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a b s t r a c t 

A novel weak form quadrature element is proposed for non-classical strain gradient Euler–

Bernoulli beam theories. The element is formulated with the aid of variational principles 

and has displacement as the only degree of freedom in the element domain and dis- 

placement, slope and curvature at the boundaries. All the classical and non-classical sup- 

port conditions associated with the gradient beam theory are represented accurately. The 

Gauss–Lobatto–Legendre quadrature points are considered as element nodes and also used 

for numerical integration of the element matrices. Numerical examples on bending, free 

vibration and stability analysis of gradient beams are presented to demonstrate the effi- 

ciency and accuracy of the proposed element. To substantiate the generality of the ele- 

ment, beams with discontinuity in loading and geometry are examined. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In recent decades the research in the field of computational solid and fluid mechanics focussed on developing cost effec-

tive and highly accurate numerical schemes. Subsequently, many numerical schemes were proposed and applied to various

engineering problems. The early research emphasized on the development of finite element [1–3] and finite difference meth-

ods [4,5] , these methodologies had limitations related to the computational cost [6] . Alternatively, differential quadrature

method (DQM) was proposed by Bellman et al. [7] , which employs less number of grid points [8] and quantifies the deriva-

tive at a particular grid point as a weighted linear sum of the function values at all grid points in the domain. Later, many

enriched versions of differential quadrature method were developed, for example, differential quadrature method [9–12] ,

harmonic differential quadrature method [13] , strong form differential quadrature element method (DQEM) [8,14,15] , local

adaptive differential quadrature method (La-DQM) [16] , generalized differential quadrature rule (GDQR) [17,18] and weak

form quadrature element method [19–26] . The main theme in these improved DQ versions was to develop versatile models

to account for complex loading, discontinuous geometries and generalized boundary conditions. 

Lately, much research inclination is seen towards the development of weak form quadrature element methods due to

their versatility and high computational efficiency [19–28] . The weak form quadrature element method is formulated using

variational principles. The integrands associated with the weak form expression are first approximated using the assumed

interpolation function and the corresponding weighting coefficients are evaluated at the sampling points using differential

quadrature rule. Later, the weighting coefficients are numerical integrated to form the element matrices [19,23,28] . The

numerical integration scheme forms an integral part of the weak form quadrature element method as it determines the
∗ Corresponding author. 
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number of nodes and facilitates in constructing the higher order elements. A comprehensive survey on the developments

and recent contributions in the field of quadrature element method and its application to structural mechanics problems

can be found in Wang et al. [19] . Zhong et al. [20] presented a weak form quadrature element for free vibration analysis

of eccentric annular Mindlin plates and demonstrated an excellent agreement with the literature results. Further, Zhong

et al. extended its application to various structural mechanics problems, for example, planar elasticity problems [21] , static

and free vibration analysis of planar frameworks [22] , static, free vibration and stability analysis of beams based on the

Bickford beam theory [23] , stability analysis of planar frameworks [24] and analysis of thin plates [25] . Recently, Wang et al.

[26] proposed a weak form quadrature element which uses expanded Chebyshev points as element nodes and illustrated its

effectiveness for free vibration analysis of bars and beams. Further, Wang et al. [27] presented a discrete singular convolution

element and a quadrature beam/ring element for free vibration analysis of non-local beams and non-uniform rings. Liao

et al. [28] presented a weak form quadrature element for a three dimensional beam for non-linear analysis of space frames.

The main theme of this article is to present a weak form quadrature element for non-classical higher order beam the-

ories [29] . The non-classical higher order beam theories, unlike classical continuum theories, are governed by sixth order

differential equation [30] . These non-classical continuum theories are modified versions of classical continuum theories in-

corporating higher order gradient terms in the constitutive relations. The higher order terms consists of stress and strain

gradients accompanied with the intrinsic length scale parameters which account for micro and nano scale effects. These

scale dependent non-classical theories are efficient in capturing the micro and nano scale behaviour of structural systems

[31–33] . One such class of non-classical gradient elasticity theory is the simplified theory by Mindlin et al. [34] , with one

gradient elastic modulus and two classical Lame ′ constants for structural applications [35,36] . This simplified theory was

applied earlier to study the static, dynamic and buckling behaviour of gradient elastic beams by deriving the analytical so-

lutions [37–40] . Pegios et al. [41] derived the stiffness matrix by assuming the exact solution to the governing equation

as interpolation function for the displacement field. As a result, the obtained stiffness matrix and the structural behaviour

were exact. To solve the examples with discontinuity in loading and geometry they have used exact stiffness matrix for each

segment of the beam and employed the finite element (FE) framework for assembly. As the stiffness matrix is exact, the so-

lutions obtained using one element for prismatic beams and two elements for non-prismatic beams are exact. Using the

exact stiffness matrix and FE frame work they have studied the static and stability analysis of prismatic and non-prismatic

gradient elastic beams. 

In this paper, we propose a novel version of weak form quadrature element for strain gradient Euler–Bernoulli beam

theory, which is characterized by sixth order differential equation and has displacement, slope and curvature as degrees of

freedom. The proposed element employs Hermite interpolation as test function and it is formulated with the aid of vari-

ational principles, differential quadrature rule and Gauss–Lobatto–Legendre (GLL) quadrature rule. The GLL points are used

as element nodes and also to perform numerical integration of element matrices. The proposed element has displacement,

slope and curvature as the degrees of freedom at the element boundaries and only displacement in the domain. The classical

and non-classical boundary conditions associated with the gradient beam theory are implemented accurately. The efficiency

and accuracy of the element is established through numerical examples on static, free vibration and stability analysis of

prismatic and non-prismatic gradient beams. 

2. Gradient elastic beam theory 

In this study, we consider Mindlin’s [34] simplified strain gradient micro-elasticity theory with two classical and one non-

classical material constants. The two classical material constants are Lame ′ constants and the non-classical one is related to

intrinsic length g . The stress-strain relations for a gradient elastic Euler–Bernoulli beam theory are defined as [37,42] 

τ = Eε; ς = g 2 Eε ′ ; ε = −z 
∂ 2 w (x, t) 

∂x 2 
(1) 

where τ , ς denote Cauchy and higher order stresses, respectively, ε is the classical strain and E is the Young’s modulus. z is

the co-ordinate in thickness direction and w ( x, t ) is the transverse displacement of the beam. For the above state of stress

and strain, the strain energy in bending and due to effect of axial compressive force P ( x ) for a gradient elastic beam defined

over a domain −L/ 2 ≤ x ≤ L/ 2 can be written as [42] 

U = 

1 

2 

∫ L/ 2 

−L/ 2 

EI 
[
(w 

′′ ) 2 + g 2 (w 

′′′ ) 2 
]
dx − 1 

2 

∫ L/ 2 

−L/ 2 

P (w 

′ ) 2 dx (2) 

The work done by the applied load is given by 

W̄ = −
∫ L/ 2 

−L/ 2 

q (x ) w dx −
[
V w 

]L/ 2 

−L/ 2 
+ 

[
Mw 

′ ]L/ 2 

−L/ 2 
+ 

[
M̄ w 

′′ ]L/ 2 

−L/ 2 
(3) 

The kinetic energy is given as 

K̄ = 

1 

2 

∫ L/ 2 

−L/ 2 

ρA 

˙ w 

2 dx (4) 
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Fig. 1. A five-node quadrature element for a gradient Euler–Bernoulli beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

where L, A, I and ρ are the length, area, moment of inertia, and density, respectively. q ( x ) is the transverse distributed load

on the beam. V, M and M̄ are shear force, bending moment and higher order moment acting on the beam. Over dot indicates

differentiation with respect to time. 

