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Abstract

Dengue and influenza-like illness (ILI) are two of the leading causes of viral infection in the

world and it is estimated that more than half the world’s population is at risk for developing

these infections. It is therefore important to develop accurate methods for forecasting den-

gue and ILI incidences. Since data from multiple sources (such as dengue and ILI case

counts, electronic health records and frequency of multiple internet search terms from Goo-

gle Trends) can improve forecasts, standard time series analysis methods are inadequate

to estimate all the parameter values from the limited amount of data available if we use multi-

ple sources. In this paper, we use a computationally efficient implementation of the known

variable selection method that we call the Autoregressive Likelihood Ratio (ARLR) method.

This method combines sparse representation of time series data, electronic health records

data (for ILI) and Google Trends data to forecast dengue and ILI incidences. This sparse

representation method uses an algorithm that maximizes an appropriate likelihood ratio at

every step. Using numerical experiments, we demonstrate that our method recovers the

underlying sparse model much more accurately than the lasso method. We apply our

method to dengue case count data from five countries/states: Brazil, Mexico, Singapore,

Taiwan, and Thailand and to ILI case count data from the United States. Numerical experi-

ments show that our method outperforms existing time series forecasting methods in fore-

casting the dengue and ILI case counts. In particular, our method gives a 18 percent

forecast error reduction over a leading method that also uses data from multiple sources. It

also performs better than other methods in predicting the peak value of the case count and

the peak time.
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Author summary

Dengue and influenza-like illness (ILI) are leading causes of viral infection in the world

and hence it is important to develop accurate methods for forecasting their incidence. We

use Autoregressive Likelihood Ratio method, which is a computationally efficient imple-

mentation of the variable selection method, in order to obtain a sparse (non-lasso) repre-

sentation of time series, Google Trends and electronic health records (for ILI) data. This

method is used to forecast dengue incidence in five countries/states and ILI incidence in

USA. We show that this method outperforms existing time series methods in forecasting

these diseases. The method is general and can also be used to forecast other diseases.

Introduction

Dengue is a mosquito-borne viral disease that affects a large fraction of the world [1]. It is esti-

mated [2] that almost half the world’s population spread out over 128 countries is at risk of

dengue infection while 400 million people could actually be infected by dengue [3] every year.

A large fraction of these cases occur in low income countries. Of these, about 100 million are

estimated [3] to exhibit clinical symptoms. In the past decade, dengue cases have also been

reported in Europe, China, and the USA [1] thus expanding the regions that could witness

dengue outbreaks even further.

Influenza is another viral disease that affects a significant fraction of the world population.

It is estimated that 3 to 5 million people worldwide are afflicted with severe illness due to

influenza-like illness (ILI) of whom between 300,000 to 650,000 die [4]. Deaths occur mainly

among people aged 65 years or above in the developed world [5] and children below 5 years of

age in developing countries [6].

Given the huge social, economic, and health burden of dengue and ILI, it is important to be

able to accurately forecast dengue and ILI incidences. Such forecasts would permit timely and

adequate deployment of experienced medical personnel such as physicians and nurses,

resources such as mosquito nets and antivirals (especially, flu vaccines in the case of Influenza

A and B), and timely application of emergency vector control measures in the affected regions/

countries. Such measures can reduce mortality rates in the case of severe dengue from more

than 20% to less than 1% [1]. In the case of influenza, a recent study [7] estimated that vacci-

nated adults were up to 80% less likely to die than unvaccinated flu-hospitalized patients.

Several methods have been proposed to forecast dengue incidence. Some of these methods

were developed in the context of the Dengue Forecasting Project [8]. One class of methods

uses deterministic differential equations and primarily focuses on dengue transmission [9].

Such methods are reviewed in [10]. Another class of models follows a data-driven approach

and uses techniques such as machine learning [11, 12]. Other examples in this class include

seasonal autoregressive models that incorporate weather information [13–19] and hybrid

models [20].

