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1 Introduction

We have seen a tremendous progress in constraining conformal field theories in space-time

dimensions greater than two since the work of [2]. The CFT data for operators with low

conformal dimension has been calculated both numerically [3–6] and analytically [7–16].

An alternative approach, now called Polyakov-Mellin (PM) Bootstrap motivated by the

work of Polyakov [17] (also see [18] for further extension) was proposed in [19–21]. Usually

bootstrap equation arises by matching different OPE expansions of correlation functions

and demanding crossing symmetry. In contrast, one expands the correlation function in

a manifestly crossing symmetric basis in PM bootstrap. Then demanding consistency

with the physical OPE expansion gives rise to consistency equations. This problem was

formulated in Mellin space which makes the pole structure transparent and also properties

of certain orthogonal polynomials called continuous Hahn make the computation much

simpler. Since the crossing symmetric basis is formed by the sum of witten exchange

diagrams and contact terms, this method has limitations unless the contact terms are fixed

systematically. This issue was first pointed out in [22] and in [23] it was systematically

explored in a couple of examples.
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In this paper we will focus on holographic CFTs aka CFTs with large number of

degrees of freedom (N). We want to study large N expansion of the four point function

using Polyakov-Mellin bootstrap. In [23], the authors considered any local theory involving

scalars in AdS and calculated the correction to conformal dimensions at O(1/N2), γ
(1)
n,` using

this formalism and recovered the results of [24]. After briefly reviewing it, we will calculate

the O(1/N4) corrections to conformal dimensions in this model. Although at O(1/N2)

only finite number of operators with non-zero anomalous dimension present depending

on the number of contact diagrams are present in the bulk, at O(1/N4) we will see that

γ
(2)
n,` is non-zero for all spins. Therefore we will solve it using Polyakov-Mellin bootstrap

techniques and will find closed form expressions for coefficients appearing in the large spin

limit of γ
(2)
n,` . We will see that our results match perfectly with the existing results [1]

derived using usual bootstrap techniques. As a bonus our final expressions are valid for

any general ∆φ and space-time dimension. In [1] this was solved for integer values of

∆φ. Also our formula trivially extends to any space-time dimensions whereas it is not at

all straightforward in usual bootstrap techniques because of unavailability of closed form

expressions for conformal blocks in odd dimensions.

In the second half of the paper we will use the AdS/CFT correspondence to fix a few

AdS loop diagrams following [1]. Basically the large N expansions of correlator gets mapped

to perturbative expansions in AdS space. There are quite a few papers on loops [25–32]

but evaluation of integrations in AdS pose technical complications and the methods of

this paper for reconstructing loop from CFT data might be very useful to make further

progress. Since we have a closed form expression for γ
(2)
0,` , in principle, we can fix the loop

amplitudes for AdS scalar theories for any general case quite easily.

2 Polyakov Mellin bootstrap

In this section we give a brief overview of working rules of Polyakov Mellin bootstrap. We

focus on four point functions of scalar fields φ(x) in this paper. Conformal symmetry fix

the structure of four point function as follows,

〈φ(x1)φ(x2)︸ ︷︷ ︸φ(x3)φ(x4)︸ ︷︷ ︸〉 =
1

x
2∆φ

12 x
2∆φ

34

∑
∆,`

C∆,` g∆,`(u, v) (2.1)

Here we used the OPE of φ(x1)φ(x2) and φ(x3)φ(x4) which is expressed in terms of s-

channel conformal blocks. We could have used the OPE of φ(x1)φ(x4) and φ(x2)φ(x3) and

express it in terms of t-channel conformal blocks.

〈φ(x1)
︷ ︸︸ ︷
φ(x2)φ(x3)φ(x4)︸ ︷︷ ︸〉 =

1

x
2∆φ

14 x
2∆φ

23

∑
∆,`

C∆,` g∆,`(v, u) (2.2)

Since we are expanding the same four point function the two conformal block decomposition

should be same but this is not manifest. Demanding this equivalence give us the usual

bootstrap condition (crossing equation),∑
∆,`

C∆,`g∆,`(u, v) =
(u
v

)∆φ∑
∆,`

C∆,`g∆,`(v, u) (2.3)
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Now one can think of a block decomposition which is crossing symmetric on its own (e.g.

manifestly symmetric under u↔ v). It is a legitimate thing to do to add all three channel

(s,t and u) and expand four point function in that basis which would also be consistent with

OPE. But we would not be able to use this directly to find CFT data (∆, C∆,`). Instead

one needs to add s,t, and u channel witten blocks which is a crossing symmetric basis on

its own. But then since Witten blocks are not guaranteed to be consistent with OPE.

One will find contributions from double trace operators (with exact dimension 2∆φ + 2n)

which are absent in the OPE. Cancellation of this contribution constraint the spectrum

of CFT. We will work with this basis in Mellin space. The Mellin transformation of four

point function is defined as,1

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

x
2∆φ

12 x
2∆φ

34

∫
[ds][dt]usvtρ∆φ

(s, t)M(s, t) (2.4)

where, the Mellin amplitude M(s, t) is defined as,2

M(s, t) =
∑
∆,`

c∆,`

(
W s

∆,`(s, t) +W t
∆,`(s, t) +W u

∆,`(s, t)
)
, (2.5)

these are s,t and u exchange Witten blocks, and the measure is given by,

ρ∆φ
(s, t) = Γ2(∆φ − s)Γ2(−t)Γ2(s+ t). (2.6)

2.1 PM consistency conditions

Recently in [23] the spectral integrals were explicitly evaluated. The s-channel block is

given by,

W s
∆,`(s, t) =−2

f `p(s, t)Γ(∆+`
2 +∆φ−h)2

(`+2s−∆)Γ(∆−h+1)
3F2

[∆−`
2 −s, 1+ ∆−`

2 −∆φ, 1+ ∆−`
2 −∆φ

1+ ∆−`
2 −s, ∆−h+1

;1

]
. (2.7)

In our notation,h = d
2 .3The t-channel block is given by replacing s→ t+∆φ and t→ s−∆φ

and u-channel is given by replacing s → ∆φ − s − t and t → t in s-channel respectively.

