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ABSTRACT
The self-consistent vertical density distribution in a thin, isothermal disc is typically given by
a sech2 law, as shown in the classic work by Spitzer. This is obtained assuming that the radial
and vertical motions are decoupled and only the vertical term is used in the Poisson equation.
We argue that in the region of low density as in the outer disc this treatment is no longer
valid. We develop a general, complete model that includes both radial and vertical terms in the
Poisson equation and write these in terms of the full radial and vertical Jeans equations which
take account of the non-flat observed rotation curve, the random motions, and the cross term
that indicates the tilted stellar velocity ellipsoid. We apply it to the Milky Way and show that
these additional effects change the resulting density distribution significantly, such that the
mid-plane density is higher and the disc thickness (HWHM) is lower by 30–40 per cent in the
outer Galaxy. Further, the vertical distribution is no longer given as a sech2 function even for
an isothermal case. These predicted differences are now within the verification limit of new,
high-resolution data for example from Gaia and hence could be confirmed.

Key words: Galaxy: disc – Galaxy: kinematics and dynamics – solar neighbourhood –
Galaxy: structure.

1 IN T RO D U C T I O N

The vertical structure of the stellar disc in a thin galactic disc such as
the Milky Way is typically obtained by treating it as an isothermal,
self-gravitating system whose density distribution along the vertical
direction is given by a sech2 form, see the classic work by Spitzer
(1942). The disc is treated to be thin and axisymmetric; and a
cylindrical coordinate system is used. Hence, the Poisson equation
contains only the vertical term, while the radial and azimuthal terms
are dropped. Combining it with the vertical Jeans equation or the
equation of hydrostatic equilibrium, gives the following equation
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∂
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]
= −4πGρ, (1)

where ρ is the density and v2
z is the square of the isothermal vertical

velocity dispersion. The solution of this equation gives the vertical
density distribution:

ρ(z) = ρ0sech2(z/z0) (2)

where ρ0 is the mid-plane density and z0 is a measure of scale
height. We will refer to this as the sech2 model in rest of the paper.
A similar treatment is used to study the related problem of the total
dynamical mid-plane density or the Oort limit (Oort 1932; Bahcall
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1984). Thus, usually in galactic dynamics, the R and z motions
are effectively taken to be decoupled. This allows for a simple
treatment of the orbits in the plane and those normal to the plane
as being decoupled (Mihalas & Routly 1968; Binney & Tremaine
1987).

We point out that in the general case, such as when the disc
density is low as in the outer parts of the disc or at regions away
from the mid-plane, or as in the thick disc, the neglect of the radial
term is not justified because in such regions this term may become
comparable to the vertical term in the Poisson equation. Hence even
for an isothermal case, the resulting density distribution would be
different from the standard sech2 distribution.

The radial term in the Poisson equation was indeed included, and
for simplicity was obtained using the observed rotation curve, in
some earlier papers (Narayan, Saha & Jog 2005; Banerjee et al.
2011; Sarkar & Jog 2019). Interestingly, in case of an observed flat
rotation curve, the contribution of this term turns out to be identically
zero (Narayan et al. 2005) in the mid-plane. Here, instead we use
the complete radial Jeans equation to calculate the radial term in the
Poisson equation.

Further, in writing both the vertical and radial Jeans equations
that are used to obtain the vertical and radial terms of the Poisson
equation respectively, typically a simplification is made, namely
the so-called cross term vRvz, where the average is taken over the
velocity dispersions, is ignored. The term vRvz is a component
of the velocity ellipsoid tensor whose value is set by the tilt of
the velocity ellipsoid with respect to the disc plane, and it also
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represents the coupling between radial and vertical motions. But its
contribution has been neglected in most of the dynamical models
so far (Bahcall 1984; Cappellari 2008) as is justified for a region
very close to the mid-plane in a thin disc. Note that recent kinematic
data from observations like radial velocity experiment, sloan digital
sky survey, and Gaia show that the stellar velocity ellipsoid is
indeed tilted in the meridional plane both in the stellar disc (Hagen
et al. 2019; Everall et al. 2019) and in the outer stellar halo (Wegg,
Gerhard & Bieth 2019). It is observed to have an orientation such
that it tends to align with a spherical polar coordinate system centred
at the centre of the Galaxy. This motivates us to consider this cross
term in the Jeans equations.