Another line of approach uses Internet searches, social media activity and phone data to

forecast dengue and ILI incidences [21–30]. Other recent approaches for forecasting disease

outbreaks use a variety of methods such as data-driven agent-based models [31], ensemble

methods [32], phenomenological models [33], support vector machines [34], superensemble

methods [35–38], neural networks [39], spatio-temporal methods [40] and delta densities [41].

A comparison of several of these methods can be found in [42]. A recent leading method for

forecasting dengue and ILI incidences is AutoRegression with General Online data (ARGO)

[43, 44] that combines autoregressive processes with Google Trends and other online data.
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Summary of contributions and significance

In this paper, we focus on a time series modelling approach to forecast dengue and ILI inci-

dences. The standard time series methods for fitting models such as autoregressive models

yield dense models. In other words, most of the regressor coefficients (model parameters) are

non-zero. However, in the context of forecasting dengue and ILI incidences, it is important to

have sparse models representing the data. There are several reasons for this. Using only the

past incidence data to forecast future values may not be adequate since the forecast accuracies

may not be high [43, 44]. It should be added that this need not always be the case [45, 46]. In

general, one hopes [38, 46, 47] to improve forecast accuracies by including additional sources

of data such as frequencies of search terms from Google Trends data (www.google.com/

trends) and electronic health records. Each such additional source of data leads to additional

parameters that need to be estimated from the data. However, the amount of data available is

typically insufficient to robustly estimate the required parameter values. Hence we need to rep-

resent this data using sparse models. A standard method for obtaining sparse models is the

lasso method [48, 49]. The lasso method has been implemented in the ARGO method [43, 44]

for forecasting dengue and ILI incidences. We implement a computationally efficient method

for variable selection, in order to obtain sparse representations of the data, that outperforms

the lasso method. This is demonstrated by fitting autoregressive models using both the lasso

method and our method to synthetic time series data generated from sparse models. We find

that our method recovers the underlying sparse model with much greater accuracy than the

lasso method.

We apply the method for fitting a sparse vector autoregressive model to dengue and ILI

case counts time series data. Further, we adopt a comprehensive method to remove the sea-

sonal component before applying the regression model. For both dengue and ILI, we use

exactly the same data as was used for investigating the ARGO method [43, 44]. This data has

been made publicly available by authors of the ARGO method and this facilitates direct com-

parison of our method with the ARGO and other methods.

For dengue, we analyze monthly aggregated dengue case count data from five countries/

states: 3 in Asia (Singapore, Taiwan, and Thailand) and 2 in South America (Brazil and

Mexico). This is combined with the top ten queries that were most highly correlated with the

term ‘dengue’ in each country [43] using Google Trends data. For each country, the monthly

aggregated search fractions of these terms [43] were then used. In the case of ILI, we used

weekly ILI case count data from the United States. This is combined with electronic health rec-

ords and Google Trends data [44].

The combination of the sparse representation technique and multiple data sources that we

use yields a forecasting method that outperforms other competing methods in terms of fore-

cast error measures. More specifically, our method achieves an average of 18% reduction in

the forecast error over the ARGO method which is a leading method that also uses data from

multiple sources. Our method is general and could also be used to forecast other disease

outbreaks.

Materials and methods

We describe different methods that can be used to forecast dengue and ILI incidences. For our

method, we first describe the general method applicable to any time series data. Subsequently,

we detail the additional preprocessing steps required to process the dengue and ILI data. The

other methods that are described include ARGO, Glmnet lasso, Kalman filtering, ensemble,

and the naive method.

Forecasting dengue and influenza incidences using a sparse data representation
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Autoregressive Likelihood Ratio (ARLR) method

As mentioned in the introduction, it is important to develop sparse models to represent the

data given the large number of data sources (such as dengue or ILI case counts and frequency

of multiple Internet search queries from Google Trends) and the limited amount of data avail-

able from each source (especially dengue and ILI case counts) for training the model. In this

section, we describe a computationally efficient method for obtaining sparse vector autoregres-

sive models from multivariate time series data.

