Origin of visible and near IR upconversion in Yb\(^3\) -Tm\(^3\) -Er\(^3\) doped BaMgF\(_4\) phosphor through energy transfer and cross-relaxation processes

Bhushan P. Kore\(^a,^*\), Ashwini Kumar\(^b,^{**}\), Robin E. Kroon \(^b\), Jacobus J. Terblans \(^b\), Hendrik C. Swart \(^b\)

\(^a\) Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, 560012, India
\(^b\) Department of Physics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa

A B S T R A C T

Near infrared and green, red emission through upconversion and energy transfer processes in BaMgF\(_4\) doped with Yb\(^3\) -Tm\(^3\) and Yb\(^3\) -Tm\(^3\) -Er\(^3\) excited at 980 nm were investigated. The BaMgF\(_4\):Yb\(^3\),Tm\(^3\) phosphor showed a dominating UC emission at 800 nm. The origin of this 800 nm emission peak was explored through different possible cross-relaxation processes. The optimized composition of Yb\(^3\) and Tm\(^3\) was further co-doped with Er\(^3\), these compositions also showed dominating 800 nm emission for lower concentrations of Er\(^3\) which was gradually suppressed at higher Er\(^3\) concentration. The enhancement of the visible emission of Er\(^3\) in the BaMgF\(_4\) :Yb\(^3\),Tm\(^3\) ×Er\(^3\) doped phosphor suggests the efficient energy transfer from Yb\(^3\) to Tm\(^3\) and Tm\(^3\) to Er\(^3\). By tuning the concentrations of the dopants, a near white light emission under infrared excitation was also achieved.

1. Introduction

Rare-earth doped upconversion (UC) materials have drawn a great deal of attention due to their enhanced optical properties which open a way to their application in solar cells as solar spectral convertors [1], lasers [2], displays [3], bioimaging [4] and other applications [3]. Various oxide and fluoride-based host materials have been studied with different combination of rare-earth ions to explore their UC properties. Among the UC phosphors mostly fluoride-based phosphors have received much attention due to their low phonon energies, e.g. NaYF\(_4\) [5-7] but, synthesis of phase pure NaYF\(_4\) is not straight forward [8] and therefore other fluoride-based hosts (YF\(_3\) [9], CaF\(_2\) [10], Sr\(_2\)YbF\(_6\) [11], BaYF\(_5\) [12], BaMgF\(_4\)) have been studied for their UC properties. Recently, we studied the UC properties of BaMgF\(_4\) doped with Yb\(^3\), Tb\(^3\) [13] and Yb\(^3\), Er\(^3\) [14]. In both these phosphors we obtained a characteristic emission of Tb\(^3\) and Er\(^3\). In the case of Tb\(^3\) bright green emission was obtained at 544 nm. Based on the obtained results we proposed the use of this phosphor as a solar spectrum converter in perovskite solar cells [13]. We also showed that the same host doped with Yb\(^3\) -Er\(^3\) pair can be used in optical thermometry [14].

The rare-earth ion doped UC phosphors are remarkably efficient in transferring the excited state energy of the sensitizer (Yb\(^3\)) to the neighboring activators (Tm\(^3\) or Er\(^3\)) which gives rise to an efficient UC emission by the non-linear anti-stokes process [15]. The UC emission through the anti-stokes process arises due to the intra 4f transitions of rare-earth ions, these transitions are less influenced by the crystal field due to the strong shielding of the 4f orbitals by outer (5s and 5p) orbitals [15,16].

The previous downconversion (BaMgF\(_4\):Ce\(^3\),Tb\(^3\)) [17] and UC studies (BaMgF\(_4\):Yb\(^3\),Tb\(^3\) and BaMgF\(_4\):Yb\(^3\),Er\(^3\)) [14] motivated us to further explore the UC properties in this material with different rare-earth pair doping. The Tm\(^3\) doped phosphors are known for their wider emission bands which vary from the UV to infrared region [4,18,19]. Furthermore, Er\(^3\) /Tm\(^3\) co-doped with Yb\(^3\) is reported to give UC emission in the blue region under 980 nm laser excitation [20]. Keeping this in mind we doped BaMgF\(_4\) with Yb\(^3\), Tm\(^3\) and Er\(^3\).