It can be seen from equation (2.4) that we will get powers like u∆φ+r log u, r being any

non-negative number, which comes from double poles Γ2(∆φ − s) in from the measure.

Similarly we will also get u∆φ+r for single pole contribution from the same measure. These

are absent in the physical OPE of φ × φ. So we will get bootstrap condition which needs

to satisfy for each r separately, from the cancellation of residue at double poles in s we get,∑
∆,`

c∆,`

(
W s

∆,`(∆φ + r, t) +W t
∆,`(∆φ + r, t) +W u

∆,`(∆φ + r, t)
)

= 0 (2.8)

and from the cancellation of residue at single poles in s we get,∑
∆,`

c∆,`

(
W s′

∆,`(∆φ + r, t) +W t′
∆,`(∆φ + r, t) +W u′

∆,`(∆φ + r, t)
)

+W
′
0,0 = 0 (2.9)

1we are using the notation,[ds] = ds
2πi

and [dt] = dt
2πi

.
2c∆,` = C∆,`N∆,`, where C∆,` is the usual OPE coefficient and N∆,` is defined in appendix B.

3f `p(s, t) =
P

(s)
∆−h,`(s,t)

(∆−1)`(2h−∆−1)`
. P

(s)
∆−h,`(s, t) is the Mack polynomial and we follow the same convention

as [23].
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where ′ indicates derivative with respect to s andW
′
0,0 stands for the single pole contribution

from identity exchange which doesn’t contribute to the residue at double pole. Though in

this paper we will only focus in solving the equation (2.8) which will give us anomalous

dimensions which are important and sufficient to reconstruct the loops in AdS, one can

solve the (2.9) equations analogously to find corrections to OPE coefficients.

Now it turns out that it is useful to decompose the blocks in continuous Hahn Poly-

nomial in t, so that we can write,

W s
∆,`(s, t) =

∑
`′

qs∆,`′|`(s)Q
2s+`′

`′,0 (t). (2.10)

Similarly,

W t
∆,`(s, t) =

∑
`′

qt∆,`′|`(s)Q
2s+`′

`′,0 (t),

W u
∆,`(s, t) =

∑
`′

qu∆,`′|`(s)Q
2s+`′

`′,0 (t).
(2.11)

These continuous Hahn polynomial satisfy orthogonality relation in `′ given in appendix A.

Therefore we get the following bootstrap condition for each `′,(∑
∆,`

c∆,`q
s
∆,`′|`(s) +

∑
∆,`

c∆,`q
t
∆,`′|`(s) +

∑
∆,`

c∆,`q
u
∆,`′|`(s)

)
|s=∆φ+r = 0, (2.12)

and4(∑
∆,`

c∆,`q
s′

∆,`′|`(s) +
∑
∆,`

c∆,`q
t′

∆,`′|`(s) +
∑
∆,`

c∆,`q
u′

∆,`′|`(s) + q
′
0,0(s)

)
|s=∆φ+r = 0. (2.13)

Since for identical scalars we have the symmetry,

W t
∆,`(s, t) = W u

∆,`(s,−s− t), (2.14)

which is also the symmetry of continuous Hahn polynomial, we conclude that,

qt∆,`′|`(s) = qu∆,`′|`(s). (2.15)

So we get our final form of the consistency equation is,(∑
∆,`

c∆,`q
s
∆,`′|`(s) + 2

∑
∆,`

c∆,`q
t
∆,`′|`(s)

)
|s=∆φ+r = 0, (2.16)

and (∑
∆,`

c∆,`q
s′

∆,`′|`(s) + 2
∑
∆,`

c∆,`q
t′

∆,`′|`(s) + q
′
0,0(s)

)
|s=∆φ+r = 0. (2.17)

4q0,0(s) represents the identity contribution after decomposition in continuous Hahn basis.
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The compact expressions for qs∆,`′|` and qt∆,`′|` were derived in [23] which we quote below,

qs∆,`′|` =
∑
m,n

µ(`)
m,n

(
∆−`

2
−s
)
m
χ

(n)
`′ (s)

Γ2( ∆+`
2

+∆φ−h)(
∆−`

2
−s

)
Γ(∆−h+1)

(2.18)

3F2

[{
∆−`

2
−s,1+

∆−`
2
−∆φ,1+

∆−`
2
−∆φ

}
,
{

1+
∆−`

2
−s,∆−h+1

}
,1
]
.

qt∆,`′|` =
∑
m,n

(−1)`
′+m 2−`

′
µ`m,n (∆φ−s)n (a`)

2
mΓ
(
2s+2`′

)
Γ2 (d)Γ

(
a

2

)
Γ(a+1)Γ2(1+a−f−b)

7F6

(
a, 1+

1

2
+a, b, c, d, e, f

1

2
a, 1+a−b, 1+a−c, 1+a−d, 1+a−e, 1+a−f

;1

)
. (2.19)

The expressions of χ
(n)
` (s), and a,b,c etc. are given in appendix B.

3 PM bootstrap at large N

Now we turn our attention to bootstrap holographic theories by adding appropriate contact

terms. Since we are assuming that we are working in large N limit, therefore a large class

of theories are there which will have only identity and double field operators in the leading

order. More precisely, In the leading order in large N limit identity and only double field

operators appear with its classical twist and mean field OPE coefficient as follows,

τ
(0)
n,` = 2∆φ+2n

C
(0)
n,` =

(
(−1)`+1

)((
−d

2 +∆φ+1
)
n

)
2 ((∆φ)n+`)

2

n!`!(−d+n+2∆φ+1)n
(
d
2 +`

)
n

(2n+`+2∆φ−1)`
(
−d

2 +n+`+2∆φ
)
n

(3.1)

As we go to next sub-leading order these operators start receiving quantum correction as

anomalous dimensions and also the OPE coefficients get corrected,

τn,` = 2∆φ + 2n+
γ

(1)
n,`

N2
+
γ

(2)
n,`

N4
+ . . .