Here, we solve for the self-consistent vertical distribution of
stars using the complete Poisson equation, where the vertical and
radial terms are given in terms of complete vertical and radial
Jeans equations without the usual simplifications – thus we can
consider this as the complete and general model. We calculate the
mid-plane density value and scale height of the disc, measured in
terms of the half-width at half-maximum (HWHM) of the vertical
density distribution, and compare them with the corresponding
results obtained from a simple, stars-alone case (sech2 model) as
obtained from our earlier work (Sarkar & Jog 2018). With the advent
of accurate data, as from Gaia or the large sky area multi-object
fiber spectroscopic telescope (LAMOST), it is feasible to check
such modified density distribution with the observations, hence
our study is timely. Some earlier studies have used the full set
of Jeans equations to determine vertical force field, shape of the
dark matter halo, and local estimate of dark matter density (Bovy &
Tremaine 2012; Hagen & Helmi 2018; Sánchez-Salcedo, Flynn &
de Diego 2016; Wegg et al. 2019), but the effect on the vertical
density distribution of stars has not been studied.

The outline of the paper is as follows – we describe the derivation
of the equations along with the input parameters in Section 2, give
the results in Section 3, and give the conclusions in Section 4.

2 FO R M U L AT I O N O F TH E P RO B L E M

2.1 Derivation of the equations

Here, we use the full Poisson equation containing both the vertical
and radial terms, where the vertical and radial gradients of potential
are obtained using the full Jeans equations. We consider the disc
to be in a steady-state system and for such a system the Poisson
equation is given by
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= 4πGρ(R, z) (3)

where � is the gravitational potential, and the terms on the left-
hand side denote the radial and vertical terms of the Poisson
equation respectively. To calculate the radial and vertical gradients
of the potential, we use the radial and vertical axisymmetric
Jeans equations in cylindrical coordinates, given as (see Binney &
Tremaine 1987):
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We consider that there is no net streaming motion along radial
and vertical directions in the Galaxy, hence we can write v2

R = σ 2
R

and v2
z = σ 2

z where σ R and σ z represent velocity dispersions of

stars along R and z directions respectively. v2
φ can be written as

v2
φ = σ 2

φ + vφ
2, where vφ represents observed mean rotation of stars

in the disc and σφ is the azimuthal velocity dispersion.
At z = 0, the mid-plane of the Galaxy, the velocity ellipsoid

remains perfectly aligned with the cylindrical coordinate axes,
which makes vRvz = 0 (Mihalas & Routly 1968). But away from
the mid-plane, i.e, for z �= 0, the ellipsoid can be shown to be tilted
with respect to the coordinates axes (Mihalas & Routly 1968) and
such a deviation gives rise to a non-zero vRvz term, as also found
in observations (Introduction). Recently, such a tilted ellipsoid was
included in the studies by Cappellari (2019), and Nitschai et al.
(2019) who solved the Jeans equations to obtain the kinematical
quantities and compared these with observations. These papers
considered the tilted velocity ellipsoid which was taken to be aligned
along the spherical system for z �= 0. However since they solved
the equations in spherical coordinates the cross term drops out of
the calculation. We note that these papers did not solve the joint
Poisson equation and the Jeans equations to obtain the vertical
density distribution of stars as done in our work.