Let the observed time series data y be represented by an N × k matrix:

y ¼ fyðjÞt ; j ¼ 1; 2; . . . k; t ¼ 1; 2; . . .Ng ð1Þ

Here N stands for the number of data points and k is the number of variables.

Following standard time series modelling methods [50] we model this observed data y by a

zero-mean, weakly stationary Vector Autoregressive (VAR) process satisfying the following

equation:

Vt ¼ A1Vt� 1 þ A2Vt� 2 þ . . .þ ApVt� p þ �t ð2Þ

Here Vt ¼ fV
ð1Þ
t ; . . . ;VðkÞt g

T
is a column vector of variables that model the data. This equation

expresses Y at time t in terms of its own values at previous times (lagged values) up to time t −
p. Here p is called the order of the model and is also the maximum lag. Each of A1, A2, . . . Ap is

a k × k real coefficient matrix and �t is k × 1 normally distributed white noise with zero mean

and constant covariance matrix:

Eð�t�Tt Þ ¼ Σ� ð3Þ

Standard methods for estimating coefficients for the above VAR model use either linear

regression or the Yule-Walker equations [50]. The models obtained using such methods are

dense in the sense that the coefficient matrices Ai are all dense wherein most (if not all) of the

matrix entries are non-zero. In the context of forecasting dengue or ILI incidence, using such

time series models becomes problematic since this large number of parameters need to be esti-

mated from a limited amount of data leading to noisy or inaccurate estimates. This problem is

further compounded if we also incorporate Google Trends or electronic health records data

into the modeling process, further increasing the number of parameters to be estimated. A

standard way of overcoming this problem is to use sparse models [43, 44, 48, 49].

In this paper, we use an alternative sparse modelling method, a variable selection method,

that is already known [51]. Variable selection method, however, is computationally inefficient.

We have devised a computationally efficient process for variable selection. Variable selection is

based on comparing the relative likelihoods of candidate solutions [51]. Instead of including,

at one go, all variables at all possible lags as predictors for each of the response variables, each

variable at each individual lag is included (removed) as a predictor, one at a time, based on the

size of the observed error in the response variable(s) before and after the inclusion (removal).

A detailed description of the method is given in the Supporting Information (S1 Text). To

briefly summarize, starting from a suitable initial VAR model (typically the trivial model),

lagged predictor variables are added or removed depending on whether their inclusion (exclu-

sion) significantly increases (decreases) the likelihood that the data is explained by the model,

respectively. This process is continued until no further variables can be added or removed.

As mentioned above, we have implemented the variable selection method in a computa-

tionally efficient manner described in the Supporting Information (S1 Text). We call this the

Autoregressive Likelihood Ratio (ARLR) method. The efficiency of our algorithm is

Forecasting dengue and influenza incidences using a sparse data representation
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demonstrated using time complexity calculations in the Supporting Information (S1 Text).

We also use an alternative stopping criterion given by the AICC (corrected AIC) criterion [52].

Both these factors enable this method to effectively handle thousands of variables. The compu-

tationally efficient method is general and is applicable beyond disease forecasting.

We now describe the preprocessing steps required in order to make the dengue/influenza

data amenable to analysis by our method. We model the time series data for each country/state

as given below following a systematic approach. Given the original data Ct (dengue or ILI case

count), we first separate out the deterministic and stochastic components (Ft and Ut, respec-

tively). In order to accomplish this, we determine whether the model to be used is additive

(Ct = Ht + Ut) or multiplicative (Ct = HtUt) by computing the mean and standard deviation in

a fixed-length window that slides over the data. If the underlying model is additive, the mean

remains approximately constant across the windows whereas if the underlying model is multi-

plicative, it is the ratio of the mean to the standard deviation that remains approximately con-

stant. We find the latter to be the case and hence we choose a multiplicative model. In the case

of Taiwan, we find that it is log(Ct), rather than Ct, which follows the multiplicative model.

