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(c) (d)

Figure 6. Normalised distributions of energy deposition fraction (fi) with varying sizes of blocks

(i × i). (a) Fraction of energy deposited in 3 × 3; (b), (c), (d) Fraction of energy deposited in

5 × 5, 9 × 9 and 11 × 11 excluding the previous 3 × 3, 5 × 5 and 9 × 9 blocks’ energy deposition

fraction respectively.

To summarise the last two sections 2.2.1 and 2.2.2, we identify two important features

associated with displaced multijet systems. They are:

• Elongated energy deposits in the HCAL

This happens due to the mismatch of displaced particles’ η−φ direction with standard

calorimeter η−φ towers. Therefore, energy deposition of displaced jets in the HCAL

have more elongated patterns which differ from standard patterns of prompt jets.

• Total energy deposit of the multijet system more contained in the iη � iφ

region

The jets coming from the decay of the LLP have some ∆R,6 between them. If the

jets from X have the same ∆R in both prompt decay as well as late decay of X, the

energy deposit is smaller for the displaced case because the physical segmentation of

the detector (in z direction) has increased with increasing radial distance.

The above features give different energy deposition patterns at the HCAL, but as seen

from 6, apart from the 200–220 cm extremely displaced scenario, the difference between

6∆R =
p

∆η2 + ∆φ2.
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(c) (d)

Figure 7. Average of 50,000 images for (a) prompt jets from X; (b), (c), (d) jets displaced within

30− 50 cm, 50− 70 cm and 70− 90 cm transverse distance from PV respectively. These are 28× 28

images in the iη − iφ plane with the highest energy bin in the center (14,14). With increasing

displacement, the energy deposition is contained to smaller iη − iφ region. Here we do not show

the 200–220 cm displaced case, for which the energy deposition is contained in a very small region.
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displaced and non-displaced cases are not significant enough so that we can use the usual

cut-based analysis to discriminate them. On a qualitative level, it can also be seen from

figure 5c, where (a) and (b) categories are not distinguishable by human eye. We therefore

use the HCAL energy deposition images to train a convolutional neural network to learn

these displaced features and discriminate displaced cases from prompt cases on the basis

of that for both the LLP scenarios.

2.3 The Convolution Neural Network

The Convolutional Neural Network (CNN) [75] is one of the most notable deep learn-

ing approaches used in diverse computer vision applications. We use Tensorflow[76] for

implementing the CNN used in this work for discriminating displaced objects from non-

displaced standard objects in the collider. As described in section 2.1, we have 28 × 28

2-dimensional images of HCAL energy deposition for all scenarios. These images are the in-

put of our neural network. In the next subsection we briefly discuss the various components

of the network.

2.3.1 Network architecture

The architecture used in our work is inspired from some of the previous works in high

energy physics where they tag hadronic decays of boosted objects like W boson and top

quark using CNN [50, 57], because we are also studying boosted jet systems. However, we

have tuned the hyperparameters for better performance in our case.

1. Convolution layer. In convolutional layers, the algorithm utilises various kernels to

convolve the whole image to generate various feature maps. We use two convolution

layers: Layer 1: 10 filters of kernel size 6×6; and Layer 2: 20 filters of kernel size 4×4,

with a stride of 1×1 for both the layers, which means that the filter convolves around

the input volume by shifting one unit at a time. The objective of the convolution

operation is to extract features such as edges and shapes. In order to introduce

nonlinearity to the system, activation function of Rectified Linear Unit (RELU) [77]

has been applied to the outputs; and L2 regularization [78] has been applied to the

kernel weights. The outputs of the convolution layer are also batch normalised [79].

2. Max-pool. After each convolution layer, the output has been max-pooled with a

pool size of 2 × 2 which means that each 2 × 2 kernel of the convolution output has

been replaced by the maximum value in that kernel. This reduces the dimension of

the image by half after each max-pooling and finally we have 20 7 × 7 images after

convolution and max-pooling. By now, we have enabled the model to understand

the features. Next, we will flatten the output and feed it to a fully-connected Neural

Network for classification purposes.

3. Flatten and Fully Connected (FC) layer. At this stage, we flatten these images

and get 20× 7× 7, i.e., 980 input values which we connect to a fully connected layer

with 200 nodes. Activation function RELU is applied. We apply a 50% dropout [80]

to this FC layer to deal with the problem of overfitting. Finally this layer is connected

to the binary output through a softmax activation function [81].
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Figure 8. The CNN architecture used.