Substituting Eqs. (2) –(4) in the Hamilton’s principle [43] : 

δ

∫ t 1 

t 0 

(U − W̄ − K̄ ) dt = 0 (5)

and taking the first variation we obtain ∫ t 1 

t 0 

∫ L/ 2 

−L/ 2 

EI 
[
w 

′′ δw 

′′ + g 2 w 

′′′ δw 

′′′ ]d x d t − ∫ t 1 

t 0 

∫ L/ 2 

−L/ 2 

P w 

′ δw 

′ d x d t + 

∫ t 1 

t 0 

∫ L/ 2 

−L/ 2 

q δw d x d t−
∫ t 1 

t 0 

∫ L/ 2 

−L/ 2 

ρA 

˙ w 

˙ δw dx dt + 

∫ t 1 

t 0 

[
V δw 

]L/ 2 

−L/ 2 
d t −

∫ t 1 

t 0 

[
M δw 

′ ]L/ 2 

−L/ 2 
d t −

∫ t 1 

t 0 

[
M̄ δw 

′′ ]L/ 2 

−L/ 2 
d t = 0 (6)

Performing the integration-by-parts on Eq. (6) , and re-arranging the terms we get ∫ t 1 

t 0 

∫ L/ 2 

−L/ 2 

[ 
EI{ w 

i v − g 2 w 

v i } + P w 

′′ + ρA ̈w + q 

] 
δw dx dt + 

∫ t 1 

t 0 

[ {
V −

{
EI(w 

′′′ − g 2 w 

v ) + P w 

′ }}δw 

] L/ 2 
−L/ 2 

dt+ 

∫ t 1 

t 0 

[ {
− M + EI(w 

′′ − g 2 w 

i v ) 
}
δw 

′ 
] L/ 2 

−L/ 2 
d t + 

∫ t 1 

t 0 

[ {
− M̄ + g 2 EIw 

′′′ }δw 

′′ 
] L/ 2 

−L/ 2 
d t = 0 (7)

The variational equation Eq. (7) requires that each term must be equal to zero, independently. Hence, the governing equi-

librium equation for a strain gradient Euler–Bernoulli beam is obtained as 

EI(w 

iv − g 2 w 

vi ) + q + P w 

′′ + ρA ̈w = 0 (8)

and the corresponding six boundary conditions are 

Classical boundary conditions : 

V = EI[ w 

′′′ − g 2 w 

v ] + P w 

′ = 0 or w = 0 , at x = (−L/ 2 , L/ 2) 

M = EI[ w 

′′ − g 2 w 

i v ] = 0 or w 

′ = 0 , at x = (−L/ 2 , L/ 2) (9)

Non-classical boundary conditions : 

M̄ = [ g 2 EIw 

′′′ ] = 0 or w 

′′ = 0 , at x = (−L/ 2 , L/ 2) (10)

3. Quadrature element for a gradient elastic Euler–Bernoulli beam 

A five-node quadrature element for an Euler–Bernoulli gradient beam is shown in Fig. 1 . It can be noticed that, each

interior node has only displacement w as degrees of freedom and the boundary nodes have 3 degrees of freedom w, w 

′ , w 

′′ .
The displacement vector now includes the slope and curvature as additional degrees of freedom at the element boundaries

given by: w 

b = { w 1 , . . . , w N , w 

′ 
1 
, w 

′ 
N 
, w 

′′ 
1 
, w 

′′ 
N 
} . 

The displacement for a N -node quadrature beam element based on Hermite interpolation is assumed as: 

w (x, t) = 

N ∑ 

j=1 

φ j (x ) w (x j , t) j + ψ 1 (x ) w 

′ (x 1 , t) + ψ N (x ) w 

′ (x N , t) + ϕ 1 (x ) w 

′′ (x 1 , t) + ϕ N (x ) w 

′′ (x N , t) = 

N+4 ∑ 

j=1 

� j (x ) w 

b 
j 

(11)
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Expressing in terms of normalized co-ordinate ξ we get 

w (ξ , t) = 

N ∑ 

j=1 

φ j (ξ ) w (ξ j , t) + ψ 1 (ξ ) w 

′ (ξ1 , t) + ψ N (ξ ) w 

′ (ξN , t) + ϕ 1 (ξ ) w 

′′ (ξ1 , t) + ϕ N (ξ ) w 

′′ (ξN , t) = 

N+4 ∑ 

j=1 

� j (ξ ) w 

b 
j 

(12) 

φ, ψ and ϕ are Hermite interpolation functions defined as [17] 

ϕ j (ξ ) = 

1 

2(ξ j − ξN− j+1 ) 2 
L j (ξ )(ξ − ξ j ) 

2 (ξ − ξN− j+1 ) 
2 ( j = 1 , N) (13) 

ψ j (ξ ) = 

1 

(ξ j − ξN− j+1 ) 2 
L j (ξ )(ξ − ξ j )(ξ − ξN− j+1 ) 

2 −
[ 

2 L ′ j (ξ j ) + 

4 

ξ j − ξN− j+1 

] 
ϕ j (ξ ) ( j = 1 , N) (14) 

φ j (ξ ) = 

1 

(ξ j − ξN− j+1 ) 2 
L j (ξ )(ξ − ξN− j+1 ) 

2 −
[ 

L ′ j (ξ j ) + 

2 

ξ j − ξN− j+1 

] 
ψ j (ξ ) 

−
[ 

L ′′ j (ξ j ) + 

4 L ′ 
j 
(ξ j ) 

ξ j − ξN− j+1 

+ 

2 

(ξ j − ξN− j+1 ) 2 

] 
ϕ j (ξ ) ( j = 1 , N) (15) 

φ j (ξ ) = 

1 

(ξ j − ξ1 ) 2 (ξ j − ξN ) 2 
L j (ξ )(ξ − ξ1 ) 

2 (ξ − ξN ) 
2 ( j = 2 , 3 , . . . , N − 1) (16) 

where L j ( ξ ) is the Lagrange interpolation function in ξ co-ordinate, and ξ = 2 x/L with ξ ∈ [ −1 , 1] . The Lagrange interpolation

function is defined as [6,11] 

L j (ξ ) = 

β(ξ ) 

β(ξ j ) 
= 

N ∏ 

k =1 
(k � = j) 

(ξ − ξk ) 

(ξ j − ξk ) 
(17) 

where 

β(ξ ) = (ξ − ξ1 )(ξ − ξ2 ) · · · (ξ − ξ j−1 )(ξ − ξ j+1 ) · · · (ξ − ξN ) 

β(ξ j ) = (ξ j − ξ1 )(ξ j − ξ2 ) · · · (ξ j − ξ j−1 )(ξ j − ξ j+1 ) · · · )(ξ j − ξN ) 

The k th order derivative of w ( x, t ) with respect to x is obtained from Eq. (11) as 

w 

k (x, t) = 

N ∑ 

j=1 

φk 
j (x ) w (x j , t) + ψ 

k 
1 (x ) w 

′ (x 1 , t) + ψ 

k 
N (x ) w 

′ (x N , t) + ϕ 

k 
1 (x ) w 

′′ (x 1 , t) + ϕ 

k 
N (x ) w 

′′ (x N , t) = 

N+4 ∑ 

j=1 

�k 
j (x ) w 

b 
j 

(18) 

Now, considering the strain energy due to bending given in Eq. (2) and substituting the displacement field given by

Eq. (18) , we get 

U = 

1 

2 

∫ L/ 2 

−L/ 2 

{
E I 

[
N+4 ∑ 

i =1 

�′′ 
i (x ) w 

b 
i (t) 

]2 

+ g 2 EI 

[
N+4 ∑ 

i =1 

�′′′ 
i (x ) w 

b 
i (t) 

]2 }
dx = 

1 

2 

{ w 

b } T [ K] { w 

b } (19) 

Similarly, the work done by a constant axial compressive force P is given as 

P 

2 

∫ L/ 2 

−L/ 2 

[
N ∑ 

i =1 

�′ 
i (x ) w 

b 
i (t) 

]2 

dx = 

1 

2 

{ w 

b } T [ G ] { w 

b } (20) 

and the kinetic energy given in Eq. (4) is expressed as 

1 

2 

∫ L/ 2 

−L/ 2 

ρA 

[
N ∑ 

i =1 

�i (x ) ˙ w 

b 
i (t) 