Consequently, in the case of Taiwan, we take log(Ct) to be the original data so that the subse-

quent analysis is identical for all cases.

The multiplicative model can be transformed to a new additive model by taking a loga-

rithm: log(Ct) = log(Ht) + log(Ut). Letting Yt = log(Ut), Ft = log(Ht) and C0t ¼ logðCtÞ, we

finally get

C0t ¼ Ft þ Yt: ð4Þ

Thus we need to additively decompose the transformed data into the deterministic component

Ft (which is essentially comprised of a trend and a seasonal component) and the stationary

component Yt. To do this, we first determine the seasonality (s) of the process as follows. We

compute a smoothed power spectrum of the original forecast variable. The spectrum is

smoothed by appending zeros to the case count up to a length of 1024. We obtain the location

of the dominant peak. The corresponding period s (in either months or weeks) is taken to be

the seasonality (s). Now the deterministic component is found by fitting the following simple

model to the data:

C0t ¼ mþ c1C0t� 1
þ csC0t� s þ c2sC0t� 2s þ Yt: ð5Þ

This model also accounts for a mean and second-order seasonality, if present in the data. We

refer to this step as the prefitting step. For this prefitting step, we use the same algorithm as

described in the Supporting Information (S1 Text). The residuals from this prefitting step

comprise the stationary component Yt. This stationary component is what is used the subse-

quent analysis.

Let Yt be obtained as above after prefitting. Here, t represents time in months for dengue

and time in weeks for ILI. Let Xt,g be the log-transformed Google search frequency for the

search term g at time t. These can be considered as exogenous terms [43]. There can be addi-

tional exogenous terms like the electronic health records in the case of ILI. These exogenous

terms are represented as Zt,j (after an appropriate transformation) for the jth additional exoge-

nous term at time t. Then our model is formulated as given below, following [43, 44]:

Yt ¼ mY þ
X

m2M

amYt� m þ
X

g2G

kgXt;g þ
X

j2J

qjZt;j þ �t ð6Þ

where μY is the mean of the process, M is the set of AR lags, G is the set of Google query terms,

J is the set of additional exogenous terms, and �t is the noise in the process which follows a

Forecasting dengue and influenza incidences using a sparse data representation
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zero mean Gaussian distribution. The set G is chosen to be the set of 10 Google search terms

that are most correlated with dengue for each country/state [43] for case of dengue whereas G
is the set of 129 Google search terms that are most correlated with ILI for the United States

[44] in the case of ILI. The unknown parameters am, kg, and (if applicable) qj are estimated

using the same algorithm as described in the Supporting Information (S1 Text). This method

can be trivially extended to incorporate exogenous variables Xt,g (and Zt,j). Once the unknown

parameters are estimated, the forecast variable Yt+1 for the month/week t + 1 can be predicted

using the above equation. Subsequently, the final forecast of the dengue or ILI case count at

time t + 1 is obtained by using Eq (5) followed by an exponential transform. The code imple-

menting the ARLR method can be made available by the authors upon request.

Uncertainty quantification. We quantify the uncertainties in the ARLR forecast by using

the bootstrap method described in [53]. This is the standard method that is widely used for

uncertainty quantification in autoregressive modeling. Suppose we wish to obtain the uncer-

tainty quantification of the nowcast YT+1 using the observations of Yt until time T. Using the

estimated values of the parameters am, kg, and (if applicable) qj obtained through our algorithm

and the observed values of Yt, Xt and Zt, we estimate the residuals �̂t for t = 1, 2, . . ., T as fol-

lows:

�̂t ¼ Yt � mY �
X

m2M

amYt� m �
X

g2G

kgXt;g �
X

j2J

qjZt;j: ð7Þ

Following the standard bootstrap approach [53], we now create T bootstrapped residuals ��t
(t = 1, 2, . . ., T) by sampling the estimated residuals �̂1, �̂2, . . ., �̂T with replacement T times.