Figure 8 summarises the network architecture used in this work. We use Adam Op-

timizer [82] with a learning rate of 0.001. We train to minimise the cross-entropy loss

function [83]. We have done some naive optimisations to decide on the present network

architecture and hyperparameters.

For simplification in our work, the energy deposition in 4 radial HCAL layers are added

together to get the total energy deposition. In this way we are able to use 2D filters on 2D

images. However, for better separation power, one can use 3D image by taking into account

energy deposits in each radial layer separately or considering 4 different channels for each

pixel with the energy deposited values in each layer as one channel. Further discussion on

energy deposition in each layer can be found in appendix B. In the former case, 3D filters

will be needed, and the training process would be more resource consuming for both the

cases. We also limit ourselves to images of HCAL energy deposits in η-φ plane and feed

those images to a CNN, while more complicated setups can be used for an actual search by

experimental collaborations, in order to achieve better discrimination power between signal

and background. For example, a hybrid CNN model can be built, that takes additional

input variables besides the image in the first fully connected layer after flattening. These

additional input variables can come from other parts of the detector like tracker and ECAL.

These variables could be number of tracks below a calorimeter energy deposit, energy

deposited in the ECAL or the ratio of ECAL and HCAL energy deposits, and these can

increase the sensitivity to identify displaced objects. Also we can use separate CNNs with

different architectures on different parts of the detector (like separate CNNs for ECAL and

HCAL energy deposition images) and add them after flattening because understanding

features from different detector parts might require different levels of complexity in terms

of the network architecture [84–86].
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Figure 9. ROCs of the CNN performance to separate non-displaced Z from different classes of

displaced Z.

2.3.2 Dataset

We have used 100,000 images (including both classes) out of which 60,000 images have

been used for training, 20,000 for validation and another 20,000 for testing the network.

We use a batch size of 200 while training. The training was stopped at the epoch with

minimum validation loss when this loss was not decreasing significantly.

We performed the classification between the non-displaced case and the four different

displaced cases for each of the two scenarios — displaced Z from X which decays to jets

and displaced jets coming from X directly.

2.4 Analysis and results

For analysing the performance of the network, we draw a Receiver Operating Character-

istics (ROC) [87] curve with signal efficiency vs. background rejection. Since we want to

study the difference in energy deposition patterns as a result of displacement of parti-

cles, here, we consider the non-displaced events as our background and the four displaced

cases as separate signals. We use the test output of the CNN to draw the ROC curves.

These curves will give us an idea of the discriminating power of the classifier for different

displacements and for which signal it works the best.

2.4.1 Displaced jets from displaced Z

Figure 9 shows the ROCs of the CNN performance for the non-displaced vs the four cases

with different displacements of Z boson.

We get background rejection of 70.61%, 84.36% and 93.02% for a signal efficiency of

60% for 30 cm−50 cm displaced Z, 50 cm−70 cm displaced Z, and 70 cm−90 cm displaced

Z respectively. We notice that the performance of the network is better for more displaced
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Figure 10. ROCs of the CNN performance to separate non-displaced Z from 70 cm − 90 cm

displaced Z for different masses of X.

Z which is expected. For the 200 cm − 220 cm displaced Z, the network performs the

best, and we get background rejection of 99.8% for a signal efficiency of 60%. This implies

that the network has learned the features associated with displacement and discriminates

on the basis of that. For the most displaced case, there is more mismatch between the

decay products η− φ with the standard η− φ HCAL towers, hence more elongated energy

deposition in the HCAL. We therefore find that this analysis is better for more displaced

scenarios, where usually our standard reconstructions fail badly.

In the above analysis the mass of X was taken to be 800 GeV. We now study the de-

pendence of this analysis on mass of the LLP. We consider the performance of the network

to discriminate 70 − 90 cm displaced Z from prompt Z for three different masses of X —

500 GeV, 800 GeV and 1500 GeV. We choose the same energy window cut (400, 500) GeV

for all these cases. Hence, the boost of the multijet system coming from Z remains the

same for all the cases. Figure 10 shows the ROCs for the CNN performance to separate

non-displaced Z from 70 cm−90 cm displaced Z for these different X masses. We find that

with increasing X mass the CNN performs better, although the effect is not drastic.