In this study we report the UC luminescence of BaMgF\(_4\) doped with Yb\(^3\), Tm\(^3\) and Er\(^3\). For Yb\(^3\) -Tm\(^3\) doped an intense 800 nm emission was observed for all the compositions of Yb\(^3\) and Tm\(^3\). The strong emission of Tm\(^3\) at 800 nm suggests an efficient energy transfer from Yb\(^3\) to Tm\(^3\). The energy transfer mechanism responsible for 800 nm emission has been explained in detail. In addition to this the effect of Er\(^3\) doping on the UC emission of Tm\(^3\) and possible Tm\(^3\) to Er\(^3\) energy transfer/cross-relaxation (CR) is also discussed.

2. Synthesis and characterization

The experimental procedure used previously for preparation of

\(^*\) Corresponding author.
\(^**\) Corresponding author.
E-mail address: bhushan.kore084@gmail.com (B.P. Kore).
BaMgF₄:Yb³, Tb³ and BaMgF₄:Yb³, Er³ phosphor. The starting materials used were BaCl₂, MgCl₂, NH₄F, Yb(NO₃)₃, Tm(NO₃)₃ and Er(NO₃)₃. All the reagents used were of high purity procured from Sigma-Aldrich (99.999%). Stoichiometric amounts of BaCl₂, MgCl₂ and Yb(NO₃)₃, Tm(NO₃)₃, Er(NO₃)₃ were dissolved in double distilled water, in separate beakers. In the next step stoichiometric amounts of rare earths dissolved in distilled water were added dropwise to the solution mixture. Finally, a precipitate was obtained by adding NH₄F to the mixture under continuous stirring. The obtained precipitate mixture was stirred for 2 h at 80 °C and washed several times with distilled water. The dried powder was annealed at 650 °C for 4 h in open atmosphere.

The powder X-ray diffraction (XRD) patterns of the samples were recorded using a Bruker D8 Advance X-ray diffractometer with a Cu target, with X-ray wavelength (λ) of 0.154 nm. The morphology of the prepared phosphors was analyzed using a JSM-7800F FEOL field emission scanning electron microscope (FE-SEM), operated at 30 kV. Energy dispersive X-ray spectroscopy (EDS) was used for the composition analysis using an Oxford instruments X-MaxN 80 detector. The UC spectra and decay curves were measured using an Edinburgh Instruments FLS-980 fluorescence spectrometer. The color coordinates were calculated by Commission Internationale de L’Eclairage (CIE) software (GoCIE).

3. Results and discussion

The prepared phosphors were first checked with powder XRD measurements, the XRD patterns of the samples are given in Fig. S1. The relative intensities of the diffraction peaks of the samples are consistent with the standard ICDD 84–0201 diffraction data. The XRD patterns of the doped samples did not show any impurity peaks or peaks related to some other phases of the compound for all the used concentrations of dopants.

Fig. 1 shows SEM images of the synthesized BaMgF₄:Yb³, Tm³, Er³ sample. The agglomerated rod-shaped grains were observed in the SEM morphology with size ranging from 2 to 4 μm. The elemental mapping and EDS spectra shows the presence of Ba, Mg and F along with the dopant ions. The elemental mapping further shows that the rare-earth ion doping is homogeneous throughout the sample. The unwanted elements (Cl and Au) in the EDS spectra are originated from the chlorinated precursors used during synthesis and Au sputtering while preparing the sample for SEM.