Cn,` = C0
n,` +

C
(1)
n,`

N2
+
C

(2)
n,`

N4
+ . . .

(3.2)

In the next two subsections we describe in detail the calculation of these corrections.

3.1 Analysis at O(1/N2)

First we consider φ4 theory in the bulk. Therefore we add this contact term to our basis.

The Mellin amplitude corresponding to this contact term is a constant. Discussion of more

general cases where the contact diagram is a polynomial in s and t and not just a constant

is relegated to appendix B. The φ4 term is decomposed in continuous Hahn basis and since

it is a constant5 it will contribute to only `′ = 0 equation,

λ =
∑
`′

λδ`′,0Q
2s+`′

`′,0 . (3.3)

5if it is a polynomial of degree n in mellin variable t then that contact term will contribute from `′ = 0

to `′ = n.

– 5 –



J
H
E
P
0
2
(
2
0
2
0
)
0
0
6

So our constraint equation (2.16) at s = ∆φ and `′ = 0 becomes,∑
∆,`

c∆,`

(
qs∆,0|` + 2qt∆,0|`

)
+ λ = 0 (3.4)

where λ is coming from contact term and we can use this equation to fix λ which is,

λ = −
∑
∆,`

c∆,`

(
qs∆,0|` + 2qt∆,0|`

)
(3.5)

By plugging in the data given in equation (3.2) and expanding it to O(1/N2) we find,

λ = −
22∆φ−1Γ

(
∆φ + 1

2

)
√
πΓ(∆φ)3

γ
(1)
0,0

N2
(3.6)

The term on the right came from just s-channel. Expanding the t- channel we found that

it starts at O(1/N4) because of the suppression for double trace operators coming from

N∆,`. This procedure of fixing contact term was first pointed out in [23].

The operators ∆0,0 and ∆1,0 contribute at leading order when we evaluate s-channel at

s = ∆φ+1 and here also we have a term coming from contact term and again crossed chan-

nel starts contributing from O(1/N4). Taking all the contributions till O(1/N2) we have,

22∆φ−1Γ
(
∆φ + 1

2

)
√
πΓ3(∆φ)(2∆φ − h+ 1)

γ
(1)
0,0

N2
+

22∆φ+1∆2
φ(2h− 2(∆φ + 1))Γ

(
∆φ + 3

2

)
√
π2h(2h− 4∆φ − 2)Γ3(∆φ + 1)

γ
(1)
1,0

N2
+λ = 0 . (3.7)

Now we replace λ using (3.5) to find,

γ
(1)
1,0 =

∆φh(h− 2∆φ)

(2∆φ + 1)(−∆φ + h− 1)
γ

(1)
0,0 . (3.8)

We also include the equations evaluated at s = ∆φ + 2, where at O(1/N2), the operators

with dimensions ∆0,0,∆1,0 and ∆2,0 contribute in s-channel,

4∆φΓ
(
∆φ+ 1

2

)
√
πΓ3(∆φ)(−2∆φ+h−1)(h−2(∆φ+1))

γ1
0,0

N2
+

22∆φ+3∆2
φ(−2h+2∆φ+2)Γ

(
∆φ+ 3

2

)
√
π2h(2h−4∆φ−2)Γ3(∆φ+1)(−2∆φ+h−3)

×
γ1

1,0

N2
−

4∆φ+2∆2
φ(∆φ+1)2(−2h+2∆φ+4)(2h−2(∆φ+1))2Γ

(
∆φ+ 5

2

)
√
π2h(2h+2)(2h−4∆φ−6)(2h−2∆φ−3)(2h−4(∆φ+1))Γ3(∆φ+2)

γ
(1)
2,0

N2
+λ= 0

(3.9)

Again replacing λ using equation (3.5) and γ
(1)
1,0 from equation (3.8) we find that,

γ
(1)
2,0 =

∆φ(∆φ + 1)h(h+ 1)(−2∆φ + h− 1)(h− 2∆φ)(−2∆φ + 2h− 3)

4(4∆φ(∆φ + 2) + 3)(−∆φ + h− 2)(∆φ − h+ 1)2
γ

(1)
0,0 (3.10)

We can find that in general we will get,

γ
(1)
n,0 =

Γ(2∆φ)Γ(−h+∆φ+1)2Γ(h+n)Γ(n+∆φ)2Γ(−h+n+2∆φ)Γ(−2h+2n+2∆φ+1)

n!Γ(∆φ)2Γ(h)Γ(2∆φ−h)Γ(2(n+∆φ))Γ(−h+n+∆φ+1)2Γ(−2h+n+2∆φ+1)
γ

(1)
0,0 .

(3.11)
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Since we have added one contact term with one undetermined constant, so we loose one

equation to fix it which in turn fix all other anomalous dimension in terms of γ1
0,0 as it was

found in [24]. Also notice that the contact term is only present for `′ = 0, so we can look

for `′ = 2 and s = ∆φ equation, where s-channel will give us,

4∆φΓ(5
2 + ∆φ)γ

(1)
0,2√

π∆φ(1 + ∆φ)Γ3(∆φ)
(3.12)

whereas the t-channel contribution will again start from O(1/N4) and there is no contri-

bution from contact term, unlike the `′ = 0 case, so the solution for anomalous dimension,

γ0,2, is zero and this is true for all non-zero spins. Hence for a theory with φ4 interaction in

the bulk there is no corrections to anomalous dimensions of spinning double trace operators

at O(1/N2).

3.2 Exchange

Now we outline the procedure to find anomalous dimension of double field operators at

O(1/N2) due to the exchange of a singlet in t-channel. This is a different situation from

previous case where there was no exchange of any operators other than double fields. Here

apart from identity and double field operators we also have exchange of a singlet which

appears in the leading order itself. We are considering it here as this would be necessary to

reconstruct the triangle diagram we consider in section 4.2. Let’s consider the case when

there is a exchange of φ in crossed channel since this would be relevant for fixing residues

of triangle diagram. It was shown in [22] that in this situations the ambiguities won’t

contribute, therefore we can use (2.16) to find γ
(1)
n,` . We just give an example at s = ∆φ.