]2 

dx = 

1 

2 

{ ˙ w 

b } T [ m ] { ˙ w 

b } (21) 

where K is the elastic stiffness matrix, G is the geometric stiffness matrix, m is the mass matrix defined as below 

K i j = EI 

∫ L/ 2 

−L/ 2 

{
�′′ 

i (x ) �′′ 
j (x ) + g 2 �′′′ 

i (x ) �′′′ 
j (x ) 

}
dx = EI 

∫ 1 

−1 

{
16 

L 4 
�′′ 

i (ξ ) �′′ 
j (ξ ) + g 2 

64 

L 6 
�′′′ 

i (ξ ) �′′′ 
j (ξ ) 

}
| ̄J (ξ ) | dξ

= 

8 EI 

L 3 

N ∑ 

k =1 

H k �
′′ 
i (ξk ) �

′′ 
j (ξk ) + g 2 

32 EI 

L 5 

N ∑ 

k =1 

H k �
′′′ 
i (ξk ) �

′′′ 
j (ξk ) (i, j = 1 , 2 , . . . , N, N + 1 , . . . , N + 4) (22) 
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G i j = P 

∫ L/ 2 

−L/ 2 

�′ 
i (x ) �′ 

j (x ) dx = 

4 P 

L 2 

∫ 1 

−1 

�′ 
i (ξ ) �′ 

j (ξ ) | ̄J (ξ ) | dξ = 

2 P 

L 

N ∑ 

k =1 

H k �
′ 
i (ξk ) �

′ 
j (ξk ) (i, j = 1 , 2 , . . . , N) (23)

m i j = 

∫ L/ 2 

−L/ 2 

ρA �i (x ) � j (x ) dx = ρA 

∫ 1 

−1 

�i (ξ ) � j (ξ ) | ̄J (ξ ) | dξ = 

ρAL 

2 

N ∑ 

k =1 

H k �i (ξk ) � j (ξk ) 

= 

ρAL 

2 

N ∑ 

k =1 

H k δki δk j = 

ρAL 

2 

H i δi j (i, j = 1 , 2 , . . . , N) (24)

and finally the load vector due to transverse distributed load is given by 

f i = 

∫ L/ 2 

−L/ 2 

q (x ) �i (x ) dx = 

L 

2 

∫ 1 

−1 

q (ξ ) �i (ξ ) dx = 

L 

2 

H i q (ξi ) (i = 1 , 2 , . . . , N) (25)

where ξ i and H i are GLL quadrature co-ordinates and weights, respectively, | ̄J (ξ ) | = L/ 2 is the Jacobian, δij is the Dirac-delta

function, with a value of 1 if ( i = j) and 0 if ( i � = j ). It is to be noted that in the geometric stiffness matrix Eq. (23) , the mass

matrix Eq. (24) and the load vector Eq. (25) the contribution from deflection degrees of freedom are only considered as the

contribution from derivative degrees of freedom are identically zero. 

Combining Eqs. (22) –(25) , the system of equations can be partitioned based on the boundary and domain degrees of

freedom as [6] [ 

K bb K bd 

K db K dd 

] { 

�b 

�d 

} 

= 

⎧ ⎨ 

⎩ 

f̄ b 

f̄ d 

⎫ ⎬ 

⎭ 

+ 

[ 

I 0 

0 ω 

2 m dd 

] { 

0 

�d 

} 

+ P 

[ 

0 0 

G db G dd 

] { 

�b 

�d 

} 

(26)

where the subscript ‘ b ’ and ‘ d ’ corresponds to boundary and domain of the element. The vector �b contains the boundary

related non-zero slope and curvature degrees of freedom. Similarly, the vector �d includes all the non-zero displacement

degrees of freedom of the beam. The vectors f̄ b and f̄ d represents boundary and domain forces. I is the identity matrix. For

bending analysis m dd = P = 0 , for free vibration analysis f̄ b = f̄ d = P = 0 , and f̄ b = f̄ d = m dd = 0 for stability analysis. The

solution of the Eq. (26) after applying the boundary conditions leads to unknown displacements, frequencies and buckling

load. 

4. Numerical results and discussion 

The convergence and accuracy of the proposed quadrature beam element is assessed for static, free vibration and stability

analysis of gradient Euler–Bernoulli beams using exact solutions. The generality and applicability of the proposed element is

verified for gradient beams with prismatic and non-prismatic cross section under different boundary and loading conditions.

Beams with discontinuity in geometry or loading are modelled using two elements and the assembly procedure is similar to

the conventional finite element method. The numerical data used for the analysis of beams in consistent units is as follows:

Length L = 1 , Young’s modulus E = 3 × 10 6 , Poisson’s ratio ν = 0 . 3 , density ρ = 1 and transverse load q = 1 . 

The classical and non-classical boundary conditions used in the present analysis for different end support are: 

Simply supported: 

classical : w = M = 0 , non-classical : w 

′′ = 0 at x = (− L 
2 , 

L 
2 ) 

Clamped: 

classical : w = w 

′ = 0 , non-classical : w 

′′ = 0 at x = (− L 
2 , 

L 
2 ) 

Free-free: 

classical : Q = M = 0 , non-classical : M̄ = 0 at x = (− L 
2 , 

L 
2 ) 

Cantilever: 

classical : w = w 

′ = 0 at x = − L 
2 , Q = M = 0 at x = 

L 
2 

non-classical : w 

′′ = 0 at x = − L 
2 , M̄ = 0 at x = 

L 
2 

Propped cantilever: 

classical : w = w 

′ = 0 at x = − L 
2 , w = M = 0 at x = 

L 
2 

non-classical : w 

′′ = 0 at x = − L 
2 , w 

′′ = 0 at x = 

L 
2 

Pinned-guided: 

classical : w = M = 0 at x = − L 
2 , V = w 

′ = 0 at x = 

L 
2 

non-classical : w 

′′ = 0 at x = − L 
2 , M̄ = 0 at x = 

L 
2 

For a beam with single element mesh, the size of the displacement vector �d defined in Eq. (26) for simply supported,

clamped and propped cantilever boundary conditions remains as ( N − 2 ) and for free–free, cantilever and pinned-guided

beam the size is N , ( N − 1 ) and ( N − 1 ), respectively. With multiple elements discretization ‘ ̄N elm 

’ the size of the displacement
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Table 1 

Comparison of deflection, slope for a simply supported beam under a udl. 

N g/L = 0 . 05 g/L = 0 . 1 g/L = 0 . 2 

w (x =0) w 

′ 
(x = −L/ 2) 

w (x =0) w 

′ 
(x = −L/ 2) 

w (x =0) w 

′ 
(x = −L/ 2) 

5 1.3378 0.1664 1.1978 0.1543 0.9332 0.1194 

7 1.2715 0.1622 1.1868 0.1506 0.9355 0.1182 

9 1.2715 0.1622 1.1870 0.1507 0.9360 0.1182 

11 1.2714 0.1622 1.1869 0.1507 0.9360 0.1182 

13 1.2714 0.1622 1.1869 0.1507 0.9360 0.1182 

15 1.2714 0.1622 1.1869 0.1507 0.9360 0.1182 

Exact ∗ 1.2714 0.1622 1.1869 0.1507 0.9360 0.1182 

∗ See Appendix. 

Table 2 

Comparison of deflection, slope and curvature at the tip for a cantilever beam under 

a udl. 