Massive LLPs travel slower in the detector and therefore their decay products can

have large ∆R between them. Large ∆R between the Z and the invisible particle means

that the jets from Z pass through different standard η − φ calorimeter towers in different

layers and hence the projection along constant η − φ of these radial layers will have more

elongated energy deposition pattern. This improves the discrimination power of the CNN

with increasing LLP mass.

2.4.2 Displaced jets directly from LLP decay

Figure 11 shows the ROCs of the CNN performance for the non-displaced vs the four cases

with different displacements of the jets coming from the decay of X.
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Figure 11. ROCs of the CNN performance to separate non-displaced jjj from different classes of

displaced jjj.

We get background rejection of 81.70%, 91.06% and 96.39% for a signal efficiency of

60% for 30 cm − 50 cm displaced, 50 cm − 70 cm displaced, and 70 cm − 90 cm displaced

decay of X respectively. Again the performance of the network is better for more displaced

cases, being the best for the 200 cm−220 cm displaced decay of X, and we get background

rejection of 99.6% for a signal efficiency of 60%.

Varying the mass of the LLP in this scenario needs different energy deposition window

cut (other than (400, 500) GeV) for giving the same amount of boost to the final multijet

system. We believe that if the multijet system has the same boost, the results won’t be

affected with variation of LLP mass for this scenario.

Therefore, we find that CNNs can learn displaced features from HCAL energy deposi-

tion images and is able to discriminate prompt multijet systems from displaced ones. We

have repeated this analysis by also considering images of transverse energy deposition in

the HCAL. Our results are robust against this change.

The two scenarios considered by us had some kinematic differences. Yet the network

performs equally well for both the scenarios with increasing displacement. This suggests

that this kind of analysis is quite robust to the LLP model that we consider and hence can

be extended to study other LLP decaying to multijet scenarios as well.

As a benchmark to which one can compare the performance of CNN, we have per-

formed a similar classification exercise using boosted decision tree (BDT) with variable

decorrelation. The energy fraction variables f3, f5, f9 and f11 were used as input to the

framework. For both models, (1) jets coming from a displaced Z boson and (2) jets coming

directly from the decay of an LLP, we found CNN to work much better than standard BDT

based on the energy fraction variables. The plots comparing the performance of BDT and

CNN is presented in figure 12. It was found that for 60% signal efficiency, we obtain a
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Figure 12. CNN vs BDT: comparison of performance for both models.

68.73% background rejection using BDT, while this was 93.02% using CNN for the first

case. For the second case, we obtain a 86.84% background rejection using BDT, and 96.39%

background rejection using CNN for a 60% signal efficiency. It is also important to note

that the performance of CNN is even better for higher signal efficiencies than BDT.

In the next section, we provide a brief discussion of a special case of X → jjj where X

decays at rest. This resembles the case of a color neutral R-hadron stopping in the detector

and decaying into jets. We study whether HCAL images have any potential for stopped

R-hadron studies.

2.5 Stopped particle scenario

Particles with longer lifetime can occur in split supersymmetry [7–14, 18], where the decay

of gluino (g̃) is suppressed due to the large mass difference between gluino and squark; i.e.

squark is much heavier than gluino in this model. If long-lived gluinos exist they might

be produced in the pp collisions in the LHC, and they will soon hadronise to make a

hadron-like state, generally referred to as “R-hadrons”. These R-hadron can be charged or

neutral, and they will lose energy by interacting with the material of the detector as they

travel through it. For heavy R-hadrons, which will move slowly, the energy loss will be

sufficient to stop a significant fraction of the produced R-hadrons inside the calorimeter of

the detector. These “stopped” particles may decay seconds, minutes, hours, or days later,

resulting in out-of-time energy deposits in the calorimeter. The latest R-hadron search

results at CMS and ATLAS are shown in [34, 36] respectively.

We want to explore how the HCAL energy deposition pattern would look like for a

stopped particle scenario. We expect this to be quite different from standard deposition

patterns. Since the stopped particle decays at rest at a significant distance from the PV, η

and φ of the decay products don’t match with the HCAL η− φ segmentation. The energy

deposit of these particles, therefore, won’t be contained in one or two η − φ towers of the

HCAL. We rather expect these energy deposits to look like lines on the η − φ plane.