We choose `′ = 0, then only ` = 0 and ∆0,0 = 2∆φ +
γ1

0,0

N2 operator contributes in s-channel

to O(1/N2). The equation becomes,

γ
(1)
0,022∆φ−1Γ

(
∆φ + 1

2

)
√
πΓ3 (∆φ)

. (3.13)

For ` = 0 there is also a contribution for the operator φ itself in s- channel,

−
C∆φ,0Γ (∆φ) Γ (−h+ ∆φ + 1) Γ (2∆φ − h)

Γ
(

∆φ

2 + 1
)

Γ5
(

∆φ

2

)
Γ
(

3∆φ

2 − h
)

Γ
(
−h+

3∆φ

2 + 1
) . (3.14)

The crossed channel equation for φ exchange becomes,

C∆φ,0 (∆φ − 1) Γ (∆φ − 1) Γ (2∆φ) Γ (∆φ + 1) (∆φ − h) Γ (∆φ − h) Γ2
(

3∆φ

2 − h
)

Γ
(

∆φ

2 + 1
)

Γ4
(

∆φ

2

)
Γ2
(

1
2 (3∆φ − 2h)

)
5F̃4

(
∆φ, 1−

∆φ

2
,
∆φ

2
, 1−

∆φ

2
, h;

3∆φ

2
,

∆φ

2
+ 1,

3∆φ

2
,−h+ ∆φ + 1; 1

)
.

(3.15)
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Figure 1. Plot of γ
(1)
0,2 due to stress tensor exchange in different space-time dimensions.
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h

0.5

1.0

1.5

Δϕ

Figure 2. Exclusion Plot where ∆φ is plotted along the vertical axis and horizontal axis is h = d
2 .

The red region lies above the unitarity bound but it will give positive anomalous dimensions and

therefore it might not give us a consistent bulk theory.

Now using equation (2.16) and solving for γ
(1)
0,0 we find,

γ
(1)
0,0 =C∆φ,0

21−2∆φ
√
πΓ3 (∆φ) 5F̃4

(
∆φ,1−

∆φ
2
,

∆φ
2
,1−∆φ

2
,h;

3∆φ
2
,

∆φ
2

+1,
3∆φ

2
,−h+∆φ+1;1

)
Γ5

(
∆φ
2

)
Γ
(
∆φ+ 1

2

)
Γ
(

∆φ+2

2

)
Γ
(

3∆φ
2
−h

)(
Γ(∆φ)Γ(−h+∆φ+1)Γ(2∆φ−h)

Γ
(
−h+

3∆φ
2

+1
) −2(∆φ−1)Γ(∆φ−1)Γ

(
∆φ

2

)
Γ(2∆φ)Γ(∆φ+1)

Γ(∆φ−h+1)Γ
(

3∆φ

2
−h
))

. (3.16)

This process of extracting anomalous dimension works similarly at other values of s.

One should be careful to take into account all the operators contributing for a specific

value of `. This can be implemented in Mathematica very easily, but unlike φ4 theory it’s

not possible to always come up with a closed form formula for γ1
n,0 for general value of

∆φ. It was found in four dimensions [33]6 that the anomalous dimension of spin 2 becomes

positive When there is only stress tensor exchange. From the point of view of AdS/CFT

the sign of anomalous dimension is identified with the sign of gravitational force. Now it

can be seen from the plots figure 1 that γ0,2 is positive in a regime of unitary values of ∆φ.

This is observed in all dimensions plotted above (figure 2). Now what does this positivity

means in a legit theory of gravity is an interesting question to explore in future.

6Also see [34] for derivation of anomalous dimension from crossing kernel in Mellin space.
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3.3 Analysis at O(1/N4)

In this section we will show how to extract the CFT data at O(1/N4) for φ4 theory solving

the constraint equations coming from Polyakov Mellin approach. Unlike O(1/N2) at this

order the solution will have infinite support in spin, which means γ2
n,` is non-zero for all

spins. First we evaluate anomalous dimensions at large spin limit using Witten diagram.

So γ
(2)
0,` will be given as,

γ
(2)
0,` =

∞∑
n=0

γ
(2)
n

J2∆φ+2n
. (3.17)

We will give closed form general expression for γ
(2)
n in any space-time dimension and for

external scalar operators of any dimension ∆φ. To do that we first note that for non-zero

spins we have,

∆n,` = 2∆φ + 2n+ `+
γ

(2)
n,`

N4
. (3.18)

We substitute this in s-channel and expand it to find,

(−1)`
(
(−1)` + 1

)
22∆φ+`−2Γ

(
`+ ∆φ + 1

2

)
√
πΓ(`+ 1)Γ (∆φ) 2Γ (`+ ∆φ)

γ2
0,`

N4
. (3.19)

The t-channel is given by,

W t
∆,`(s, t) =

∞∑
q=0

2Γ
(
−h+ `

2 + ∆
2 +∆φ

)
2Γ
(
q+ ∆

2 −∆φ− `
2 +1

)
2f `p (∆φ+t,s−∆φ)

Γ(q+1)Γ(−h+q+∆+1)Γ
(

1
2 (−`+∆−2∆φ+2)

)
2 (−2∆φ+∆+2q−2t−`)

.

(3.20)

In continuous Hahn basis this becomes,

qt∆,`′|`(s) = (κ`′(s))
−1

∫
[dt]Γ2(t+∆φ)Γ2(−t)W t

∆,`(s, t)Q
2s+`′

`′,0 (t)

= (κ`′)
−1

∫
[dt]Γ2(t+∆φ)Γ2(−t)W t

∆,`(s, t)
2`
′
((s)`′)

2
3F2(−`′,2s+`′−1,s+t;s,s;1)

(2s+`′−1)`′
.