N g/L = 0 . 05 g/L = 0 . 1 

w (x = L/ 2) w 

′ 
(x = L/ 2) 

w 

′′ 
(x = L/ 2) 

w (x = L/ 2) w 

′ 
(x = L/ 2) 

w 

′′ 
(x = L/ 2) 

5 9.4324 0.5439 0.0084 8.3466 0.5008 0.0305 

7 10.1928 0.5744 0.0233 8.4305 0.5036 0.0285 

9 10.2397 0.5762 0.0042 8.4106 0.5027 0.0395 

11 10.2385 0.5762 0.0095 8.4099 0.5027 0.0398 

13 10.2381 0.5762 0.0100 8.4099 0.5027 0.0398 

15 10.2381 0.5762 0.0100 8.4099 0.5027 0.0398 

Exact [37] 10.2381 0.5762 0.0100 8.4099 0.5027 0.0398 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vector �d for simply supported, clamped and propped cantilever boundary conditions will be ( ̂  N elm 

× (N − 1) − 1 ) and for

free–free, cantilever and pinned-guided beam it is ( ̂  N elm 

× (N − 1) + 1 ), ( ̂  N elm 

× (N − 1) ) and ( ̂  N elm 

× (N − 1) ), respectively.

However, the size of the �b vector depends upon the number of non-zero slope and curvature degrees of freedom at

the element and inter-element boundaries. The non-classical boundary conditions employed for simply supported gradient

beam are w 

′′ = 0 at x = (− L 
2 , 

L 
2 ) , the equations related to curvature degrees of freedom are eliminated and the size of �b 

is 2 for single element mesh and 2 ̂  N elm 

for multiple elements. For the gradient cantilever beam the non-classical boundary

conditions used are w 

′′ = 0 at x = − L 
2 and M̄ = 0 at x = 

L 
2 . The equation related to curvature degrees of freedom at x = − L 

2 

is eliminated and the equation related to higher order moment at x = 

L 
2 is retained and the size of �b = 2 for single beam

element and 2 ̂  N elm 

for multiple elements. In the case of clamped beam the non-classical boundary conditions read w 

′′ = 0

at x = (− L 
2 , 

L 
2 ) and the �b is zero and 2 ( ̂  N elm 

− 1) for single and multiple element mesh, respectively. Similarly, for propped

cantilever beam we get 1 and (2 ̂  N elm 

− 1) , as w 

′′ = 0 at x = (− L 
2 , 

L 
2 ) . For a free–free beam the size of �b is 4 and 2 ( ̂  N elm 

+ 1)

due to M̄ = 0 at x = (− L 
2 , 

L 
2 ) and finally, for a pinned-guided beam the size of �b is 3 and 2 ( ̂  N elm 

+ 1) . 

4.1. Static analysis of gradient elastic beams using quadrature element 

Here we consider two class of problems, beams subjected to uniformly distributed load (udl) and beams under concen-

trated load. The prismatic beams under uniformly distributed load are modelled using single quadrature element and the

results are compared with analytical solutions given by Papargyri et al. [37] and those derived in Appendix. Papargyri et al.

[37] presented results only for cantilever beam and for other boundary conditions analytical solutions are derived in the Ap-

pendix. The beams with geometry or load discontinuity are discretized using two quadrature elements and the comparisons

are made with Pegios et al. [41] results. Pegios et al. [41] derived the stiffness matrix analytically by assuming the exact

solution to the governing equation as displacement function and taking { w, w 

′ , w 

′′ } T as degrees of freedom at each end

of the beam. As a result, the stiffness matrix and the structural behaviour obtained are exact. To solve the examples with

discontinuity in loading and geometry they have used exact stiffness matrix for each segment of the beam and employed

the finite element (FE) framework for assembly. As the stiffness matrix is exact, the solutions obtained using one element

for prismatic beams and two elements mesh for examples chosen in this study are exact. Hence, in the present analysis the

results given in Pegios et al. [41] are taken as exact and are designated as FE-Exact for results comparison. 

4.1.1. Gradient elastic beams under uniformly distributed load 

Three different beam support conditions are considered in this study, simply supported, cantilever and pinned-guided.

The results reported here for beams with uniformly distributed load are non-dimensional as, deflection : w̄ = 100 EIw/qL 4 

and curvature : ̄w 

′′ = w 

′′ L . 
In Table 1 , convergence of non-dimensional deflection and slope for a simply supported beam are given for g/L = 0 . 05 , 0 . 1

and 0.2. The deflection is evaluated at center of the beam x = 0 and slope are computed at the left support x = −L/ 2 . Good
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Table 3 

Comparison of deflection and slope for a pinned-guided beam under a udl. 

N g/L = 0 . 05 g/L = 0 . 1 g/L = 0 . 2 

w (x =0) w 

′ 
(x = −L/ 2) 

w (x =0) w 

′ 
(x = −L/ 2) 

w (x =0) w 

′ 
(x = −L/ 2) 

5 20.7130 1.3283 20.3525 1.3014 19.0016 1.2075 

7 20.7089 1.3238 20.3433 1.2973 18.9911 1.2053 

9 20.7089 1.3238 20.3433 1.2973 18.9912 1.2053 

11 20.7089 1.3238 20.3433 1.2973 18.9912 1.2053 

13 20.7089 1.3238 20.3433 1.2973 18.9912 1.2053 

15 20.7089 1.3238 20.3433 1.2973 18.9912 1.2053 

Exact ∗ 20.7089 1.3238 20.3433 1.2973 18.9912 1.2053 

∗ See Appendix. 

Table 4 

Comparison of deflection along the length for a pinned-guided beam under a udl. 

ξ = 2 x/L g/L = 0 . 05 g/L = 0 . 1 g/L = 0 . 2 

Present Exact ∗ Present Exact ∗ Present Exact ∗

−1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

−0.8302 2.7998 2.7998 2.7440 2.7440 2.5498 2.5498 

−0.4688 8.5041 8.5041 8.3401 8.3401 7.7576 7.7576 

0.0000 14.7506 14.7506 14.4786 14.4786 13.4903 13.4903 

0.4688 18.9752 18.9752 18.6361 18.6361 17.3877 17.3877 

0.8302 20.5299 20.5299 20.1669 20.1669 18.8254 18.8254 

1.0000 20.7089 20.7089 20.3433 20.3433 18.9912 18.9912 

∗ See Appendix. 

Table 5 

Comparison of maximum non-dimensional deflection for a 

simply supported beam under a udl for a sequence of g / L val- 

ues. 

g / L N 

5 7 9 11 Exact ∗

0.01 3.0429 1.3008 1.3008 1.3008 1.3008 

0.03 1.4823 1.2909 1.2909 1.2909 1.2909 

0.05 1.3378 1.2715 1.2714 1.2714 1.2714 

0.07 1.2741 1.2432 1.2432 1.2432 1.2432 

0.09 1.2228 1.2072 1.2074 1.2074 1.2074 

0.10 1.1978 1.1868 1.1870 1.1869 1.1869 

0.11 1.1725 1.1649 1.1652 1.1652 1.1652 

0.13 1.1206 1.1179 1.1182 1.1182 1.1182 

0.15 1.0674 1.0675 1.0679 1.0678 1.0678 

0.17 1.0134 1.0151 1.0156 1.0155 1.0155 

0.19 0.9597 0.9620 0.9625 0.9625 0.9625 

0.20 0.9332 0.9355 0.9360 0.9360 0.9360 

∗ See Appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

convergence is exhibited by the present element, with deflection and slope approaching to exact values with 11 nodes or

grid points. In Table 2 , the convergence behaviour of non-dimensional deflection, slope and curvature are presented for

a cantilever beam. The deflection, slope and curvature are obtained at the right support x = L/ 2 . Similar convergence is

demonstrated by the present element for both classical and non-classical quantities for g/L = 0 . 05 and 0.1. Excellent agree-

ment with the exact solution is seen with 9 nodes or grid points and converged solutions are obtained with 13 nodes or

grid points. 

In Table 3 , convergence behaviour of non-dimensional deflection and slope for a pinned-guided support are presented

for g/L = 0 . 05 , 0 . 1 and 0.2. The deflection is compared at x = 0 and slope at x = −L/ 2 with the exact solutions. Very good

convergence trend is displayed by the present element for both deflection and slope with solution approaching to the exact

values with 7 nodes. This consistency is noticed for all the g / L values considered. 