The UC PL spectra of BaMgF₄ sample doped with Yb³ and Tm³ measured with 980 nm excitation wavelength using a continuous laser diode are shown in Fig. 2(a) and (b). The concentrations of Yb³ and Tm³ were optimized individually by preparing two-separate series of samples with varied concentration of Yb³ and Tm³. The maximum UC emission was obtained for 0.2 mol% and 10 mol% concentrations of Tm³ and Yb³, respectively. The samples co-doped with Yb³ and Tm³ show intense UC PL emission around 800 nm, which is nearly 85 times higher in magnitude than the UC emission in the visible region. The dominating NIR emission at 800 nm was due to the transition of 3H₄ to 3H₅ energy levels of Tm³. The other UC PL peaks in the visible region were attributed to the 1I₅₂→3F₄ (347 nm), 1D₄→3F₄ (451 nm), 1G₄→3F₄ (648 nm), 1D₄→3H₅ (561 nm), 1G₄→3H₆ (477 nm), 3F₄→3H₅ (700 nm) transitions [19]. The 980 nm excitation facilitates the excitation of the Yb³ ions, which have a large absorption cross-section in the NIR region (around 980 nm) [21], and subsequent energy transfer from Yb³ to Tm³.

3.1. Energy transfer process

The UC luminescence can be achieved through a number of excitation and energy transfer processes such as ground state absorption (GSA), excited state absorption (ESA), CR energy transfer and energy transfer upconversion (ETU) [21]. The UC emission through different excitation and emissions channels is illustrated in the schematic energy level diagram of Yb³ and Tm³, as shown in Fig. 3. The excitation by 980 nm laser promotes electrons from the ground state (2F₇/₂) of Yb³ to the excited state (2F₅/₂) which, while relaxing to the ground state, transfers energy (process i) and populate the 3H₅ level of Tm³. The 3H₅ level can also be populated through GSA by absorbing a 980 nm NIR

Fig. 1. (a–c) SEM images, (d–i) elemental mapping, and (j) EDS spectra of BaMgF₄:Yb³, Tm³, Er³ (Yb 10 mol %, Tm 0.2 mol %, Er 0.2 mol %) annealed sample.
photon, but the absorption cross-section of Tm3 is weak this gives rise to a weak UC emission in singly Tm3 doped phosphors. The electrons in the $^3\text{H}_4$ level relax to the $^3\text{F}_4$ level through multi-phonon emission. The energy transfer (process ii) from Yb$^{3+}$ further pump the electrons in the $^3\text{F}_4$ level to the $^3\text{F}_2$ level, the $^3\text{F}_2$ level can also be populated through ESA. The multi-phonon relaxation from $^3\text{F}_2$ level populates the $^3\text{F}_3$ and $^3\text{H}_4$ levels, from which the electrons radiatively relax to the $^3\text{H}_6$ level with 700 and 800 nm UC emissions, respectively. The $^3\text{H}_4$ level can also be populated through ETU and CR processes, as discussed later. Two NIR photons are sufficient to populate the $^3\text{F}_2$ level, but excitation of higher energy levels needs more than two NIR photons. The electrons in the populated $^3\text{H}_4$ level can be further excited to $^1\text{G}_4$ level (process iii). The electrons in the $^2\text{G}_4$ level undergo relaxation to $^2\text{F}_4$ and $^2\text{H}_6$ levels with 678 and 477 nm UC emissions. The $^1\text{D}_2$ level cannot be populated through CR due to the large energy mismatch (3500 cm$^{-1}$) between $^1\text{D}_2$ and $^1\text{G}_4$ levels [22]. Instead, the $^1\text{D}_2$ level can be populated via the CR process between Tm3 ions, as discussed later. The electrons from the $^1\text{D}_2$ level make transition to $^3\text{F}_4$ and $^3\text{H}_6$ levels with 451 and 361 nm UC emissions [19]. The additional energy transfer from Yb$^{3+}$ to Tm3 (process iv) populates the $^3\text{P}_2$ level of Tm3 from the $^1\text{D}_2$ level. The transition from the $^3\text{F}_3$ level is very rarely observed in inorganic phosphors since electrons in the $^3\text{F}_3$ level relax non-radiatively through the $^3\text{P}_{0,1}$ levels to the $^3\text{H}_4$ level and it also requires more than four NIR photons in the excitation [22]. The electrons can undergo a radiative transition from the $^3\text{H}_4$ level to the $^3\text{F}_4$ level with 347 nm emission. Due to the greater number of NIR photons involved in the excitation of this high energy level usually the transitions observed from this level have lower probability and hence the weak UC PL intensity [22].