To demonstrate this, we consider the decay of X of mass 1 TeV to three quarks as

described for the second scenario above. We use PYTHIA6 and RPV SUSY model to simulate

this case. But here the LLP X is made to decay at rest. The position where X stops is

simulated such that it follows an exponential distribution. We consider events where X has
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(a) (b)

Figure 13. (a) Stopped particle decay projection in the transverse plane — shown in grey and blue

are particles moving backward and forward respectively; (b) Energy deposition of forward-moving

particles coming from the decay of a stopped particle in the HCAL. Both images are for the same

stopped particle decay event.

stopped in the first HCAL layer. After X decays, we will get some particles moving in the

forward direction as well as some in the backward direction to conserve momentum. The

backward moving particles have very unique signatures in the collider and is in itself a very

interesting subject of study [88]. In the present work, we only consider the energy deposition

of forward-moving particles. Therefore, most of the events have energy deposition in the

HCAL between (400, 500) GeV, which is about half of the X mass.

Figure 13a shows the x-y (transverse) projection of a typical stopped X decay. Marked

in blue are the particles moving in the forward direction which we have propagated through

our segmented HCAL. Figure 13b shows the energy deposit of forward-moving particles

for the same event in iη − iφ plane. We find that this energy deposition pattern is quite

different from standard scenarios. Inclusion of backward-moving particles will enhance this

feature and we will get more such lines.

Since top quarks can decay to three quarks, we have performed a classification between

stopped X decaying to three jets and top quark using the CNN architect as described in

section 2.3 with energy of top lying between (400, 500) GeV, same as the energy range for

stopped case. They have very different energy deposition patterns in the HCAL and as

expected we get high accuracy from the CNN training as well as validation. Even for 95%

stopped particle tagging efficiency, we get ∼ 99% single top background rejection efficiency.

3 Conclusion and outlook

This work presents an idea of how HCAL energy deposition images along with image

recognition techniques can be used in the search for long-lived particles to distinguish
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between prompt and displaced jets. To the best of our knowledge, this work is the first

attempt in studying LLPs using energy deposition images and image recognition techniques.

LLPs are difficult to identify using standard reconstructions due to their displacement from

the PV. In this work we propose an additional method which can be used in combination

with other standard LLP studies. We consider two scenarios which are different in the sense

that in one, the displaced jets come from the decay of an intermediate displaced SM particle

(Z boson) while in the other they directly come from the decay of the LLP. By studying

the energy deposition patterns of LLPs with varying displacements, in these two scenarios,

we observe two key features. One is, elongation in energy deposition because η and φ of

particles which are very much displaced from the PV do not match with standard detector

η−φ segmentation. Another one is, later the decay of the LLP, smaller is the physical region

in which the energy deposition of its decay products is contained in HCAL. Due to the

absence of layered structure and z segmentation in fast detector simulations like Delphes,

we can’t use them to study these features for displaced jets. Therefore, we simulate our

simplified calorimeter following the segmentation of the Tile Calorimeter of ATLAS.

We used these displaced features of LLPs that give different energy deposition patterns

in the HCAL to differentiate them from non-displaced objects using a convolutional neural

network. Our analysis performs better for LLPs which decay at larger distances from the

PV, where usual displaced jets analysis might lose sensitivity due to failure of standard

reconstructions. Therefore, this might serve as a complementary analysis technique to

standard LLP analyses techniques; or this method can be used in conjunction with other

relevant information from tracker, ECAL and muon system.

As a limiting case of the second scenario where the jets come directly from the LLP

decay, we consider the situation where the LLP stops before decaying. We show that

stopped particles also have very different energy deposition patterns in the calorimeter.

Therefore, we can consider to look for such HCAL images rather than waiting for empty

bunch crossings for the search of stopped R-hadrons.

We have used minimal preprocessing to the images and have not done advanced op-

timisations. We would like to reiterate here that the major focus of this study was to

show the feasibility of probing displaced jets emanating from the decay of an LLP via ML

techniques. Advanced pre-processing and optimisations can be done for dedicated LLP

searches. In this study a simplified detector simulation is used, which only accounts for

geometry. There is no realistic calorimeter simulation with lateral and longitudinal shower

shapes to account for overlapping showers, and there is no pile-up included. These are

beyond the scope of this study.

Although we have shown this image-based analysis technique for some particular sce-

narios in this work, we believe that it will work for any scenario where an LLP decays

into multiple jets. Therefore, this can be treated as a robust search technique for LLPs

decaying to give displaced jets in the final state. This work is a simple-minded analysis

done for the proof-of-principle that displaced jets have some different energy deposition

features and these can be identified using an image based study.