In Table 4 , non-dimensional deflection is compared along the length of the beam for a pinned-guided support. The

deflection is computed using 7 nodes and excellent agreement is exhibited with the exact solutions for the entire length of

the beam for all the g / L values considered. 

In Table 5 , the convergence of maximum non-dimensional deflection for a simply supported beam is shown for a se-

quence of g / L values. Accurate results are obtained using 9 nodes and convergence is attained with 11 nodes for all the g / L

values. 
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Fig. 2. A simply supported gradient beam under a middle point load. 

Fig. 3. A stepped propped cantilever beam under a middle point load. 

Table 6 

Comparison of non-dimensional deflection and slope for a simply supported beam under 

a middle point load. 

N g/L = 0 . 05 g/L = 0 . 1 g/L = 0 . 2 

(per element) w (x =0) w 

′ 
(x = −L/ 2) 

w (x =0) w 

′ 
(x = −L/ 2) 

w (x =0) w 

′ 
(x = −L/ 2) 

5 2.0271 0.2453 1.8848 0.2309 1.4801 0.1835 

7 2.0271 0.2450 1.8833 0.2303 1.4780 0.1830 

9 2.0271 0.2450 1.8833 0.2303 1.4780 0.1830 

11 2.0271 0.2450 1.8833 0.2303 1.4780 0.1830 

13 2.0271 0.2450 1.8833 0.2303 1.4780 0.1830 

15 2.0271 0.2450 1.8833 0.2303 1.4780 0.1830 

FE-Exact [41] 2.0271 0.2450 1.8833 0.2303 1.4780 0.1830 

 

 

 

 

 

 

 

 

 

 

 

 

From the above observations it is concluded that, a single quadrature beam element with reasonable number of nodes

can be efficiently applied to study the static behaviour of gradient elastic Euler–Bernoulli beam under udl for different

choice of intrinsic length and boundary condition. 

4.1.2. Gradient elastic beams with concentrated load 

To establish the capability of the proposed element for beams with concentrated load two examples are considered, a

simply supported and a stepped propped cantilever beam with middle point load as shown in Figs. 2 and 3 , respectively.

Two quadrature elements are used to model the beam. Comparison is made with the exact solutions given by Pegios et al.

[41] (FE-Exact) which are obtained using two finite elements with 6 degrees of freedom { w 1 , w 

′ 
1 
, w 1 

′′ , w 2 , w 

′ 
2 
, w 2 

′′ } T per

element. In Table 6 , convergence of deflection and slope for a simply supported beam with a middle concentrate load is

given for g/L = 0 . 05 , 0 . 1 and 0.2. With 7 grid points both deflection and slope converge to exact values for all the three

g / L values. Similar convergence trend is noticed in Table 7 , for a stepped propped cantilever beam. Accurate solutions are

obtained using 7 nodes or grid points and converged results using 9 nodes or grid points. 

From the above tabulated results it can be concluded that the present element can be efficiently applied for static analysis

of strain gradient Euler–Bernoulli beams with geometry and load discontinuity. 

4.2. Free vibration analysis of gradient beams using quadrature element 

All the frequencies reported here are non-dimensional as ω̄ = ω L 2 
√ 

ρA/EI . The frequencies obtained using the quadrature

element are compared with analytical solutions presented in Papargyri et al. [38] and those derived in Appendix. Papargyri
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Table 7 

Comparison of deflection and slope for a stepped propped cantilever beam under a 

middle point load. 

N g/L = 0 . 05 g/L = 0 . 1 g/L = 0 . 2 

w (x =0) w 

′ 
(x = −L ) 

w (x =0) w 

′ 
(x = −L ) 

w (x =0) w 

′ 
(x = −L ) 

5 0.5425 0.3488 0.4898 0.3303 0.3600 0.2797 

7 0.5624 0.3579 0.4887 0.3294 0.3514 0.2744 

9 0.5636 0.3584 0.4879 0.3290 0.3513 0.2743 

11 0.5635 0.3583 0.4879 0.3290 0.3513 0.2743 

13 0.5635 0.3583 0.4879 0.3290 0.3513 0.2743 

15 0.5635 0.3583 0.4879 0.3290 0.3513 0.2743 

FE-Exact [41] 0.5635 0.3583 0.4879 0.3290 0.3513 0.2743 

Table 8 

Comparison of first six frequencies for a simply supported gradient beam. 

g / L N ω̄ 1 ω̄ 2 ω̄ 3 ω̄ 4 ω̄ 5 ω̄ 6 

5 10.2771 48.7221 91.5630 – – –

7 10.3450 46.6455 114.8632 304.8997 337.6992 –

9 10.3452 46.6244 121.8582 257.6350 299.9480 1170.4848 

11 10.3452 46.6244 122.0583 253.6890 403.7814 620.7953 

0.1 13 10.3452 46.6244 122.0601 253.6051 457.0636 678.4906 

15 10.3452 46.6244 122.0601 253.6045 459.4206 758.2578 

17 10.3452 46.6244 122.0601 253.6045 459.4535 758.1492 

19 10.3452 46.6244 122.0601 253.6045 459.4537 758.1477 

21 10.3452 46.6244 122.0601 253.6045 459.4537 758.1477 

Analytical [38] 10.3452 46.6244 122.0601 253.6045 459.4537 758.1477 

5 11.6511 67.8787 92.6048 – – –

7 11.6561 66.4433 137.6852 415.5394 589.1990 –

9 11.6561 63.4012 185.7633 315.6633 434.8071 211.1195 

11 11.6561 63.4011 189.5022 427.3027 459.2190 978.7724 

0.2 13 11.6561 63.4011 189.5368 427.1438 670.3214 840.8526 

15 11.6561 63.4011 189.5369 427.1425 812.4993 936.4399 

17 11.6561 63.4011 189.5369 427.1425 813.4755 1226.7108 

19 11.6561 63.4011 189.5369 427.1425 813.4795 138.5794 

21 11.6561 63.4011 189.5369 427.1425 813.4795 138.5794 

Analytical [38] 11.6561 63.4011 189.5369 427.1425 813.4795 138.5794 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

et al. [38] gave solutions only for simply supported beam and the frequencies for other boundary conditions used in this

study are derived by following the approach given in [44] and the associated frequency equations are presented in Appendix.

In this study, single quadrature element is used to generate the results and the rotary inertia related to slope and curvature

degrees of freedom is neglected. In Table 8 , convergence of first six frequencies for a simply supported beam obtained using

the present element for g/L = 0 . 1 , 0 . 5 are presented and compared with analytical values [38] . Good agreement with the

analytical frequencies is seen, with first three frequencies converging to analytical values using N = 13 nodes. The higher

frequencies converge to analytical results with N = 19 nodes for the g / L values chosen. Similar trend is noticed in Tables 9–11 ,

for cantilever, propped cantilever and free–free beams, respectively. For the free–free beam, the frequencies compared are

related to elastic modes and the rigid mode frequencies are not reported here, which are zeros. It is to be noted that, the

present elements is efficient in capturing the rigid body modes associated with the generalized degrees of freedom. 

Table 12 , shows the convergence behaviour of first two frequencies for a simply supported beam obtained using the

proposed element for sequence of g / L values. Good agreement with the analytical frequencies is seen for all the g / L values

with the frequencies converging to analytical values using N = 9 nodes. 

Hence, the quadrature element can be effectively applied to study the free vibration behaviour of gradient elastic beams

with reasonable number of nodes to produce accurate solutions even for higher frequencies for different the boundary

conditions and length scale parameters. 

4.3. Stability analysis of gradient elastic beams using quadrature element 

In this section, the applicability of the proposed element for stability analysis of prismatic and non-prismatic gradient

Euler–Bernoulli beams will be verified. Comparison is made with the analytical results available in literature and those

derived in Appendix for different boundary conditions and g / L values. All the results reported here are obtained using single

beam element and non-dimensional as P̄ cr = P cr L 
2 /EI . For simply supported beam results are compared with Papargyri et al.