In the UV–visible spectral range (300–750 nm), at lower Tm3 concentration the $^1\text{G}_4 \rightarrow ^3\text{H}_6$ (3-photon) and $^3\text{F}_3 \rightarrow ^3\text{H}_6$ (2-photon) radiative transitions have similar emission intensities, but for higher Tm3 doping the 2-photon process dominated, which indicates the increase in population of the low-lying excited level $^3\text{F}_3$. Furthermore, for the lower Yb$^{3+}$ concentration the 3-photon process was dominant, whereas for higher Yb$^{3+}$ concentration the 2-photon process was dominant. In the entire UC emission range, the 800 nm emission arising from $^3\text{H}_4 \rightarrow ^3\text{H}_6$ was dominant for all the concentrations of Yb$^{3+}$ and Tm3. The BaMgF$_4$: Yb$^{3+}$,Tm3 has a weak 800 nm emission for lower concentration of Tm3, but by increasing the Tm3 concentration the intensity of 800 nm peak increased significantly, see Fig. 1(a). This is attributed to the enhanced population of the $^3\text{H}_4$ level due to the simultaneous occurrence of ETU and CR processes as shown in Fig. 3. The CR process

Fig. 2. UC PL emission spectra of (a) BaMgF$_4$:Yb$^{3+}$-Tm3 (Yb $= 2$ mol% fixed) phosphor, (b) enlarged view of the UC emission in the 300–750 nm region. UC PL emission spectra of (c) BaMgF$_4$:Yb$^{3+}$,Tm3 (Tm $= 0.2$ mol% fixed) phosphor, (d) enlarged view of the UC emission in the 300–750 nm region. The UC emission spectra were measured with 980 nm excitation wavelength, at 1 W fixed laser power.

Fig. 3. Schematic energy level model illustrating various types of excitation/emission pathways, possible energy transfer between Yb$^{3+}$-Tm3 pairs and CR mechanisms between Tm3 ions.
becomes more dominant when the spatial distance between neighboring Tm$^3^+$ ions decreases with an increase in the concentration of Tm$^3^+$ in the host lattice [6]. The emission intensity of this peak was further increased with increasing the concentration of Yb$^3^+$ ions. The increase in Yb$^3^+$ concentration enhances the absorption and facilitates the energy transfer induced by the decreased spatial distance between Yb$^3^+$ and Tm$^3^+$ [23]. The 3H$_4$ energy level, which is responsible for the 800 nm NIR emission, can be populated through a number of energy transfer processes. The first one is through the ESA from 3F$_4$ to 3F$_5$, which non-radiatively decays to 3H$_4$ level, as discussed earlier. The second possibility is through ETU process (3F$_4$ → 3H$_6^-$ and 3F$_4$ → 3H$_2$) [24,25]. In this ETU process sequential excitation of two Tm$^3^+$ ions to the 3H$_4$ level takes place through absorption of two NIR photons. The excited Tm$^3^+$ ions transfer energy via a dipole–dipole resonant interaction through non-radiative process due to the presence of energy mismatch between the 3F$_2$ → 3H$_4$ absorption and the 3F$_4$ → 3H$_6^-$ emission. This promotes one ion to the 3H$_4$ level and demotes the other to the 3H$_6^-$ level, as shown in Fig. 3. The other way to populate the 3H$_4$ level is through CR processes; the CR1 process (5G$_4$, 5F$_{5,4}$ → 3H$_4$, 3F$_2$) [6] populates the 3F$_2$ level from which electrons non-radiatively make a transition to 3H$_4$ level and populate the 3H$_4$ level and second CR process also populates the 3H$_4$ level through CR2 (3D$_2$, 3H$_6^-$ → 3F$_2$, 3H$_4$) [26,27]. The dominant 800 nm emission could be due to the contribution from all these three processes. On the other hand, the CR3 and CR4 processes play a vital role in populating the 3D$_2$ level through CR energy transfer [22,28,29], which gives rise to 361 and 451 nm emission. However, in the present phosphor the intensity of the UC emission arising from the 3D$_2$ level is weak which suggests the minor contribution of CR3 and CR4 processes in the UC emission.