(3.21)

So our bootstrap equation is,∑
∆,`

c∆,`q
s
∆,`′|`(s)|s=∆φ+r = −2

∑
∆,`

c∆,`q
t
∆,`′|`(s)|s=∆φ+r. (3.22)

We evaluate the bootstrap equation at s = ∆φ and also we multiply both side of the

equations by,

β` = κ`(∆φ)

(
2` ((s)`)

2

(2s+ `− 1)`

)−1

. (3.23)

So our final equation for the anomalous dimension due to exchange of scalar operator with

dimension ∆ has the following form,

γ
(2)
0,` = c∆,s

∫
[dt]Γ2(t+ ∆φ)Γ2(−t)W t

∆,0(s, t) 3F2(−`, 2s+ `− 1, s+ t; s, s; 1). (3.24)
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At this stage we want to take the large spin limit of 3F2 in the right hand side using (A.4)

and putting (3.17) on the left side comparing power of J we find,

γ(2)
m =

∑
i

1

2

(
γ1
n,0

)2
c2∆φ+2n,0

(
− Γ(n+q+1)2 Γ(−h+n+2∆φ)2

Γ(n+1)2Γ(q+1)Γ(−h+2n+q+2∆φ+1)

)
Γ2(∆φ)Γ2(1+n+r+q)

(∆φ+q+n)rd(α1,−α1,k1)d(α2,−α2,k2)J−2(k1+k2+n+r+q+∆φ), (3.25)

where i = k1 + k2 + n + r + q = m. This gives us closed form expression for coefficients

appearing in large spin expansion of γ2
0,` in any space-time dimensions.

We write first few terms of (3.17) explicitly below,

γ
(2)
0 =−Γ(2∆φ),

γ
(2)
1 =−

∆φΓ(2∆φ)(∆φ (∆φ (∆φ (2∆φ+4h−3)+h(2−3h)−7)+5h−3)+h−1)

3(2∆φ+1)(∆φ−h+1)
,

(3.26)

γ
(2)
2 =

Γ(2∆φ+3)

720(2∆φ+1)2 (2∆φ+3)(−∆φ+h−2)(∆φ−h+1)2(
∆φ

(
∆φ

(
∆φ

(
∆φ

(
2∆φ

(
∆φ

(
∆φ

(
4∆φ

(
5∆φ+15h+4

)
+4h(53−15h)−225

)
+h(2(109−70h)h

−371)−300
)
+h(h(h(165h−776)+2327)−2071)+795

)
+h(3h(h(5(65−6h)h−1524)+2873)

−8080)+4326
)
−2h(h(2h(45(h−8)h+1238)−3961)+4342)+3860

)
+h(h(h(45(19−2h)h

−2198)+4697)−4798)+1570
)
−18(h−1)(h(35h−51)+20)

)
−36(h−2)(h−1)2

)
. (3.27)

In d = 2,

γ
(2)
0,` = − 2

J3
+

1

4J5
− 3

64J7
+

5

512J9
− 35

16384J11
+ . . . for ∆φ =

3

2
. (3.28)

In d = 4,

γ
(2)
0,` = − 2

J3
− 19

8J5
− 189

32J7
− 11393

1024J9
− 374801

16384J11
+ . . . for ∆φ =

3

2
. (3.29)

This will enable us to reconstruct the four point one loop amplitude in φ4 theory com-

pletely.We could have also evaluated the expression (3.24) exactly and that will give us the

following form for anomalous dimension,

γ
(2)
0,` =

∑
n

γ(2)|n,0, (3.30)

where,

γ(2)|n,0 = (−1)`2−1−2h+4∆φ(h−2(n+∆φ))Γ(`+1)Γ(h+n)Γ2
(

1

2
+∆φ

)
Γ2(`+∆φ)

Γ2(1−h+∆φ)
Γ3(n+∆φ)Γ( `

2
+n+∆φ)Γ3(−h+n+2∆φ)Γ(1+`+2n+2∆φ)Γ( 1

2
−h+n+∆φ)

πΓ(h)Γ(1+n)Γ2(∆φ)Γ( 1
2

+n+∆φ)Γ(1−h+n+∆φ)Γ2(−h+2∆φ)Γ(1−2h+n+2∆φ)

W̃ (a,`,∆φ,n,h)(γ
(1)
0,0)2, (3.31)
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where W̃ is the regularized hypergeometric function and W is given by,

W (a,`,∆φ,n,h)

= 7F6

(
`+2a, 1+ `

2 +a, 1+n, 1+n, a, a, `+h
`
2 +a, `+a+∆φ, 1+`+a, 1+`+a, 1+a+∆φ, 1−h+2a

;1

)
, (3.32)

and a = n+ ∆φ.

To compare it with known result we evaluate it for few cases when ∆φ = 2 and d = 4,

γ̂
(2)
0,2 |0,0 = −260

9
+ 24ζ(3), γ̂

(2)
0,4 |0,0 = −259703

9000
+ 24ζ(3),

γ̂
(2)
0,2 |1,0 = −315728

45
+

29184ζ(3)

5
, γ̂

(2)
0,4 |1,0 = −95549104

5625
+

70656ζ(3)

5
,

γ̂
(2)
0,2 |2,0 = −9400941

35
+

7820712ζ(3)

35
, γ̂

(2)
0,4 |2,0 = −51799815009

35000
+

43092648ζ(3)

35
.

(3.33)

These agree with results found in [1].7 Here we give a closed form formula (3.31) valid

for any general case.