[37] and Pegios et al. [41] (FE-Exact), for cantilever beam with Papargyri et al. [40] and for remaining boundary conditions

with those derived in the Appendix. In Table 13 , convergence of critical buckling load for a simply supported prismatic
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Table 9 

Comparison of first six frequencies for a cantilever gradient beam. 

g / L N ω̄ 1 ω̄ 2 ω̄ 3 ω̄ 4 ω̄ 5 ω̄ 6 

5 4.3231 29.0912 101.5130 243.6011 – –

7 4.3018 28.3533 88.3366 152.5461 440.9457 1816.5639 

9 4.3073 28.4537 87.7727 191.3261 317.8770 446.4752 

11 4.3074 28.4554 87.8027 194.4421 360.9022 463.2194 

0.1 13 4.3074 28.4554 87.8029 194.5265 365.4698 592.0424 

15 4.3074 28.4554 87.8029 194.5273 365.5262 618.5239 

17 4.3074 28.4554 87.8029 194.5273 365.5268 618.9979 

19 4.3074 28.4554 87.8029 194.5273 365.5268 619.0030 

21 4.3074 28.4554 87.8029 194.5273 365.5268 619.0030 

Analytical ∗ 4.3074 28.4554 87.8029 194.5273 365.5268 619.0030 

5 5.1372 32.3504 110.9295 464.2787 – –

7 5.2181 36.8711 123.5796 166.7896 601.7111 3614.9546 

9 5.2198 36.8772 125.2653 262.8536 372.4766 763.5845 

11 5.2198 36.8773 125.4356 304.5895 460.0053 647.2694 

0.2 13 5.2198 36.8773 125.4358 305.3059 610.7455 683.4273 

15 5.2198 36.8773 125.4358 305.3126 614.0537 932.6251 

17 5.2198 36.8773 125.4358 305.3126 614.0671 1089.4434 

19 5.2198 36.8773 125.4358 305.3126 614.0672 1089.5532 

21 5.2198 36.8773 125.4358 305.3126 614.0672 1089.5536 

Analytical ∗ 5.2198 36.8773 125.4358 305.3126 614.0672 1089.5536 

∗ See Appendix. 

Table 10 

Comparison of first six frequencies for a propped cantilever gradient beam. 

g / L N ω̄ 1 ω̄ 2 ω̄ 3 ω̄ 4 ω̄ 5 ω̄ 6 

5 20.5259 72.7864 242.6638 – – –

7 19.9364 72.4394 148.3416 320.8409 1822.1783 –

9 19.9913 72.3983 172.0579 290.7313 441.2457 1307.7343 

11 19.9926 72.4152 172.7926 334.6391 463.2152 708.5141 

0.1 13 19.9926 72.4153 172.8227 338.6274 574.0068 691.7580 

15 19.9926 72.4153 172.8229 338.6909 588.0822 885.3525 

17 19.9926 72.4153 172.8229 338.6915 588.3014 939.7318 

19 19.9926 72.4153 172.8229 338.6915 588.3037 940.1743 

21 19.9926 72.4153 172.8229 338.6915 588.3037 940.1791 

Analytical ∗ 19.9926 72.4153 172.8229 338.6915 588.3037 940.1792 

5 25.7751 81.7863 464.9064 – – –

7 27.2146 109.1067 166.8390 510.3642 3628.9640 –

9 27.2328 110.9694 260.0398 344.5498 756.9604 2429.7140 

11 27.2329 110.5674 287.6102 457.4952 631.1660 1242.1337 

0.2 13 27.2329 111.0570 288.0483 592.5704 682.9530 1096.9887 

15 27.2329 111.0570 288.0516 595.2458 932.5588 1073.8457 

17 27.2329 111.0570 288.0516 595.2576 1069.7951 1226.8210 

19 27.2329 111.0570 288.0516 595.2577 1069.8685 1555.9804 

21 27.2329 111.0570 288.0516 595.2577 1069.8688 1749.0957 

Analytical ∗ 27.2329 111.0570 288.0516 595.2577 1069.8688 1749.0974 

∗ See Appendix. 

 

 

 

 

 

 

 

 

 

 

 

beam is presented for g/L = 0 . 05 , 0 . 1 and 0.2. The buckling load converge to exact values with 8 nodes or grid points for

all the three g / L values. In Table 14 , buckling load obtained for clamped, cantilever and propped cantilever prismatic beams

are compared with analytical results given in Papargyri et al. [37] and those computed in the Appendix. The buckling load

obtained using the quadrature element converges to the exact values with 11 nodes or grid points for all the boundary

conditions and g / L values considered. 

Table 15 , shows the convergence behaviour of buckling load for a simply supported beam obtained using the proposed

element for sequence of g / L values. Good agreement is seen for all the g / L values, the buckling loads converge to analytical

values using N = 9 nodes. 

A simply supported tapered beam with linearly varying moment of inertia I(x ) = I 0 (1 − α x 
L )(1 − γ x 

L ) 
3 with 0 ≤α ≤ 1 and

0 ≤γ ≤ 1 as shown in Fig. 4 , is examined for buckling analysis. Here, α and γ are the degree of tapering of the width and

thickness, respectively. In this study it is assumed that α = 0 . 6 and γ = 0 . In Table 16 , buckling load obtained for g/L =
0.0 0 0 01, 0.01, 0.05 and 0.1 using the single quadrature element are shown. As the buckling load for tapered gradient beam

are not available in the literature, only the classical solution [45] is compared with quadrature result obtained for g/L =
0.0 0 0 01. It can be seen from the tabulated results, convergence is attained with 11 nodes for all the g / L values assumed. 
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Table 11 

Comparison of first six elastic frequencies for a free–free gradient beam. 

g / L N ω̄ 1 ω̄ 2 ω̄ 3 ω̄ 4 ω̄ 5 ω̄ 6 

5 23.3599 83.6282 121.9217 – – –

7 23.4194 71.9429 137.0053 426.9289 452.8538 –

9 23.4225 71.7429 158.1114 311.1334 320.1500 1472.1415 

11 23.4225 71.7414 159.5799 302.3470 421.8919 700.6170 

0.1 13 23.4225 71.7414 159.5907 302.0790 510.3475 690.0153 

15 23.4225 71.7414 159.5908 302.0760 516.5384 822.1364 

17 23.4225 71.7414 159.5908 302.0760 516.6440 821.9297 

19 23.4225 71.7414 159.5908 302.0759 516.6450 821.9264 

21 23.4225 71.7414 159.5908 302.0759 516.6450 821.9264 

Analytical ∗ 23.4225 71.7414 159.5908 302.0759 516.6450 821.9264 

5 24.1794 98.2977 122.5347 – – –

7 24.8274 87.7257 147.4814 520.3440 664.4032 –

9 24.8322 87.5490 210.1190 335.6703 473.5781 2337.0770 

11 24.8322 87.5481 221.0217 459.8365 463.2166 1046.2430 

0.2 13 24.8322 87.5481 221.0947 462.9591 672.448 878.9483 

15 24.8322 87.5481 221.0953 462.9567 849.7507 937.7545 

17 24.8322 87.5481 221.0953 462.9567 851.7404 1226.7377 

19 24.8322 87.5481 221.0953 459.9567 851.7473 1425.5299 

21 24.8322 87.5481 221.0953 459.9567 851.7473 1425.5298 

Analytical ∗ 24.8322 87.5481 221.0953 459.9567 851.7473 1425.5278 

∗ See Appendix. 