The PL intensity versus laser power plots shows a gradual increase in PL intensity with increase in power, as shown in Fig. 4. The PL spectra do not show any additional peaks or degradation in the PL intensity with increase in power, see Fig. S2. The laser power dependent UC spectra were recorded to determine the number of NIR photons involved in the excitation processes, which can be estimated using the following relation

$$I_{UC} \propto P^n.$$

Where, I_{UC} is the integrated UC emission intensity, P is the laser power and ‘n’ represents the number of photons involved in the upconversion process. The value of n can be obtained from the slope of line fitted to the plot of log(I_{UC}) versus log(P). The pump power variation analysis shows slopes to be 1.17, 1.28, 1.87 and 2.9 for peaks at 800, 700, 477 and 347 nm, respectively. To obtain emission from the 1I$_6$, 4G$_5$ and 3F$_3$, 3H$_4$ levels a minimum of five, three and two NIR photons are needed, respectively, as shown in Fig. 3. However, the calculated slopes indicated the smaller number of NIR photons involved in the population of these levels. Often the multi-phonon emission and CR processes are responsible for the observed smaller values of slope [14,22]. The UC intensity versus laser power plots show saturation in the UC intensity at higher laser powers, which is attributed to the population exhaustion at the ground state and increase in the temperature of the sample at higher laser power which leads to the quenching in luminescence intensity [30,31].

4. Decay analysis

The UC decay curves were fitted with bi-exponential function $I(t) = I(0) A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$ where, A$_1$ and A$_2$ are the constants, t is time, τ_1 and τ_2 are the lifetimes, and I(0) and I(0) are the UC intensities at time t and the background intensity, respectively. The decay curves were fitted using the above function and the decay lifetimes were extracted, as shown in Fig. 5. The decay lifetime for the different concentrations of Yb$^3^+$ are given in Table 1. The decay lifetime increased continuously with an increase in Yb$^3^+$ concentration. The gradual increase in decay lifetime can also be correlated with the UC PL spectra where there is continuous rise in PL intensity with an increase in the Yb$^3^+$ concentration. The decay lifetime calculated for the different concentrations of Tm$^3^+$ is in the same range and showed a drop for higher concentration of Tm$^3^+$ which could be attributed to the concentration quenching, see Table S1 in supporting information. The decrease in decay lifetime can be either due to the formation of Yb$^3^+$ pairs [32] or Tm$^3^+$ to Yb$^3^+$ energy back transfer [33], both of which leads to the luminescence quenching. The quenching effect is also observed in the UC PL spectra where the UC PL emission intensity decreased with an increase in the Tm$^3^+$ concentration. The probability of Yb$^3^+$ pair formation is less as we did not see quenching in PL emission when the concentration of Yb$^3^+$ was varied.