Here, we write the Jeans equations in cylindrical coordinates
and consider the velocity ellipsoid to be aligned with spherical
coordinates, centred at the centre of the Galaxy, at all radii for
z �= 0. Thus we include the effect of the cross term. We use the
expression for vRvz given as (σ 2

R − σ 2
z )(z/R) (Mihalas & Routly

1968; Binney & Tremaine 1987). Using equations (4) and (5), we
calculate the radial and vertical terms of the Poisson equation to be:
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We consider an exponential stellar disc whose surface density falls
off as � = �0exp (− R/RD). Similarly, we also consider the radial
velocity dispersion to fall off exponentially as σ R = σ 0exp (−
R/Rvel) and define the vertical and azimuthal dispersions in terms
of ratio to σ R, e.g. bz = σ 2

z /σ 2
R and bφ = σ 2

φ /σ 2
R.

Using the above physical assumptions, and expanding equations
(6) and (7) and substituting into equation (3), we obtain the
second-order differential equation describing the vertical density
distribution as:
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The first three terms of the above equation correspond to equation
(1) and hence the rest of the terms in equation (8) arise due to
the various generalizations considered here. It allows us to study
the effect of any kinematical term in a methodical way. The
algebraic simplifications leading to the above equation consider
(1/ρ)(∂ρ/∂R) = −1/RD which assumes that ρ = �/2hz, where hz

is the disc thickness at any radius. Though the disc thickness does
not remain constant with radius (as shown later in Section 3.2),
we expect that this approximation is justified as it will give rise to
only second-order effects in the results at a particular radius.

Equation (8) represents a general formalism and therefore can
be applied for any typical disc galaxy satisfying the above phys-
ical assumptions. Here, we have applied it for our Galaxy and
we describe all the required input parameters in the following
subsection.

2.2 Input parameters and numerical solution

For the surface density of the stellar disc of the Milky Way, we have
used RD = 3.2 kpc and �0 = 640.9 M�pc−2 (Mera, Chabrier &
Schaeffer 1998). For σ R, we consider Rvel = 8.7 kpc and σ 0 =
105.0 km s−1 as observed by Lewis & Freeman (1989). We take bz

to be (0.45)2, consistent with the observation in the solar neighbour-
hood (Dehnen & Binney 1998; Mignard 2000) and assume this to
be valid at all radii. These same input parameter values were used
for the sech2 model (Section 1). The azimuthal dispersion is related
to radial dispersion as in epicyclic approximation, hence the ratio
bφ is calculated to be:

bφ = σ 2
φ

σ 2
R

= 1

2

(Vc/R + dVc/dR)

Vc/R
(9)

where Vc is the circular velocity. We note that this expression is
derived considering a circular orbit for stars and hence a true circular
velocity curve should be used. But here we consider the mean
rotation velocity vφ from the observed rotation curve, which deviates
from the true circular velocity, to calculate the ratio. We expect that
this approximation is justified, as it may lead to only second-order
effect in the bφ values. We use the observed rotation velocity data
from Sofue (2012) and fit a polynomial to the observed data. Using
the best-fitting curve, we calculate both the rotation velocity and
its gradient at any radius and determine the ratio bφ using equation
(9). The values obtained are 0.46, 0.54, 0.57, 0.56, 0.49, and 0.41 at
R = 2, 3, 4, 5, 6, and 7 kpc respectively. Starting from and beyond
the solar neighbourhood, the observed data shows large fluctuations,
however, the theoretically fitted smooth curve in Sofue (2012) is
nearly flat. Therefore, for R ≥ 8.5 kpc, we consider the rotation
curve to be flat for simplicity which gives bφ identically = 0.5 from
equation (9).

We note that, as the velocity dispersion of stars falls with radius,
its value may get less than the gas dispersion, beyond a certain
radius. Since stars are formed from gas clouds, hence they cannot
have a lower velocity dispersion than the gas itself, as explained
in Sarkar & Jog (2018). The HI velocity dispersion in the outer
Galaxy is observed to saturate around 7 km s−1 (Kamphuis 1993;
Dickey 1996). Therefore, we keep the stellar vertical and azimuthal
dispersion values constant at 7.5 km s−1 from R = 18 and 20 kpc
onward respectively to keep it higher than the gas dispersion and
update the values of bφ and bz accordingly at those radii.

