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The Liouville space algebraic expression for the current-induced fluorescence can be writ-

ten down readily1 from the double-sided diagram shown in Fig. (1a). We get,
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|Tiα|2
∫ t
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dτe−iωs(t−τ)

∫ τ
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εα(τ2−τ1)fα(εα)〈T̂ µ̂†sR(t)µ̂sL(τ)ĉ†iL(τ1)ĉiR(τ2)〉 (1)

where the electron is created due to the interaction with αth lead. Note that the relative

time-ordering in the first two operators at τ1 and τ2 is irrelevant as they act on different

branches. It is straightforward to write down the corresponding Hilbert space expression.

After inserting the molecular many-body states and performing the time integrals, we obtain,

S(1)(ωs) =
γ
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(2)
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where Γ and γ are the life-times of the a→ e′ and e′ → a′ excitations, and Ee′a′ = Ee′ −Ea′

is the energy difference between the anionic excited and (lower energy) ground states, |e′〉

and |a′〉, respectively, and the first Lorentzian with width γ in (2) is to make sure that

the correct a′ and e′ states are picked up from the sum. This fact has been used above to

replace Ee′a′ by h̄ωs in the second Lorentzian. Sum over the lead states α can be converted

to integration by introducing lead density of states ρα(εα). Taking small temperature limit

such that fα(εα) = Θ(εα − EF − eV ) and performing the integral over the lead energies, εα,

we obtain the results given in Eq. (5).

Similarly, for the EL process depicted in Fig. (1b), we obtain the following expression in

terms of the Liouville space correlation function.
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where α 6= β. Again, it is straightforward to write down the corresponding Hilbert space

expression and then inserting the molecular many-body states as depicted in the diagram

and leads to
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Straightforward integration over times and replacing sum over lead energies we obtain,
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In order to perform energy integrals, we assume small Γae limit and then taking small

temperature limit, such that the Fermi functions become heavy-side function and µα = eV
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and µβ = 0, we obtain the result given in Eq. (6).

Green function result

When the self-energy matrix, Γ, is not diagonal, that is, when the coherences between the

molecular orbitals induced by the leads are not negligible, Green functions are not diagonal in

the molecular orbital basis. For this case, GRL(ω) and GLR(ω) for a non-interacting system

at steady-state and within the wide band approximation can be expressed in matrix form

as,

GRL(ω) = −i
∑
α=L,R

[1− fα(ω)]Gr(ω)SαGa(ω) (6)

GLR(ω) = i
∑
α=L,R

fα(ω)Gr(ω)SαGa(ω) (7)

where fα(ω) =
(
eβ(ω−µα) + 1

)−1 are the Fermi functions of the reservoirs and Sα is the self-

energy matrix due to coupling to the αth lead. Gr/a(ω) are the retarded/advanced Green

functions of the molecule under the influence of the leads given as,

Gr(ω) = Ga(ω)† =

[
ωI −Hsys +

i

2

∑
α=L,R

Sα

]−1

(8)

with
[
Hsys

]
ij

= ξiδij and [Sα]ij = 2πραT
∗
iαTjα. Gr(ω) can be expressed in quasi-diagonal form

using the right (|Rn〉) and the left (〈Ln|) eigenstates corresponding to the nth eigenvalue,

γn, of the non-hermitian operator Hsys − i
2

∑
α=L,R Sα. This gives,

Gr(ω) =
∑
n

|Rn〉〈Ln|
ω − γn

. (9)
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Substituting this in (6), we obtain,

GRL(ω) = −i
∑
α=L,R

∑
mn
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∑
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(ω − γn)(ω − γ∗m)
〈Rm| (11)

Using the above expressions for GLR(ω) and GRL(ω) in the equation for signal given in

Eq. (11) and performing ω integral using Cauchy’s residue method2 gives,
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{ ∑
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+
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2π
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1
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
(12)

where nαβ(ωs) =
(
eβ(µα−µβ+h̄ω) − 1

)−1 is the Bose-Einstein distribution function, Ψ[Z] is the

digamma function3 and [µ]ij = Θ[εi − εj]Vij.
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