5. BaMgF$_4$:Yb$^3^+$,Tm$^3^+$,Er$^3^+$ doped samples

The color tunability in the UC phosphors can be obtained by either varying the dopant concentration or by doping the different rare earth ions. In present system in order to improve the emission intensities in visible region we doped the optimized composition with different concentration of Er$^3^+$, also in pervious study we obtain an efficient emission from Er$^3^+$ so in this study we wanted to know how the presence of Tm$^3^+$ influence the emission of Er$^3^+$. In the Yb$^3^+$-Tm$^3^+$-Er$^3^+$ co-doped sample we examined the effect of Er$^3^+$ and Tm$^3^+$ doping on UC emission. The Er$^3^+$ doped BaMgF$_4$:Yb$^3^+$,Tm$^3^+$ samples show characteristic emission of Er$^3^+$ along with that of Tm$^3^+$, as shown in Fig. 6. The emission peak at 521, 540 and 651 nm are associated with Er$^3^+$ emission and attributed to

![Fig. 4](image-url) The logarithmic dependence of UC emission intensity as a function of logarithmic pump power for (a) BaMgF$_4$:Yb$^3^+$,Tm$^3^+$ (Yb 2 mol % and Tm 0.2 mol %) phosphor, (b) BaMgF$_4$:Yb$^3^+$, Tm$^3^+$ (Yb 10 mol% and Tm 0.2 mol%) phosphor at 800, 700, 477 and 347 nm emissions originating from the Tm$^3^+$.
concentration. (a) A schematic diagram of the decay curves of BaMgF₄:Yb³⁺,Tm³⁺ phosphor under 980 nm excitation for Tm³⁺ emission at (a) 477 nm (¹G₄ → ³H₄) and (b) 800 nm (¹H₄ → ³H₄), for different concentrations of Yb³⁺ at Tm³⁺ 0.2 mol% fixed.

Table 1

<table>
<thead>
<tr>
<th>BaMgF₄:Ybₓ,Tmₓ</th>
<th>τ (μs) @361 nm</th>
<th>τ (μs) @477 nm</th>
<th>τ (μs) @800 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>x 1 mol%</td>
<td>54</td>
<td>289</td>
<td>153</td>
</tr>
<tr>
<td>x 2 mol%</td>
<td>95</td>
<td>392</td>
<td>168</td>
</tr>
<tr>
<td>x 5 mol%</td>
<td>67</td>
<td>326</td>
<td>237</td>
</tr>
<tr>
<td>x 7 mol%</td>
<td>84</td>
<td>443</td>
<td>460</td>
</tr>
<tr>
<td>x 10 mol%</td>
<td>107</td>
<td>475</td>
<td>493</td>
</tr>
</tbody>
</table>

The ²H₁/₂ → ⁴I₁₅/₂, ⁴S₃/₂ → ⁴I₁₅/₂ and ⁴F₉/₂ → ⁴I₁₅/₂ transitions, respectively. The intensity of 800 nm peak is still higher in BaMgF₄:Yb³⁺, Tm³⁺,Er³⁺ doped samples for lower concentration of Er³⁺, but for higher concentrations of Er³⁺ the emission intensity of the 800 nm peak dropped drastically whereas the emission intensity of the peak associated with Er³⁺ goes up and increased gradually with an increase in Er³⁺ concentration. The co-doping of Er³⁺ facilitated CR processes between Tm³⁺ and Er³⁺ which altered the intensities of green/red emissions of Er³⁺ (⁴S₃/₂ → ⁴I₇/₂,⁴F₉/₂ → ⁴I₁₅/₂) and NIR (¹H₄ → ³H₄) emission of Tm³⁺ [14]. Tm³⁺ emits in the blue and green regions of the visible spectrum, whereas the Er³⁺ ions have a dominant emission in the green region. The effect of Er³⁺ doping on the color tunability of the phosphor can be clearly observed in Fig. 6(b). The color of the phosphor can be tuned from bluish green to yellow with an increase in the concentration of Er³⁺. Further, it is possible to obtain a white light UC emission in this phosphor by optimizing the concentration of Er³⁺ and Tm³⁺. The increase in doping of Er³⁺ in steps of smaller concentration can lead to white light emission, since for the first two concentrations of Er³⁺ the white light emission region in the CIE diagram lies in between these two concentrations.