Lastly, with rapid advancement in the field of deep learning, several other new methods

have come up recently which could give similar or better results than CNN. Capsule Neu-
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ral Network (CapsNet) [89] aims to make improvements to CNN by handling the spatial

relationship in an image more efficiently. On the other hand, PointNet++ is a pioneer-

ing work in applying machine learning on point clouds [90, 91], which is a collection of

high dimensional objects. Another important ML method, that could be explored in the

context of displaced objects, is Graph Neural Network (GNN), which directly operates on

the graph structure. GNNs have found extensive use in many other high-energy physics

applications [92–94].
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A Validation of our HCAL segmentation with Delphes

We present here a small validation of our HCAL segmentation with standard fast detector

simulation — Delphes. To the best of our knowledge there are no ATLAS public results

using which we can cross check our results for long-lived particles. Since Delphes has

been parametrized with ATLAS for prompt particles [70, section 5], we can validate our

segmentation with Delphes using prompt jets. As we have discussed earlier that Delphes

will give the η-φ of the particles coming from the LLP decay with respect to the sec-

ondary vertex, rather than the η-φ in which they will actually be detected according to the

detector segmentation.

Therefore, as a cross check we have made distributions of some standard processes

involving prompt jets using Delphes as well as our segmentation and compared them.

For example, we compare the pT and η distributions for prompt jets, generated using the

leading jet from a dijet sample with minimum pT cut of 200 GeV at parton level, using

Delphes fast simulation and our own toy simulation. Figure 14 shows the comparison.

The shapes match well. The slight difference could be due to the fact that our layer D of

the HCAL has different η segmentation (∆η = 0.2) than the other layers where ∆η = 0.1,

similar to the ATLAS Tile Calorimeter, which is not present in Delphes.

Hence, our simulation is validated against Delphes, and we believe that our simulation

is a good enough approximation for the ATLAS reality.

B Energy deposition fractions for different layers of the HCAL

We here show the distributions of the energy deposition fractions for the non-displaced and

70–90 cm displaced Z boson processes for each of the starting three layers of the HCAL

— A (figure 15), B (figure 16) and C (figure 17). We find a similar trend of the energy

fraction in each layer as we had observed in section 2.2.1 for the energy fraction taking the

projection along η − φ of all four layers.
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Figure 14. Comparison of (a) pT and (b) η distributions using Delphes and our simulation for

the leading jet (prompt) from a dijet sample generated with minimum pT cut of 200 GeV.

In the distributions shown in figures 15, 16 and 17, we have calculated the fraction by

taking different i× i blocks of η−φ regions around the highest energy bin in each layer and

dividing it by the total energy deposited, after taking projection of all layers, in 28 × 28

η − φ region.

In addition to this, we have also compared distributions of the fraction by taking the

location of the highest energy bin after projection along η and φ and then i× i around this

bin in layer A. For the subsequent layers, we match η − φ of the edges the i× i region in

layer A and take energy deposition within that region.7 Finally, the energy deposition is

divided by the total energy deposited in 28× 28 η−φ towers (after taking projection). We

obtain similar results.

One can use information from each layer as different channels of the CNN input image

as discussed in section 2.3.1. In this work we are unable to do that because we are using a

simplified energy deposition based on the distance of the particle from the centre of a η−φ
bin in each layer. Our simulation lacks proper showering and interaction of the particle with

detector material which can be achieved only by using full detector simulations like GEANT.

7For example, if the highest energy (of the final projected energy matrix) is at iη = 16, for finding f3,

we have taken energy deposition from iη 15 to 17 in layer A and 14 to 16 in layer B, because η of bin 15 in

layer A matches with that of bin 14 in layer B and bin 17 in layer A has same η as bin 16 in layer B.
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Figure 15. Normalised distributions of energy deposition fraction (fi) with varying sizes of blocks

(i× i) for the non-displaced and 70–90 cm displaced Z boson in layer A.

Figure 16. Normalised distributions of energy deposition fraction (fi) with varying sizes of blocks

(i× i) for the non-displaced and 70–90 cm displaced Z boson in layer B.
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Figure 17. Normalised distributions of energy deposition fraction (fi) with varying sizes of blocks

(i× i) for the non-displaced and 70–90 cm displaced Z boson in layer C.
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