Table 12 

Comparison of first two frequencies for a simply supported gradient beam for a sequence of g / L values. 

g / L ω 1 ω 2 

7 9 11 Analytical ∗ 7 9 11 Analytical ∗

0.01 9.8662 9.8745 9.8745 9.8745 38.9263 39.5551 39.5562 39.5562 

0.03 9.9123 9.9133 9.9133 9.9133 40.1252 40.1735 40.1736 40.1736 

0.05 9.9902 9.9906 9.9906 9.9906 41.3777 41.3808 41.3808 41.3808 

0.07 10.1052 10.1054 10.1054 10.1054 43.1391 43.1282 43.1281 43.1281 

0.09 10.2564 10.2565 10.2565 10.2565 45.3717 45.3534 45.3534 45.3534 

0.10 10.3450 10.3452 10.3452 10.3452 46.6455 46.6244 46.6244 46.6244 

0.11 10.4422 10.4423 10.4423 10.4423 48.0136 47.9901 47.9900 47.9900 

0.13 10.6610 10.6610 10.6610 10.6610 51.0024 50.9744 50.9743 50.9743 

0.15 10.9105 10.9105 10.9105 10.9105 54.2811 54.2490 54.2489 54.2489 

0.17 11.1889 11.1889 11.1890 11.1890 57.8006 57.7645 57.7644 57.7644 

0.19 11.4941 11.4941 11.4941 11.4941 61.5198 61.4797 61.4796 61.4796 

0.20 11.6561 11.6561 11.6561 11.6561 63.4433 63.4012 63.4011 63.4011 

∗ See Appendix. 

Table 13 

Comparison of normalized buckling load for a simply 

supported gradient beam. 

N g / L 

0.05 0.1 0.2 

5 13.6469 15.1639 19.6774 

6 10.1480 10.8823 13.8162 

7 10.1598 10.8946 13.8319 

8 10.1132 10.8437 13.7660 

9 10.1132 10.8437 13.7660 

10 10.1131 10.8436 13.7660 

11 10.1131 10.8436 13.7660 

Analytical [37] 10.1131 10.8436 13.7660 

FE-Exact [41] 10.1131 10.8436 13.7660 
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Table 14 

Comparison of normalized buckling load for a clamped, cantilever and propped-cantilever gradi- 

ent beams. 

N Clamped Cantilever Propped cantilever 

0.1 0.2 0.1 0.2 0.1 0.2 

5 151.9976 236.0564 3.0986 4.0248 47.7472 84.1677 

7 80.4753 199.6620 3.0996 3.9701 30.1430 54.1145 

9 83.2963 197.9525 3.1012 3.9703 29.8796 53.3654 

11 83.2909 197.9570 3.1013 3.9703 29.8777 53.3594 

13 83.2917 197.9570 3.1013 3.9703 29.8777 53.3594 

15 83.2917 197.9570 3.1013 3.9703 29.8777 53.3594 

17 83.2917 197.9570 3.1013 3.9703 29.8777 53.3594 

19 83.2917 197.9570 3.1013 3.9703 29.8777 53.3594 

Analytical ∗ 83.2917 197.9570 3.1013 [40] 3.9703 [40] 29.8777 53.3594 

∗ See Appendix. 

Table 15 

Comparison of normalized buckling load for a simply supported beam 

for a sequence of g / L values. 

g / L N 

5 7 9 11 Analytical ∗

0.01 6.7933 9.9205 9.8745 9.8793 9.8793 

0.03 12.5301 10.0027 9.9573 9.9573 9.9573 

0.05 13.6469 10.1598 10.1132 10.1131 10.1131 

0.07 14.2664 10.3950 10.3470 10.3469 10.3469 

0.09 14.8507 10.7085 10.6587 10.6586 10.6586 

0.10 15.1639 10.8946 10.8437 10.8437 10.8437 

0.11 15.4980 11.1003 11.0483 11.0482 11.0482 

0.13 16.2382 11.5703 11.5159 11.5158 11.5158 

0.15 17.0829 12.1186 12.0614 12.0613 12.0613 

0.17 18.0369 12.7452 12.6848 12.6847 12.6847 

0.19 19.1025 13.4501 13.3861 13.3861 13.3861 

0.20 19.6774 13.8319 13.7660 13.7660 13.7660 

∗ See Appendix. 

Fig. 4. A linearly varying simply supported gradient beam. 

Table 16 

Comparison of normalized buckling load for a tapered simply sup- 

ported gradient beam (Tapering angles: α = 0 . 6 , γ = 0 ). 

N g / L 

0.0 0 0 01 0.01 0.05 0.1 

7 6.6656 6.6696 6.8345 7.3427 

9 6.6792 6.6695 6.8491 7.3552 

11 6.6787 6.6856 6.8489 7.3551 

13 6.6787 6.6856 6.8489 7.3551 

15 6.6787 6.6856 6.8489 7.3551 

17 6.6787 6.6856 6.8489 7.3551 

19 6.6787 6.6856 6.8489 7.3551 

21 6.6787 6.6856 6.8489 7.3551 

Ref. [45] ( g/L = 0 ) 6.675 – – –
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Hence, from the above observations it can be concluded that the proposed element can be efficiently applied for buckling

analysis of gradient elastic prismatic and non-prismatic beams for different boundary conditions and g / L values. 

5. Conclusion 

A novel weak form quadrature element was proposed for non-classical strain gradient Euler–Bernoulli beam theory. The

proposed element has displacement as the only degree of freedom in the element domain and displacement, slope and cur-

vature at the boundaries. All the classical and non-classical boundary conditions associated with the gradient beam theory

were represented accurately and with ease. The capability of the element was demonstrated through numerical examples

on bending, free vibration and stability analysis of prismatic and non-prismatic gradient beams. Based on the findings it

was concluded that, the quadrature element with reasonable number of nodes can produce accurate solutions for static,

free vibration and buckling analysis of gradient elastic beams for various boundary conditions and length scale parameters. 
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Appendix A. Analytical solutions for static analysis of gradient elastic Euler–Bernoulli beam: 

To obtain the static deflections of the gradient elastic Euler–Bernoulli beam which is governed by Eq. (8) , we assume a

solution of the form 

w (x ) = 

˜ c 1 x 
3 + 

˜ c 2 x 
2 + 

˜ c 3 x + 

˜ c 4 + 

˜ c 5 g 
4 sinh (x/g) + 

˜ c 6 g 
4 cosh (x/g) − (q/ 24 EI) x 4 (A.1)

The constants ˜ c 1 − ˜ c 6 are determined with the aid of boundary conditions listed in Eqs. (9) and (10) . After applying the

boundary conditions the system of equations are expressed as: 

[ ̃  K ] { δ} = { f } (A.2)

where ˜ K is the coefficient matrix, f is the vector corresponding to the load and { δ} = { ̃ c 1 , ̃  c 2 , ̃  c 3 , ̃  c 4 , ̃  c 5 , ̃  c 6 } is the unknown

constant vector to be determined. Once the unknown constants are determined then the displacement solution is obtained

from Eq. (A.1) . The slope and curvature at any point along the length of the beam can be obtained by performing the first

and second derivatives of the deflection. The shear force, bending moment and higher moment are obtained by substituting

Eq. (A.1) in Eqs. (9) and (10) . The following are the expressions for support reactions: 

Shear f orce : V = 6 E I ̃  c 1 − qx 

E I 
(A.3)

Bendingmoment : M = 2 EI( ̃  c 2 + 3 ̃

 c 1 x ) + 

q 

EI 

[
g 2 − x 2 

2 

]
(A.4)

Highermoment : M̄ = 6 EIg 2 ˜ c 1 + EIg 3 cosh (x/g) ̃  c 5 + EIg 3 sinh (x/g) ̃  c 6 − qg 2 x (A.5)

The following are the list of simultaneous equations to determine the unknown constants for different boundary condi-

tions: 

(a) Simply supported beam : 

[ ̃  K ] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 1 0 g 4 

0 2 0 0 0 0 

L 3 L 2 L 1 g 4 sinh (L/g) g 4 cosh (L/g) 

6 L 2 0 0 0 0 

0 2 0 0 0 g 2 

6 L 2 0 0 g 2 sinh (L/g) g 2 cosh (L/g) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, { f } = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 

g 2 q/EI 

−qL 4 / 24 EI 

g 2 q/E I − qL 2 / 2 E I 

0 

−qL 2 / 2 EI 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(b) Pinned-guided beam : 