In order to understand the energy transfer mechanism between Yb³⁺ - Tm³⁺ and Er³⁺ the schematic energy level diagram is drawn for BaMgF₄:Yb³⁺, Tm³⁺,Er³⁺ as shown in Fig. 7. The rare-earth ions (Tm³⁺ and Er³⁺) can be easily excited through energy transfer from Yb³⁺ under 980 nm excitation to generate the visible/NIR UC emission. For a lower concentration of Er³⁺ in BaMgF₄:Yb³⁺,Tm³⁺,Er³⁺ there is energy transfer from Tm³⁺ to Er³⁺ which results in weak Er³⁺ emission, due to

![Fig. 5](image1.png)
Fig. 5. Luminescence decay curves of BaMgF₄:Yb³⁺,Tm³⁺ phosphor under 980 nm excitation for Tm³⁺ emission at (a) 477 nm (¹G₄ → ³H₄) and (b) 800 nm (¹H₄ → ³H₄), for different concentrations of Yb³⁺ at Tm³⁺ 0.2 mol% fixed.

![Fig. 6](image2.png)
Fig. 6. (a) UC emission spectra of BaMgF₄:Yb³⁺,Tm³⁺,Er³⁺ phosphor (Yb 10 mol%, Tm 0.2 mol%) with variation in Er³⁺ concentration under 980 nm excitation. (b) CIE chromaticity diagram for visualization of color tunability in BaMgF₄:Yb³⁺,Tm³⁺,Er³⁺ (Yb 10 mol%, Tm 0.2 mol% fixed) phosphor on varying Er³⁺ concentration. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

![Fig. 7](image3.png)
Fig. 7. Schematic energy level model illustrating possible CR mechanisms between Tm³⁺ -Er³⁺ pair.
lower concentration of Er³⁻, and a strong Tm³⁻ UC emission. But, as the concentration of Er³⁻ increased, the relative UC emission of Er³⁻ enhanced with respect to Tm³⁻ emission. At higher concentration of Er³⁻ the dominating green/red emission (4⁹H⁷/₂, ⁵S₃/₂ → ⁴I₅/₂) from Er³⁻ was evident.

Under 980 nm excitation, there is first energy transfer from Yb³⁻ to Tm³⁻ takes place which is already discussed earlier. The ⁴F₄ level of Tm³⁻ transfers its energy non-resonantly to the ⁴I₁₃/₂ level of Er³⁻ through the CR mechanism ⁴I₄(Tm) → ⁴I₁₃/₂(Tm) → ⁴F₄(Tm) [34]. The decrease in intensity of the 800 nm peak of Tm³⁻ suggests depopulation of its ⁵H₄ level with an increase in the Er³⁻ concentration. The CR1 process populates the ⁴I₁₃/₂ level of Er³⁻, following which ESA populates the ⁴F₄/₂ level of Er³⁻ which is responsible for the red emission. In the present case the red emission around 650 nm is due to the overlap of red emission from both Tm³⁻ (⁴G₄⁻ → ⁴F₄) and Er³⁻ (⁴F₉/₂ → ⁴I₁₃/₂). The 650 nm emission can also be achieved through a multiphoton relaxation mediated sequential CR which involves the following CR pathways, ⁴I₁₃/₂(Er) → ⁵H₄(Tm) → ⁴F₄(Tm) → ⁴F₄(Tm) → ⁴F₄/₂ (CR2) [34], and ⁴G₄(Tm) → ⁴I₁₃/₂(Er) → ⁴F₄(Tm) → ⁴F₄/₂ (CR3) [35]. The green emission of Er³⁻ can be achieved by populating the ⁵H₄ and ⁴S₂ levels of Er³⁻ through ESA from the ⁴I₁₃/₂ level of Er³⁻. The CR4 process ⁴F₄(Tm) → ⁴I₁₃/₂(Er) → ⁴F₄(Tm) → ⁴F₄/₂ (Er³⁻) [36] can populate the ⁴F₄/₂ level of Er³⁻ from which an electron can non-radiatively make transitions to the ⁵H₁₃/₂ and ⁴S₂ levels. Green emission can be obtained when the electrons from these levels make transitions to the ⁴I₁₃/₂ level.