We solve equation (8) using the method as in Narayan & Jog
(2002), and Sarkar & Jog (2018). That is, we solve it by applying
the fourth-order Runge–Kutta method, where the observed surface
density of stars is used as one boundary condition and the second

Table 1. Results for the mid-plane density ρ0 using the sech2 model, Model
A (with only a non-flat, observed rotation curve), and Model B (the complete,
general one).

Radius (ρ0)sech2 (ρ0)model A �A (ρ0)model B �B

(kpc) (M�pc−3) (M�pc−3) (%) (M�pc−3) (%)

2.0 0.568 0.604 + 6.3 0.463 − 18.5
3.0 0.381 0.365 − 4.2 0.275 − 27.8
4.0 0.258 0.236 − 8.5 0.190 − 26.4
5.0 0.173 0.162 − 6.4 0.140 − 19.1
6.0 0.117 0.118 + 0.85 0.108 − 7.7
7.0 0.078 0.086 + 10.2 0.081 + 3.8
8.5 0.043 – 0.0 0.041 − 4.6
10.0 0.024 – 0.0 0.023 − 4.2
12.0 0.011020 – 0.0 0.011045 + 0.2
14.0 5.13 × 10− 3 – 0.0 5.27 × 10− 3 + 2.7
16.0 2.38 × 10− 3 – 0.0 2.55 × 10− 3 + 7.1
18.0 6.54 × 10− 4 – 0.0 8.12 × 10− 4 + 24.2
20.0 2.17 × 10− 4 – 0.0 3.03 × 10− 4 + 39.6
22.0 8.78 × 10− 5 – 0.0 1.24 × 10− 4 + 41.2

condition is given by dρ/dz = 0, defined at z = 0. This condition is
satisfied for any realistic vertical density distribution which will be
homogeneous close to the mid-plane.

3 R ESULTS: V ERTICAL STELLAR DISC
STRUCTURE

3.1 Effect on the mid-plane density ρ0 of the stellar disc

We solved for the vertical density distribution for two cases. First,
when the disc structure is solved by writing the radial term in
equation (3) in terms of the observed, non-flat rotation curve from
R = 2 to 7 kpc, to study its effect specifically . This is done by
solving the following equation (Model A), as obtained in Sarkar &
Jog ( 2019):

d2ρ

dz2
= −4πGρ2

σ 2
z

+ 1

ρ

(
dρ

dz

)2

+ ρ

σ 2
z

2vφ

R

(
∂vφ

∂R

)
(10)

The observed mean rotation velocity values (Sofue 2012) are used
in the last term in the above equation.

The resulting mid-plane density ρ0 values are listed in Table 1,
under ‘Model A’ and are compared with the results from sech2

model (stars-alone case) obtained in Sarkar & Jog (2018), with �A

giving the per cent difference between these two models. We note
that ρ0 has increased at some radii (R = 2, 6, and 7 kpc) and has
decreased at some radii (R = 3, 4, and 5 kpc) which happens due
to the negative and positive gradients, respectively, present in the
non-flat rotation curve at the corresponding radii. The last term in
equation (10), shows that the amount of change introduced in the
(ρ0) values depends on both the gradient and the absolute value
of the rotation velocity. Beyond R = 8.5 kpc, Model A coincides
with the sech2 model, hence the density values are the same and
difference is 0 per cent.(Table 1).

Second, in Model B we consider the effect of R–z coupling, a
non-flat rotation curve and planar random motions, hence we term
it as the most general and the complete one. For this case, we solve
equation (8) from R = 2 to 22 kpc, and compare the results with
those from the sech2 model (Table 1) with �B denoting the per cent
difference between these two models. We note that up to R = 10 kpc,
ρ0 is lower than that of sech2 model, except at R = 7 kpc where
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Figure 1. Plot of vertical density distribution (ρ(z)) of stars at R = 6, 8.5, 18, and 22 kpc (a)–(d) respectively. The green solid curves represent ρ(z) for a
sech2 distribution (see equation 2 in Introduction) and the magenta dashed curves represent ρ(z) obtained using the complete, general model (Model B) here.
The difference between these two distributions is more prominent in the outer Galaxy and turns out to be very small at the 6 kpc and solar radius. This shows
the significance of using the complete Poisson and Jeans equations while solving for ρ(z) for stars, specially in the Outer Galaxy.

