 < k2. The (a,a)-th

entry of A(i, j,k ) is x (i )
j,k

if a = n · (j − 1) + k and 1 otherwise. The (a,b)th entry of A(i,1) is 1 if (a −
1) · n + 1 ≤ b ≤ a · n and 0 otherwise. Similarly, the (a,b)th entry of A(i,2) is 1 if b ≡ a mod n and
0 otherwise. Figure 4 shows the part of ROABP corresponding to the split of a matrixX into n2 + 2

matrices, when n = 4, as explained above. When we split X (i ) into n2 + 2 matrices as above the
corresponding part of ROABP computing the product of these n2 + 2 matrices has n vertices in
both the leftmost and rightmost layers of vertices. There is a unique path from the jth vertex in

leftmost layer to the kth vertex in rightmost layer with weight x (i )
j,k

. Hence, the product of the

n2 + 2 matrices arranged as above is X (i ) .
To transform the ABP computing IMMn,d to an ROABP, we have introduced between every pair

of adjacent layers of vertices in the ABP, n2 layers with n2 vertices in each layer, hence the width
of the ROABP is n2. �

9If every edge between two layers are labelled by constants, then these edges can be absorbed by the edges in the adjacent

layer. For example, in Figure 3 the edges between the last two layers can be absorbed by edges labelled by xl+1.
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Fig. 4. ROABP corresponding to the split of a matrix X .

6.2 Proofs of Lemmas in Section 2

Lemma 2.3 (restated).

(1) Let д1,д2 ∈ F[X ] and S ⊆ X , then EvaldimS (д1 + д2) ≤ EvaldimS (д1) + EvaldimS (д2).
(2) Let f1, f2 ∈ F[X ,Y ], then PDYk

( f1 + f2) ≤ PDYk
( f1) + PDYk

( f2).

Proof. For i ∈ {1, 2}, let

Vi = spanF {дi (X ) |∀x j ∈S x j=α j
: ∀x j ∈ S α j ∈ F } and

W = spanF {(д1 + д2) (X ) |∀x j ∈S x j=α j
: ∀x j ∈ S α j ∈ F }.

Every polynomial in W belongs to V1 +V2, where V1 +V2 = { f1 + f2 | f1 ∈ V1, f2 ∈ V2}. Hence,
EvaldimS (д1 + д2) = dim(W ) ≤ dim(V1 +V2) ≤ dim(V1) + dim(V2) = EvaldimS (д1) +
EvaldimS (д2). Proving part two is similar to part one. For i ∈ {1, 2}, let

Ai = spanF

⎧⎪⎨⎪⎩
[
∂ fi (X ,Y )

∂m

]
∀y∈Y y=0

: m ∈ Yk

⎫⎪⎬⎪⎭ and

B = spanF

⎧⎪⎨⎪⎩
[
∂( f1 + f2) (X ,Y )

∂m

]
∀y∈Y y=0

: m ∈ Yk

⎫⎪⎬⎪⎭ .
Again observing B is a subspace of A1 +A2, where A1 +A2 = {д1 + д2 |д1 ∈ A1,д2 ∈ A2}, part two
follows. �

6.3 Proofs of Observations and Claims in Section 3

Claim 3.1 (restated). Polynomial f (as constructed in Section 3, proof of part 1) is computed by
a multilinear depth-three circuit C of size Θ(n) and top fan-in three, and C is a superposition of two
set-multilinear depth-three circuits.

Proof. Since f is a sum of three product terms, where each product term is a product of linear
polynomials on disjoint sets of variables, it can be computed by a multilinear depth-three circuitC
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with top fan-in three. The bottom fan-in (fan-in of the sum gates at layer 3) is three, since there are
two variables and the field constant 1 per linear polynomial. The fan-in of every product gate is n.
As there are three product gates, the total number of edges inC is 3 + 3(n(1 + 3)) = 3 + 12n = Θ(n).
Every linear polynomial of a product gate has two variables, an X and a Y variable. Hence, the
circuit is a superposition of two set-multilinear depth-three circuits on base sets X and Y . �

Claim 3.5 (restated). Polynomial д (as constructed in Section 3, proof of part 2) is computed by
a multilinear depth-three circuit C of size Θ(n) and top fan-in two, and C is a superposition of three
set-multilinear depth-three circuits.

Proof. Since д is a sum of two product terms, where each product term is a product of linear
polynomials on disjoint sets of variables, it can be computed by a multilinear depth-three circuit
C with top fan-in two. From 2.11, we know a 3-regular bipartite graph can be split into three edge
disjoint perfect matchings. Each linear polynomial in д contains three variables corresponding to
edges from three edge disjoint perfect matchings. We group the variables corresponding to edges in
a single matching into a base set. Thus, the variables are split into three distinct base sets,X ,Y , and
Z . Hence,д can be computed by a circuitC,which is a superposition of three set-multilinear depth-
three circuits.C has two product gates and each product gate has n linear polynomials, where each
linear polynomial has three variables and a constant. Hence, |C | = 1 + 2 + 2(n(1 + 4)) = 3 + 10n =
Θ(n). �

6.4 Proof of Claim in Section 4

Claim 4.1 (restated). If IMMn,d is computed by a multilinear depth-three circuit having top fan-in
s, then f is also computed by a multilinear depth-three circuit having top fan-in s .

Proof. f is computed by the ABPM of width n and length d as described in Section 4. Each
edge inM is labelled by a distinct variable or 1. Let IMMn,d be the (1, 1)th entry of a product of d
n × n symbolic matrices {Z (1),Z (2), . . . ,Z (d ) } ordered from left to right. The (j,k )th entry in Z (i ) is

the formal variable z (i )
j,k

. We project IMMn,d to f as follows. RecallM has three kinds of matrices:

X ,Y and A. The matrices {Z (1),Z (2), . . . ,Z (d ) } would correspond to the X ,Y and A matrices in the

same order as they appear in the ABPM. Z (1) corresponds to the row vector X (1) , so z (1)
1,l

maps to

x (1)
l

and z (1)
m,l

to 0 form ∈ [2,n]. Similarly,Z (d ) corresponds to the column vectorX (r ) , so z (d )
m,1 maps

to x (r )
m and z (d )

m,l
to 0 for l ∈ [2,n]. If Z (i ) corresponds to X (j ) for j ∈ [2, r − 2], then we map z (i )

m,m to

x (j )
m and z (i )

m,l
to 0 ifm � l . IfZ (i ) corresponds toY (j ) , then we map z (i )

m,l
toy (j )

m,l
. IfZ (i ) corresponds to

A(j ) , then we map all the variables in Z (i ) to 1. Such a projection of IMMn,d equates to f . Suppose
IMMn,d is computed by a multilinear depth-three circuit C . Then by applying the map on the
variables of IMMn,d and C , we get that the image of C computes f . Two distinct variables are not
mapped to the same variable under this map. Hence, image of C is still a multilinear depth-three
circuit having top fan-in same as that of C . �
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