The lifetime calculated from the decay curves of the BaMgF₂:Yb³⁻, Tm³⁻, Er³⁻ phosphor, shown in Fig. S3, show a reduction in the lifetime of ¹G₄⁻ ⁵H₄ levels after Er³⁻ doping, see Table S2, in comparison to the lifetimes extracted from decay curves of the BaMgF₂:Yb³⁻, Tm³⁻ phosphor, see Table 1. This suggests energy transfer from Tm³⁻ to Er³⁻. To our surprise the decay values for ⁵H₄ (800 nm) at higher Er³⁻ concentration again started increasing, this could be due to the backward energy transfer from Er³⁻ to Tm³⁻.

6. Conclusion

In conclusion, we achieved dual emission (visible and NIR) through frequency upconversion in Yb³⁻ sensitized Tm³⁻ -Er³⁻ doped BaMgF₂ phosphor. The BaMgF₂:Yb³⁻, Tm³⁻ show characteristic UC emission peaks viz. 347, 477, 700 and 800 nm corresponding to ⁴I₁₀⁻ → ⁴I₈⁻, ¹G₄⁻ → ⁵H₄, ⁴F₄⁻ → ⁵H₄ and ⁴H₆⁻ → ⁵H₄, respectively. We explored the origin of dominant 800 nm emission in the Yb³⁻ -Tm³⁻ doped sample which was attributed to the prominent ETU and CR processes. The origin of color tunability in Yb³⁻ -Tm³⁻ -Er³⁻ doped samples with changing the Er³⁻ concentrations was also investigated, which is influenced by the Tm³⁻ to Er³⁻ energy transfer.

Supplementary material

See supplementary materials for the XRD patterns of undoped and doped BaMgF₂ sample, variation in the upconversion emission intensity as a function of the excitation laser power for BaMgF₂:Yb³⁻,Tm³⁻ sample, measured decay curves of BaMgF₂:Yb³⁻, Tm³⁻ ,xEr³⁻ sample and calculated luminescence decay time of BaMgF₂:Yb³⁻,Tm³⁻ and BaMgF₂:Yb³⁻,Tm³⁻, Er³⁻ sample.

Author contributions

A.K. prepared the samples and performed optical measurement with help from R.E.K. B.P.K. conceived the project and participated in discussion to interpret the results primarily with R.E.K. and H.C.S. B.P.K prepared the manuscript including inputs from all the authors. All authors have given approval to the final version of the manuscript.

Novelty statement

The BaMgF₂:Yb³⁻, Tm³⁻ phosphor showed a dominating UC emission at 800 nm. The optimized composition of Yb³⁻ and Tm³⁻ was further co-doped with Er³⁻. These compositions also showed dominating 800 nm emission for lower concentrations of Er³⁻ which was gradually suppressed at higher Er³⁻ concentration. The enhancement of the visible emission of Er³⁻ in the BaMgF₂:Yb³⁻, Tm³⁻, xEr³⁻ doped phosphor suggests the efficient energy transfer from Yb³⁻ to Tm³⁻ and Tm³⁻ to Er³⁻. We discuss the origin of dominant 800 nm emission in the Yb³⁻ -Tm³⁻ doped sample which was attributed to the prominent ETU and CR processes. The origin of color tunability in Yb³⁻ -Tm³⁻ -Er³⁻ doped samples with changing the Er³⁻ concentrations were discussed, which is influenced by the Tm³⁻ to Er³⁻ energy transfer.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research is supported by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa (84415). The financial assistance from the University of the Free State is highly recognized. The Edinburgh Instruments FLS980 system used in this study was funded by the National Research Foundation of South Africa (Grant EQ P14080486021, 93214).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.optmat.2019.109511.

References