We now obtain the bootstrap sample Y�t (t = 1, 2, . . ., T) as follows:

Y�t ¼ mY þ
X

m2M

amY
�

t� m þ
X

g2G

kgXt;g þ
X

j2J

qjZt;j þ �
�

t : ð8Þ

We now forecast Y�Tþ1
from the above equation. This gives a bootstrap nowcast Y�Tþ1

. The

above procedure is repeated 1000 times to obtain 1000 bootstrap nowcast values of Y�Tþ1
.

Using these 1000 bootstrap values we can now estimate the probabilities of the nowcast falling

in different value bins (thereby quantifying the uncertainty) as described in the results section

below.

Multi-step ahead forecasts. For multi-step ahead forecasts, the time indices are shifted

appropriately so that observed data (both Y and X) only up to time t is used for making the

forecasts. In addition, we also need to propagate X and Z. This is done by first stationarizing

each variable in {X, Z} using the same ARLR prefitting procedure (cf. Eq (5)) with the same

lags as is done for Y. Denote the residuals of this (diagonal) stationarizing operator by W. We

fit an autoregressive model for the residuals W with additional dependence on Y at a small

number of short lags:

Wt ¼ mY þ
X

q2Q

BqWt� q þ
X

m2M0
bmYt� m þ �t ð9Þ

where Wt are the residuals obtained by stationarizing {Xt, Zt} taken together, Bq is a the matrix

coefficient of W at lag q and bm is the coefficient vector multiplying the scalar forecast variable

Yt at lag m. The setup sections (see below) for dengue and ILI specify the set of lags in each of

the two sets Q and M0 for the datasets under consideration.

Forecasting dengue and influenza incidences using a sparse data representation
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ARGO

ARGO [43] is a multivariate linear regression model, which consists of an autoregressive (AR)

process coupled with certain exogenous variables derived from Google search queries. The

Google search queries used here are those related to either dengue or ILI depending on the dis-

ease that is being forecast. The method utilises the lasso technique (described earlier) in order

to obtain a sparse representation [43]. ARGO makes the reasonable assumption that there is a

positive correlation between the seasons in which dengue is prevalent and dengue related Goo-

gle search queries.

As before, let Yt represent the dengue or ILI case counts after a logarithmic or logit transfor-

mation, let Xt,g be the log-transformed Google search frequency for the search term g, and Zt,j

is the jth additional exogenous term (after an appropriate transformation) at time t. Then, the

ARGO model equation [43] is exactly the same as Eq (6). The unknown parameters are esti-

mated using a variant of the lasso method by minimizing the following sum of squared errors

with an added l1 regularization term:

X

t

yt � my �
X

m2M

amyt� m �
X

g2G

kgxt;g �
X

j2J

qjzt;j

 !2

þ
X

m2M

lam
jamj þ

X

g2G

lkg
jkg j þ

X

j2J

lqj
jqjj

ð10Þ

where yt, xt,g, and zt,j represent the observed values of Yt, Xt,g, and Zt,g, respectively. Further,

lam
, lkg

, and lqj
are the lasso regularization parameters. The unknowns in this model, μY, am,

kg, qj can be estimated from this equation by minimizing it with respect to these parameters

[43]. Once the model parameters are known, the model can be used to predict the disease case

counts for the next time point.

Glmnet lasso

The Glmnet lasso method [48] is identical to ARGO method except that the unknown parame-

ters are estimated using the standard lasso method by minimizing the following sum of

squared errors with an added l1 regularization term:

X

t

yt � my �
X

m2M

amyt� m �
X

g2G

kgxt;g �
X

j2J

qjzt;j

 !2

þla

X

m2M

jamj þ lk

X

g2G

jkgj þ lq

X

j2J

jqjj

ð11Þ

where yt, xt,g, and zt,j represent the observed values of Yt, Xt,g, and Zt,g, respectively. Further, λa,
λk, and λq are the lasso regularization parameters. The unknowns in this model, μY, am, kg, qj
can be estimated from this equation by minimizing it with respect to these parameters. Once

the model parameters are known, the model can be used to predict the disease case counts for

the next time point.