the density is higher as a result of the high magnitude of negative
gradient present in the rotation curve at that radius. We find that the
magnitude of change in ρ0 is higher in the inner radii and lower
toward the solar neighbourhood region. In contrast, the resulting
values of the mid-plane density are higher than those from the sech2

model at radii beyond R = 12 kpc. This change increases with radius
and gets very prominent, more than ∼30 per cent, in the outer disc
region, beyond R = 18 kpc. This may be explained as follows. We
expect that in the outer disc region, where the surface density is
low and the vertical distribution becomes an extended one, as found
in Sarkar & Jog ( 2018), the contribution of the radial gradient of
potential may not be negligible compared to the vertical gradient
in the Poisson equation. Further, the effect of R–z coupling and the
planar random motions can have substantial effect on the vertical
density distribution since the self-gravity of the disc becomes
low. Therefore, in the outer disc region it becomes necessary to
consider the full Poisson equation with the full Jeans equations as
done here.

For the intermediate radial range from 7 to 12 kpc, the values of
change are small (a few per cent), and at R = 12 kpc, the change is
the lowest, almost zero. This is by sheer coincidence of the various
input parameters which allow for the sech2 model to be valid in
the intermediate radial range. Hence a simple sech2 model in the
solar neighbourhood assumed so far in the literature has been well
justified. We note that this range showing small change may vary

slightly depending on the actual values of the input parameters
used. The changes shown in this range (see �B values in Table 1)
do not show a clear pattern with radius. We note that it is the complex
interplay among the various kinematical terms present in the vertical
and radial terms in the Poisson equation (in equation 8) that sets
the value of the mid-plane density and hence the difference with
sech2 model results, including the sign of the difference. Beyond
R = 7 kpc, the rotation curve is taken to be flat so the difference
then is purely due to the kinematical terms involving the random
motions and the cross term.

We have shown the plots for ρ(z) versus z for radii 6, 8.5, 18, and
22 kpc in Fig. 1 from Model B and the sech2 model. We note that
we have provided the ρ0 values with higher decimal accuracy to
facilitate comparison among various models, though the observed
data are not known to this accuracy. Interestingly, we find that on
inclusion of these kinematical terms, the resulting ρ(z) profiles are
found to fit to a function of type sech2/n with n varying with radius
(as was also found for the case of multicomponent model shown
in Sarkar & Jog (2018) – which did not consider these kinematical
effects), instead of the typical of sech2 function.

3.2 Effect on the scale height (HWHM) of the stellar disc

We measure the disc scale height in terms of the HWHM of the
vertical density distribution and list the values in Table 2. The
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Table 2. Results for HWHM using the sech2 model, model with only a non-
flat, observed rotation curve (Model A) and the complete, general model
(Model B).

Radius (HWHM)sech2 (HWHM)A �A (HWHM)B �B

(kpc) (pc) (pc) (%) (pc) (%)

2.0 266.3 251.8 − 5.4 311.9 + 17.1
3.0 290.2 301.8 + 4.0 377.5 + 30.0
4.0 313.6 340.0 + 8.4 403.3 + 28.6
5.0 341.9 362.1 + 5.9 408.8 + 19.6
6.0 370.8 366.4 − 1.2 393.3 + 6.1
7.0 405.1 371.7 − 8.2 389.0 − 4.0
8.5 456.7 – 0.0 467.4 + 2.3
10.0 515.4 – 0.0 527.3 + 2.3
12.0 606.2 – 0.0 599.4 − 1.1
14.0 708.3 – 0.0 663.6 − 6.3
16.0 822.2 – 0.0 760.5 − 7.5
18.0 1568.9 – 0.0 1260.7 − 19.6
20.0 2721.8 – 0.0 1858.9 − 31.7
22.0 4279.9 – 0.0 2515.3 − 41.2

symbols �A and �B have the same meaning as in Table 1. In Model
A, when the gradient in the rotation curve is positive it makes the
disc puff up, and when the gradient is negative it decreases the disc
thickness compared to that of sech2 model due to higher mid-plane
density (as similar to the case for UGC 7321, Sarkar & Jog 2019).
From R = 8.5 kpc, Model A coincides with the sech2 model, hence
the difference is 0 per cent(Table 2).