[ ̃  K ] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 1 0 g 4 

0 2 0 0 0 0 

0 2 0 0 0 g 2 

6 0 0 0 0 0 

3 L 2 2 L 1 0 g 3 cosh (L/g) g 3 sinh (L/g) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, { f } = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 

g 2 q/EI 

0 

−qL/EI 

−qL 3 / 6 EI 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 
6 0 0 0 g cosh (L/g) g sinh (L/g) −qL/EI 

https://doi.org/10.13039/501100004193
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Appendix B. Analytical solutions for free vibration analysis of gradient elastic Euler–Bernoulli beam: 

To obtain the natural frequencies of the gradient elastic Euler–Bernoulli beam which is governed by Eq. (8) , we assume

a solution of the form 

w (x, t) = w̄ (x ) e iωt (B.1) 

substituting the above solution in the governing equation Eq. (8) , we get 

w̄ 

i v − g 2 w̄ 

v i − ω 

2 

β2 
w̄ = 0 (B.2) 

here, β2 = EI/m, and the above equation has the solution of type 

w̄ (x ) = 

6 ∑ 

j=1 

c̄ i e 
k i x (B.3) 

where c̄ i are the constants of integration which are determined through boundary conditions and the k i are the roots of the

characteristic equation 

k i v − g 2 k v i − ω 

2 

β2 
= 0 (B.4) 

after applying the boundary conditions listed in Section 2 we get 

[ F (ω)] { ̄c } = { 0 } (B.5) 

for non-trivial solution, following condition should be satisfied 

det[ F (ω)] = 0 (B.6) 

The above frequency equation renders all the natural frequencies for a gradient elastic Euler–Bernoulli beam. The follow-

ing are the frequency equations for different boundary conditions. 

(a) Cantilever beam : 

[ F (ω)] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 1 

k 1 k 2 k 3 k 4 k 5 k 6 

k 1 
2 

k 2 
2 

k 3 
2 

k 4 
2 

k 5 
2 

k 6 
2 

t 1 t 2 t 3 t 4 t 5 t 6 

p 1 p 2 p 3 p 4 p 5 p 6 

k 3 1 e 
(k 1 L ) k 3 2 e 

(k 2 L ) k 3 3 e 
(k 3 L ) k 3 4 e 

(k 4 L ) k 3 5 e 
(k 5 L ) k 3 6 e 

(k 6 L ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(b) Propped cantilever beam : 

[ F (ω)] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 1 

k 1 k 2 k 3 k 4 k 5 k 6 

k 1 
2 

k 2 
2 

k 3 
2 

k 4 
2 

k 5 
2 

k 6 
2 

e (k 1 L ) e (k 2 L ) e (k 3 L ) e (k 4 L ) e (k 5 L ) e (k 6 L ) 

k 2 1 e 
(k 1 L ) k 2 2 e 

(k 2 L ) k 2 3 e 
(k 3 L ) k 2 4 e 

(k 4 L ) k 2 5 e 
(k 5 L ) k 2 6 e 

(k 6 L ) 

p 1 p 2 p 3 p 4 p 5 p 6 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(d) Free–free beam : 

[ F (ω)] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

q 1 q 2 q 3 q 4 q 5 q 6 

r 1 r 2 r 3 r 4 r 5 r 6 

k 3 1 k 3 2 k 3 3 k 3 4 k 3 5 k 3 6 

t 1 t 2 t 3 t 4 t 5 t 6 

p 1 p 2 p 3 p 4 p 5 p 6 

k 3 1 e 
(k 1 L ) k 3 2 e 

(k 2 L ) k 3 3 e 
(k 3 L ) k 3 4 e 

(k 4 L ) k 3 5 e 
(k 5 L ) k 3 6 e 

(k 6 L ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Where 

t 1 = (k 3 
1 

− g 2 k 1 
5 ) e (k 1 L ) , t 2 = (k 3 

2 
− g 2 k 2 

5 ) e (k 2 L ) , t 3 = (k 3 
3 

− g 2 k 3 
5 ) e (k 3 L ) 

t 4 = (k 3 
4 

− g 2 k 4 
5 ) e (k 4 L ) , t 5 = (k 3 

5 
− g 2 k 5 

5 ) e (k 5 L ) , t 6 = (k 3 
6 

− g 2 k 6 
5 ) e (k 6 L ) 

p 1 = (k 2 1 − g 2 k 1 
4 ) e (k 1 L ) , p 2 = (k 2 2 − g 2 k 2 

4 ) e (k 2 L ) , p 3 = (k 2 3 − g 2 k 3 
4 ) e (k 3 L ) 

p 4 = (k 2 − g 2 k 4 
4 ) e (k 4 L ) , p 5 = (k 2 − g 2 k 5 

4 ) e (k 5 L ) , p 6 = (k 2 − g 2 k 6 
4 ) e (k 6 L ) 
4 5 6 
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q 1 = (k 3 
1 

− g 2 k 1 
5 ) , q 2 = (k 3 

2 
− g 2 k 2 

5 ) , q 3 = (k 3 
3 

− g 2 k 3 
5 ) 

q 4 = (k 3 
4 

− g 2 k 4 
5 ) , q 5 = (k 3 

5 
− g 2 k 5 

5 ) , q 6 = (k 3 
6 

− g 2 k 6 
5 ) 

r 1 = (k 2 1 − g 2 k 1 
4 ) , r 2 = (k 2 2 − g 2 k 2 

4 ) , r 3 = (k 2 3 − g 2 k 3 
4 ) 

r 4 = (k 2 4 − g 2 k 4 
4 ) , r 5 = (k 2 5 − g 2 k 5 

4 ) , r 6 = (k 2 6 − g 2 k 6 
4 ) 

Appendix C. Analytical solutions for buckling analysis of gradient elastic Euler-Bernoulli beam: 

To obtain the buckling load of the gradient elastic Euler–Bernoulli beam which is governed by Eq. (8) , we assume a

solution of the form 

w (x ) = d 1 + d 2 x + d 3 sin (α1 x ) + d 4 cos (α1 x ) + d 5 sinh (α2 x ) + d 6 cosh (α2 x ) (C.1)

where d i are the constants of integration which are determined through boundary conditions and the α1 and α2 are the

roots of the characteristic equation given by 

α1 = 

(−1 + 

√ 

1 + 4 g 2 P/EI 

2 g 2 

) 1 
2 

, α2 = 

(
1 + 

√ 

1 + 4 g 2 P/EI 

2 g 2 

) 1 
2 

(C.2)

After applying the boundary conditions listed in Section 2 we get 

[ ̄G (P )] { d} = { 0 } (C.3)

For non-trivial solution, following condition should be satisfied 

det[ ̄G (P )] = 0 (C.4)

The above Eigenvalue problem renders the buckling load for a gradient elastic Euler–Bernoulli beam. The following are

the system equations for different boundary conditions. 

(a) clamped beam : 

[ ̄G (P )] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 1 0 1 

0 1 α1 0 α2 0 

0 0 0 −α2 
1 0 −α2 

2 

1 L sin (α1 L ) cos (α1 L ) sinh (α2 L ) cosh (α2 L ) 

0 1 α1 cos (α1 L ) −α1 sin (α1 L ) α2 cosh (α2 L ) −α2 sinh (α2 L ) 

0 0 −α2 
1 sin (α1 L ) −α2 

1 cos (α1 L ) α2 
2 sinh (α2 L ) α2 

2 cosh (α2 L ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(b) Propped cantilever beam : 

[ ̄G (P )] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 1 0 1 

0 1 α1 0 α2 0 

0 0 0 −α2 
1 0 −α2 

2 

1 L sin (α1 L ) cos (α1 L ) sinh (α2 L ) cosh (α2 L ) 

0 1 α1 cos (α1 L ) −α1 sin (α1 L ) α2 cosh (α2 L ) −α2 sinh (α2 L ) 

0 0 −α2 
1 sin (α1 L ) −α2 

1 cos (α1 L ) α2 
2 sinh (α2 L ) α2 

2 cosh (α2 L ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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