Kalman filtering

The Kalman filter [54] continues to be widely used for prediction and filtering problems since

it is an optimal estimator in the case of linear systems which have a zero mean Gaussian mea-

surement noise. In our context, given the measurement vector of a VAR process with added

measurement noise, Kalman filter estimates the original state vector. Consider the following

Forecasting dengue and influenza incidences using a sparse data representation
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system of equations

~Xtþ1 ¼
~A ~Xt þWtþ1

ð12Þ

~Y t ¼
~C ~Xt þ Vt ð13Þ

Here, ~Xt is the state vector at time t of size M × 1, Wt is a zero mean Gaussian iid random M ×
1 vector with covariance matrix Q, ~Y t is the observed noisy vector and Vt is the measurement

noise characterized by a zero mean Gaussian iid random M × 1 vector with covariance matrix

R that is uncorrelated with Wt and ~Xt. In our case, Yt is the observed (noisy) disease case count

at time t and Xt is the corresponding disease case count with the measurement noise elimi-

nated. Further, ~A and ~C are matrices of sizes M ×M and M ×m respectively where ~C has a

standard known form for AR processes [50]. In our case, A is obtained by first fitting an AR(p)

model to dengue or ILI incidence data and then converting the AR(p) model to a state-space

model A (with M = p) using standard procedure [50]. Kalman filter can then be applied to pre-

dict ~Xtþ1 (disease case count at time t + 1) given the past (noisy) disease case count ~Y t.

Ensemble methods

Ensemble methods [18] combine weighted forecasts from a set of models to come up with the

final forecast. In our case, we use the additive Holt-Winters seasonal model [55] as the base

model and vary different input parameters to generate multiple distinct Holt-Winters models.

This is one strategy that can be used in ensemble methods. One could also use disparate mod-

els as constituent models or combine both approaches [18].

The additive Holt-Winters seasonal model [55] is given as follows:

ytþ1 ¼ lt þ bt þ st� m
lt ¼ aðyt � st� mÞ þ ð1 � aÞðlt� 1 þ bt� 1Þ

bt ¼ bðlt � lt� 1Þ þ ð1 � bÞbt� 1

st ¼ gðyt � ltÞ þ ð1 � gÞst� m:

ð14Þ

Here yt+1 is the forecast for time t + 1 and comprises three components: the level component

lt, the trend component bt, and the seasonal component st. Further, m is the length of each sea-

son (for the monthly dengue data, typically m = 12 and for the weekly ILI data, typically

m = 54). The quantities α, β, and γ are smoothing parameters where each one ranges in value

from 0 to 1. We quantify the model error using either the Root Mean Squared Error (RMSE)

or Mean Absolute Relative Error (MARE) [18]. By minimizing the model error over the train-

ing data set, we can estimate the parameters α, β and γ.

We vary input parameters such as the season length m, error measure (RMSE or MARE) to

be optimized for estimating the parameters, and the ending month of the training set to gener-

ate multiple (in our case, 96) distinct Holt-Winters models. Each of these models produces a

monthly (weekly) forecast for the dengue (ILI) case count using data from two years preceding

that month (week) as the training set. We now need to weight the forecasts of each model so

that we favor the better-performing models [18]. Performance is decided as follows. Suppose

we are forecasting the dengue (ILI) case count for month (week) r in year v. For each of the

models, we first forecast dengue (ILI) case counts for the same month (week) r but in the pre-

ceding 2 years (v − 1 and v − 2). We calculate the mean forecast error ei for the ith model using

these two forecasts and the corresponding observations. The model with the largest mean

forecast error e� is considered to be the worst performing model. We now compute the ratios
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wi = e�/ei for each model and this wi is taken to be the weight corresponding to the ith model.