Now we turn our attention to a case where ∆φ = 2 in 3 dimensions and we perform

the explicit sums in crossed channel to give a closed form answer for CFT data down to

spin zero. We compare this with recently found answer in [29]. This provides an explicit

evidence where we produce the loop results using Polyakov Mellin bootstrap. Since we are

bootstrapping φ4 theory in the bulk therefore the contact term we add in mellin space is

a constant. So it will only contribute to `′ = 0 equation. So we can look at s = ∆φ and

`′ = 2 equation where we don’t have a contact term therefore our equation is simply,∑
∆,`

c∆,`(q
s
∆,2|`(∆φ) + 2qt∆,2|`(∆φ) = 0 (3.34)

In the s-channel the only operator n = 0 with spin 2 contributes till O(1/N4),∑
∆,`

c∆,`q
s
∆,`′|` =

35

2
γ0,2 (3.35)

In the t− channel only the scalars with dimensions ∆ = 4 + 2n contribute,∑
∆,`

c∆,`q
t
∆,`′|` =

2(4n+5)γ2
n,0√

π

[
35

144

√
π
(
16(n+1)6+40(n+1)5+104(n+1)4+146(n+1)3

+133(n+1)2+77n+98
)
+

35

72

√
π(n+1)2(2n+3)2(n(2n+5)(n(2n+5)+14)

+42)

(
ψ(1)

(
n+

3

2

)
−ψ(1)(n+1)

)]
(3.36)

Now solving our bootstrap equation (3.34) we find,

γ
(2)
0,2 = − 1

20

(
γ

(1)
0,0

)2
. (3.37)

7γ̂2
0,`|n,0 =

γ
(2)
0,`
|n,0

(γ
(1)
0,0)2

. Also γ
(2)
0,` |n,0 is that of [1] multiplied by 1

8
Cn,0(γ

(1)
n,0)2.
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Now we can see the constraint equations coming from vanishing of residue of double pole

contribution at s = ∆φ + 1. and `′ = 0. Now we will have a contribution coming from φ4

contact term, therefore our constraint equation is,∑
∆,`

c∆,`

(
qs∆,0|`(∆φ + 1) + 2qt∆,0|`(∆φ + 1)

)
+ λ = 0 (3.38)

As explained before we can fix λ by loosing one equation, here we choose the constraint

equation coming from vanishing of residue of double pole at s = ∆φ for `′ = 0,∑
∆,`

c∆,`

(
qs∆,0|`(∆φ) + 2qt∆,0|`(∆φ)

)
+ λ = 0 (3.39)

Therefore we have,

λ = −
∑
∆,`

c∆,`

(
qs∆,0|`(∆φ) + 2qt∆,0|`(∆φ)

)
(3.40)

Replacing λ in equation (3.38) we get,∑
∆,`

c∆,`

(
qs∆,0|`(∆φ+1)+2qt∆,0|`(∆φ+1)

)
−
∑
∆,`

c∆,`

(
qs∆,0|`(∆φ)+2qt∆,0|`(∆φ)

)
= 0 (3.41)

In the s-channel spin zero and spin 2 contributes. For spin zero the operators with di-

mension ∆0,0 and ∆1,0 and for spin 2, the operator with dimension ∆0,2 contribute. In

the crossed channel only spin zero ∆n,0 contributes. Using γ0,2 found in equation (3.37)

we find, (
γ

(2)
1,0 − γ

(2)
0,0

)
=

7

5

(
γ

(1)
0,0

)2
. (3.42)

Similarly we can find all data (i.e. for other values of n and spins) at this order by looking

at constraint equations coming from other poles s = ∆φ + n and the basis spin `′.

4 Loops in AdS

In this section we briefly review how to compute loops in AdS from CFT data following [1].

We consider the 1/N expansion of connected part of four point function g(u, v) and the

same for Mellin amplitude M(s, t),

g(u, v) =
g(1)(u, v)

N2
+
g(2)(u, v)

N4
+ . . .

M(s, t) =
M (1)(s, t)

N2
+
M (2)(s, t)

N4
+ . . .

(4.1)

We know from (2.1) that,

g(u, v) =
∑
∆,`

C∆,`g∆,`(u, v)

=
∑
n,`

C∆n,`,`u
τn,`

2 g̃∆n,`
(u, v)

(4.2)
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Plugging (3.2) in (4.2) and expanding in 1/N we find,

g(1)(u, v) =
∑
n,`

u∆φ+n

(
C1
n,` +

1

2
C0
n,`γ

(1)
n,`

(
log u+

∂

∂n

))
g̃2∆φ+2n+`,`. (4.3)

At order 1/N4 the correlator becomes,

g(2)(u, v) =
∑
n,`

u∆φ+n

(
C2
n,` +

1

2
C0
n,`γ

(2)
n,`

(
log u+

∂

∂n

)
1

2
C

(1)
n,`γ

1
n,`

(
log u+

∂

∂n

)

+
1

8
C0
n,`(γ

(1)
n,`)

2

(
log2(u) + 2 log u

∂

∂n
+

∂2

∂n2

))
g̃2∆φ+2n+`,`.

(4.4)

Now we focus on u∆φ log u term that has infinite support in spin and it’s Mellin transform,∑
`

C0
0,`

γ
(2)
0,`

(2)
g̃0

2∆φ+`(v)

=
∑
`

γ
(2)
0,`

Γ(2∆φ + `− 1)

`!Γ4(∆φ)
(2∆φ + 2`− 1)

∫ i∞

−i∞
[dt]vtΓ2(t+ ∆φ)Γ2(−t)

× 3F2

[
−`, 2∆φ + `− 1, ∆φ + t

∆φ , ∆φ
; 1

]
.

(4.5)

The highest log term appeared in (4.5) is log2(u). It can be seen in (2.4) that one can only

get a log(u) term from the double pole in s in the measure. But we can plug in expansion

of M(s, t) as given in (4.1) and M (2)(s, t) should reproduce (4.5). So to reproduce log2(u)

we need M (2)(s, t) to have the following structure,

M (2)(s, t) =
∑
n

Rn
s−∆φ − n

+ crossing. (4.6)

Then it is clear that from measure in (2.4) we have double poles at s = ∆φ + n and then

because of these proposed poles above in M (2)(s, t) we will have altogether triple poles in

s at double field locations which will reproduce the u∆φ+n log2(u) terms. Besides these we

can always add a crossing symmetric regular function of s and t to this amplitude. But we

can’t fix them using PM bootstrap, so we only focus on the pole piece of M (2)(s, t) in this

paper. Now the term proportional to u∆φ log u at O(1/N4) is,∫ i∞

−i∞
[dt]Γ(∆φ + t)2Γ(−t)2M̃ (2)(s, t). (4.7)

Comparing this with (4.5) and using the orthonormality of continuous Hahn polynomial

one finds that,8

γ(2)|0,`>0 =

∫ i∞

−i∞
[dt]Γ2(∆φ + t)Γ2(−t)M̃ (2)(∆φ, t)3F2

[
−`, 2∆φ + `− 1, ∆φ + t

∆φ , ∆φ
; 1

]
. (4.8)

M̃ (2)(∆φ, t) only includes t and u channel. since there is a symmetry as t→ −s− t so we

can work with simply t-channel and multiply with factor of 2. Since we have closed form

expressions for coefficients appearing for γ
(2)
0,` in the large spin limit for general case we can

fix the residues using (4.8). We show explicit examples for two theories considered before.