In Model B, the change in HWHM from that of the sech2 model
is positive upto R = 10 kpc, except at R = 7 kpc, due to the high
negative gradient present in the rotation curve, as discussed earlier
in Section 3.1. We get negative changes beyond R = 12 kpc and
also note that the amount of change is again the least at R = 12 kpc.
The change in scale height value becomes as high as 30–40 per cent
in the outer disc region. We note that the corresponding changes
in ρ 0 and HWHM are compatible with each other in both the
models.

Our results show that as in the sech2 case, in the complete
model (Model B) also, the vertical disc thickness increases with
radius and gives rise to flaring in the outer Galaxy. This again
shows (as in Sarkar & Jog 2018, 2019 where the kinematical
effects were not included) that flaring in the outer disc region is
a generic phenomenon. We note that the absolute magnitude of
flaring from R = 2 to 22 kpc decreases by a factor of two (from
16 to 8) compared to the sech2 model. This shows the importance
of considering various effects (as in equation 8) while studying the
vertical structure.

3.3 Addition of dark matter halo gravity in the outer Galaxy

For a realistic multicomponent, gravitationally coupled galactic disc
(but without the kinematical effects included here), the vertical
distribution of stars is shown to be constrained by gas and dark
matter halo gravity in the inner and the outer discs, respectively
(Sarkar & Jog 2018). Here, we add the halo gravity to Model B
at R = 18 and 22 kpc, considering the disc to be effectively a
gravitationally coupled stars plus halo system and solve for ρ(z).
The ρ0 values increase by a factor of 2.3 at R = 18 kpc and a factor of
3 at R = 22 kpc, compared to the stars-alone disc, and much higher
compared to the kinematical effects alone (Table 1). The HWHM
values also get lowered correspondingly, by a factor of 2.2 and 3.1,
respectively and this tends to decrease the flaring. We do not add

the gas gravity in the equation ( 8) to solve it in the inner Galaxy,
as the modified equation will contain second-order variation in gas
surface density, which is not known to us from observations.

4 C O N C L U S I O N S

We have studied theoretically the self-consistent vertical structure
of a galactic stellar disc using the most general and complete
model (Model B here) which considers the complete axisymmetric
Poisson equation containing both the radial and vertical terms.
These are calculated using the complete Jeans equations which
consider a non-flat rotation curve, planar random motions, and a
tilted velocity ellipsoid. Thus, in this treatment the R and z motions
are taken to be coupled. We found that the mid-plane density (ρ0) is
lower than that from the typical sech2 model at the inner radii and
becomes higher from R = 12 kpc onward. The HWHM values also
change accordingly,i.e. higher at the inner radii and lower from
R = 12 kpc. Interestingly, by sheer chance, for the observed input
parameters in the small radial range in the solar neighbourhood
∼7–12 kpc, the changes are very small (<a few per cent), whereas
in outer disc region they are very prominent (∼40 per cent). This
is due to the low density and hence low self-gravity and extended
vertical disc distribution in the outer Galaxy.

Thus our work shows that the standard isothermal model resulting
in a sech2 vertical density distribution (Spitzer 1942) for a thin, self-
gravitating galactic disc turns out to be well justified in the solar
neighbourhood, but not in the outer disc. Hence, one must include all
the terms as discussed above to get the correct vertical distribution
in the following three general cases of low-density region, namely
in the outer Galaxy, at high z and for a thick disc. The predicted
changes due to the various kinematic effects studied here can now
be verified with the new, accurate data for example from Gaia or
LAMOST.
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