Obviously, the best performing model (that is, the one with the smallest error) will have the

highest weight. The worst performing model will have weight 1. These weights, after rounding,

can be considered as votes. The ith method casts round(wi) votes for its forecast. We use the

median value of all the votes cast as the consensus forecast of the ensemble [18]. This proce-

dure is repeated for each monthly (weekly) forecast that is needed.

Naive method

In this method, we use the observed value of dengue or ILI incidence at time t as the predicted

value for dengue incidence at time t + 1. This sets the baseline prediction value against which

other methods can be compared.

Dengue forecast

We first apply our method to dengue case count data from five countries/states: 3 in Asia (Sin-

gapore, Taiwan, and Thailand) and 2 in South America (Brazil and Mexico). The data used is

identical to the data used in [43] which has been made publicly available [56]. We consider

three widely used forecast targets [57]:

• real-time dengue incidence (that is if dengue incidence data is available until time t − 1, we

forecast dengue incidence for time t; this is also called nowcast),

• peak value of dengue incidence for each season (here we use the real-time dengue incidence

data from above and obtain the peak value for each season within the entire time period that

is forecast), and

• peak time of dengue incidence for each season (same procedure as above).

Setup. For our method, we choose the transformation based on an analysis of the multi-

plicative nature of the process as described earlier. For the other methods, Yt is taken to be the

log transformation of dengue case count [43] at time t. For all methods, we take Xt,g to be the

log-transformed Google search frequency for the search term g at time t. For our method, a

4-year sliding window immediately prior to the forecast month was used for training whereas

for the ARGO method a 2-year sliding window immediately prior to the forecast month was

used for training, as specified in the original paper [43]. The allowed autoregressive lags used

used for ARLR were months 1 to 4 and month 12.

We use a 4-year training window for our method since deseasoning is carried out by

directly analyzing the time series data and a longer time window leads to a better estimate of

the seasonality component that is to be removed. In ARGO and Glmnet lasso, seasonality is

captured by using appropriate lags in the AR model. The choice that is made is M = {1, 2, . . .,

12, 24} months prior to estimation [43]. This is based on the hypothesis that the previous 12

months, i.e. short term influences, as well as the long term seasonal influence at 24 months

which has been reported to be important for dengue prediction, are required for accurate esti-

mation of dengue case counts. Since the lags are fixed, increasing the training window to 4

years to match with that used by ARLR method is not expected to lead to any significant

changes in the results. We have verified this for the Glmnet lasso method that is a slight variant

of the ARGO method. For ARGO method we have reproduced the results reported in the

paper [43], which uses a 2-year training window. For Glmnet lasso, Kalman and ensemble

methods, a 4-year training window was used. Since the naive method uses the observed
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incidence value at time t as the predicted incidence value at time t+ 1, no training period is

required.

We used the dengue incidence data and Google search frequency data from [56] which is

given for 5 countries/states: Singapore, Taiwan, Thailand, Brazil, and Mexico. Out-of-sample

monthly estimates of dengue case counts were obtained for all methods and their performance

was assessed over the following time periods [43]. Singapore: February 2008 to August 2015;

Taiwan: January 2013 to March 2016; Thailand: October 2010 to August 2015; Brazil: March

2006 to December 2012; Mexico: March 2006 to August 2015.

To quantify the accuracy of the forecast, for each method we compute the following stan-

dard error measures where e is the forecast error vector (forecast values—actual values), Ci are

the actual values, and n is the number of forecasts made:

1. RMS Error (RMSE):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe � eTÞ=n

p
;

2. Mean Absolute Error (MAE): 1=n
Pn

i¼1
jeij;

3. Mean Absolute Percentage Error (MAPE): 1=n
Pn

i¼1
jeij=Ci.

From the error measures recommended in [57] (after exhaustive analysis), we have chosen the

above subset that intersects with the error measures used in [43] in order facilitate direct

comparison.

Dengue

• Data Source: Yang et al. [56]

• Consists of dengue case counts from five locations: Singapore, Taiwan, Thailand, Brazil and

Mexico, coupled with Google trends data—top ten Google query terms in each location

which are correlated with the search query ‘dengue’.