8For ` = 0 there will be a contribution from s = ∆φ (triple pole) also.
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Figure 3. Bubble diagram in φ4 theory.

4.1 φ4 theory

First we consider φ4 theory in AdSd+1. So there is only one loop diagram, figure 3. We

give results for few values of ∆φ in different space-time dimensions.

We write one loop Mellin amplitude as,

M (2)(s, t) =
∑
n

Rn
s−∆φ − n

+ crossing (4.9)

In d = 4,

Rn =−245
√
π(n(7n(11n(n+8)+239)+1794)+640)Γ(n+1)

12288Γ
(
n+ 9

2

) (γ
(1)
0,0)2, for ∆φ = 4,

Rn =

(
− 8

π2(n+1)
− 8Γ(n+1)

π3/2Γ
(
n+ 1

2

))(γ
(1)
0,0)2, for ∆φ =

3

2
.

(4.10)

In d = 3,

Rn =

(
−
√
πΓ(n+ 1)

8Γ
(
n+ 3

2

) − 1

4

)
(γ

(1)
0,0)2, for ∆φ = 1. (4.11)

We can use our method to evaluate residue for any value of mass of the scalar field in

AdSd+1. But it is not always possible to come up with a simple closed form expression

like above easily, though the residues can be systematically fixed by implementing it in

Mathematica quite easily. It can be seen that if we try to sum the above residues in one

of the channel, say t- channel then it will diverge. This UV divergence is expected for

AdSd+1≥4. On the other hand it gives convergent expression for AdS3. e.g. in d=2,

Rn = − 16(1)n

π2
(

3
2

)
n

(γ
(1)
0,0)2, for ∆φ =

3

2
. (4.12)

If we sum in the t channel this gives,

−
16 3F2

(
1, 1,−t; 3

2 , 1− t; 1
)

π2t
(γ

(1)
0,0)2 (4.13)

All the results we quoted here are in agreement with the existing results in the litera-

ture [1, 27, 35].

4.2 φ3 + φ4 theory

Now we consider a local effective theory in AdSd+1 with cubic and quartic both coupling

present. So the effective Lagrangian becomes,

L =
1

2
(∂φ)2 +

1

2
m2φ2 + λ3φ

3 + λ4φ
4 (4.14)
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Figure 4. Triangle diagram in φ3+φ4 theory.

R0 R1 R2 R3

d = 4, ∆φ = 4 193
9

1357
63

127937
6237

5789543
297297

d = 3, ∆φ = 2 5 3 20
9

43
24

Table 1. Examples of first few residues in φ3 + φ4 theory. The numbers shown above need to be

multiplied with γ
(1)
0,0cs to get the final answer. cs is the OPE coefficient of operator φ, i.e., Cφφφ.

We would consider the triangle diagram which is present in this theory at one loop

(figure 4). This is relatively simpler to evaluate using this approach. Because as there

is cubic coupling, therefore φ will appear in the OPE and the solution γ
(1)
n,` |

φ3
will have

support for all spin. Therefore we need to perform a spin sum also to get γ
(2)
0,` . But the

triangle diagram has both the vertices cubic and quartic in it. Therefore although we have,

(γ
(1)
n,`)

2 = (γ
(1)
n,` |

φ3
)2 + (γ

(1)
n,` |

φ4
)2 + 2γ

(1)
n,` |

φ3
γ

(1)
n,` |

φ4
(4.15)

and γ
(1)
n,` |

φ4
is non-zero only for spin zero, we only need the contribution of 2γ

(1)
n,0|φ

3
γ

(1)
n,0|φ

4

to γ
(2)
0,` for the evaluation of triangle diagram. We already have computed γ

(1)
0,0 |φ

3
in (3.16)

and γ
(1)
n,0|φ

4
in (3.11). Using these we can fix the loop amplitude completely just the way

we did it for bubble diagrams. We can evaluate these for any general case of interest. We

have also checked that our results match exactly with the results found in [1] which we

don’t repeat here. As an demonstration we quote values of few leading residues for two

different cases in table 1. Indeed for many interesting cases (though mostly limited to ∆φ

integers or half integers which might have interesting applications when the dimensions

are protected) it is possible to find the closed form for residues and perform the sums. To

the best of our knowledge this diagram has not been evaluated for general case using any

other methods.

5 Discussion

In this paper, we have successfully implemented the Polyakov Mellin bootstrap for holo-

graphic conformal field theories following the proposal [23]. We calculated all CFT data

for holographic scalar theory till one loop and this gives correct result for spin zero as well.

Using this data we reconstructed certain one loop diagrams in AdS following the proposal

in [1]. Our method is particularly useful in odd dimensions where the blocks are not known

in closed form. Also we can use our expressions for any general conformal dimension of the

external scalar fields.
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There are several interesting future directions one can pursue:

• For φ3 +φ4 theory the total anomalous dimensions at O(1/N4) will require an infinite

spin sum to perform. This was done in [36, 37] for specific cases. It will be interesting

to see if those sums can be easily done in Mellin space using properties of special

functions and if it can be generalized to other cases.

• It is natural to generalize these techniques for spinning correlator9 which will in turn

fix the loop amplitudes involving external spinning fields. Recently this was done for

internal scalar exchanges in [39].

• As loops are fixed by tree level data. It will be very pleasing to explore if there is any

organizing principles like Feynman rules in AdS [40]. Finally to answer questions like

What would be the analogues of Optical theorems and generalized unitarity methods

of S-matrix in AdS?

• Finally from the perspective of Polyakov-Mellin bootstrap fixing the ambiguities in

the basis completely is the most crucial question. If studying higher order loops can

give some insight to it or some physical principle which can fix it that would be a

tremendous achievement!
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A Continuous Hahn polynomial and its asymptotic

The definition of the continuous Hahn polynomial is:

Q2s+`
`,0 (t) =

2` ((s)`)
2

(2s+ `− 1)`
3F2

[
−`, 2s+ `− 1, s+ t

s , s
; 1

]
. (A.1)

These polynomials satisfy the orthogonality property [41],

1

2πi

∫ i∞

−i∞
dt Γ2(s+ t)Γ2(−t)Q2s+`

`,0 (t)Q2s+`′

`′,0 (t) = (−1)`κ`(s)δ`,`′ , (A.2)

where,

κ`(s) =
4``!

(2s+ `− 1)2
`

Γ4(`+ s)

(2s+ 2`− 1)Γ(2s+ `− 1)
. (A.3)

9See [38] for discussion on spinning correlator formulation in Mellin space.
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The large ` asymptotic of the 3F2 appearing in (A.1) was derived in [22] and we quote the

result here,

3F2

[
−`, 2s+`−1, s+t

s , s
;1

]
∼

∞∑
n,k1,k2=0

(−1)n

n!

Γ2(s)(s+t)n
Γ(−t−n)2 bk1(s)bk2,n(t)J−2k1−2k2−2n−2s−2t

+

∞∑
n,k1,k2=0

(−1)n

n!

Γ2(s)(−t)n
Γ(s+t−n)2 bk1(s)bk2,n(−s−t)J−2k1−2k2−2n+2t

(A.4)

where,

J2 = (`+ s)(`+ s− 1), bk1(s) = dα1,β1,k1 , bk2,n(t) = dα2,β2,k2 , (A.5)

and

α1 = 1− s = −β1, α2 = −t− 1− n = −β2 . (A.6)

Also dα,β,k is defined as,

dα,β,k =
k∑
j=0

cj

(α−β−2j
2

k − j

)(
−1 + α+ β

2

)2k−2j

(A.7)

and

cj =
Γ(β − α+ 2j)

Γ(β − α) (2j)!
B1+α−β

2j (
1 + α− β

2
) , (A.8)

where B is the generalized Bernoulli polynomial [22].

B Contact terms

In this section we provide another example where we show how Polyakov Mellin bootstrap

works for a holographic CFT. To our basis we add the following contact term,

u∆φ(1 + u+ v)D̄∆φ+1 ∆φ+1 ∆φ+1 ∆φ+1(u, v) (B.1)

As argued in [23] any contact diagram can be parametrized as,

L
2∑

m+n=0

amn

(
s(s+ t−∆φ)(t+ ∆φ)

)m(
t(s+ t) + s(s−∆φ)

)n
(B.2)

In Mellin space the contact term (B.1) can be written as (B.2) with a01 = 2 and a00 = ∆φ2 .

Now we have to decompose it in continuous Hahn basis,

c(s, t) =

2∑
`′=0

a`′(s)Q
2s+`′

`′,0 (t) (B.3)

with

a0(s) = a00−
s

4s+2

(
2∆φ(a10∆φ+a01)+s3a10+s2(a10(1−4∆φ)−3a01)+s(a01(4∆φ−1)

+2a10∆φ(2∆φ−1))
)

(B.4)
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Now our constraint equation becomes,∑
∆,`

c∆,`(q
s
∆,`′|`(s) + 2qt∆,`′|`(s)) + λa`′(s) = 0 (B.5)

We look at equation s = ∆φ for `′ = 0,

Γ (2∆φ)

Γ4 (∆φ)
γ0,0 + λ

∆3
φ

2∆φ + 1
= 0 (B.6)

which fix λ,

λ = −
(2∆φ + 1) Γ (2∆φ)

∆3
φΓ4 (∆φ)

γ0,0 (B.7)

Now we can solve for all other quantities in terms of γ0,0. To see it we take s = ∆φ and

`′ = 2 equation,
4∆φΓ

(
∆φ + 5

2

)
√
π∆φ(∆φ + 1)Γ3(∆φ)

γ0,2 +
λ

2
= 0 (B.8)

Now we replace λ using (B.7) to find,

γ0,2 =
γ0,0(∆φ + 1)

∆2
φ(2∆φ + 3)

(B.9)

Similarly looking at s = ∆φ + 1 and `′ = 0 equation we find,

γ1,0 =
γ0,0

∆2
φ (2∆φ + 3) (∆φ − h+ 1)

(
(∆φ + 1) 2 − h2 (∆φ (∆φ (∆φ + 3) + 5) + 4)

+ h (∆φ (2∆φ (∆φ (∆φ + 3) + 6) + 13) + 3)
) (B.10)

This agrees with the results found in [24] in 2 and 4 space-time dimension. The

procedure outlined above can be followed for any contact diagrams in AdS to find the CFT

data at O(1/N2). Then following section 3.3 we can reproduce the loop results.

C Useful expressions

The notations used in (2.19) are given below,

χ
(n)
`′ (s) = (−1)`

′
2−`

′ Γ(2s+ 2`′)Γ2(s+ n)

`′!Γ2(`′ + s)Γ(2s+ n)

(−n)`′

(2s+ n)`′
, (C.1)

and

a= `′+2(a`+m+s−1), b= e= a`+m, c= d= a`+m+s−1, f = 2(s−∆φ)+h+m+`′−`,
(C.2)

where a` = 1 + ∆−`
2 −∆φ.

The normalization used in PM bootstrap is defined as,

N∆,` =
(−2)` (`+ ∆− 1) Γ (1− h+ ∆) Γ2 (`+ ∆− 1)

Γ (∆− 1) Γ4
(

∆+`
2

)
Γ2
(
`+2∆φ−∆

2

)
Γ2
(
`+2∆φ+∆−2h

2

) . (C.3)
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