• Error Metrics: RMS Error, Mean Absolute Error, Mean Absolute Percentage Error

• Forecasting Targets: real-time dengue incidence, peak value and peak time of dengue inci-

dence for each season

ILI forecast

Next we apply our method to ILI case count data from the United States. The data used is iden-

tical to the data used in [44] which has been made publicly available [58]. As in the case of den-

gue, we consider three widely used forecast targets [57]:

• real-time ILI incidence or one-week ahead forecast (that is if ILI incidence data is available

until time t − 1),

• peak value of ILI incidence for each season, and

• peak time of ILI incidence for each season.

In addition, we also forecast ILI incidence two, three and four weeks into the future since these

forecasts are also available [44] for the ARGO method for comparison. It should be noted that

these forecasts are labeled one, two and three week ahead forecasts, respectively, in ARGO

since real-time ILI incidence forecast (nowcast) is labeled as zero week ahead forecast.

Setup. We used the ILI incidence data (CDC’s unweighted weekly ILI activity level), athe-

nahealth data (weekly proportion of flu visit, ILI visit, and unspecified viral or ILI visit that are

aggregated from 78,000 healthcare providers nationwide), and Google search frequency data

(of 129 Google search queries most highly correlated with ILI) from [58]. Out-of-sample
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weekly forecasts of ILI incidence (unless otherwise specified, ILI incidence refers to

unweighted ILI incidence) were obtained for the time period July 6, 2013 to February 21, 2015.

For our method and for the Kalman and ensemble methods, we took Yt to be the log trans-

formation of CDC’s unweighted ILI activity level at time t and Z1,t, Z2,t, and Z3,t be the log

transformation of weekly proportion of flu visit, ILI visit, and unspecified viral or ILI visit

obtained from athenahealth data, respectively. For ARGO and Glmnet lasso methods, Yt is the

logit transformation of CDC’s unweighted ILI activity level at time t and Z1,t, Z2,t, and Z3,t are

the logit transformation of weekly proportion of flu visit, ILI visit, and unspecified viral or ILI

visit obtained from athenahealth data. For all methods, we took the log-transformed Google

Trends data. The training periods used for each method were identical to that specified above

in the case of dengue. To quantify the accuracy of the forecast, for each method we compute

the standard error measures described earlier.

ILI

• Data Source: Yang et al. [58]

• ILI incidence data (CDC’s unweighted weekly ILI activity level), athenahealth data (weekly

proportion of flu visit, ILI visit, and unspecified viral or ILI visit 327 that are aggregated

from 78,000 healthcare providers nationwide), and Google search frequency data (of 129

Google search queries most highly correlated with ILI).

• Error Metrics: RMS Error, Mean Absolute Error, Mean Absolute Percentage Error

• Forecasting Targets: real-time ILI incidence, peak value and peak time of ILI incidence for

each season

Results

Dengue

Comparison of different methods. The standard forecast error measures defined above

are computed for all the methods and for each country/state. The results are summarized in

Tables 1–5. Rather than displaying the actual error, the ratio of the error for a given method to

the error for the naive method is shown for each country. The actual error values are given in

parenthesis only for the naive method. The smaller the ratio, the better the performance of cor-

responding method.

In addition to the forecast errors studied above, one could also consider errors in predicting

other relevant epidemic features like peak value and peak time for each season [57]. Results for

Table 1. Singapore: Realtime dengue incidence forecast error comparison.

Method RMSE MAE MAPE

ARLR 0.616 0.697 0.804

ARGO 0.893 0.889 0.917

Glmnet lasso 0.734 0.765 0.826

Kalman 1.088 1.046 1.066

Ensemble 1.591 1.666 1.698

Naive 1 (340) 1 (207) 1 (0.230)

Comparison of the six methods using three different error measures. Each displayed number is the ratio of the actual

error for a given method to the error for the naive method. The absolute error for the naive method is shown in

parenthesis for each error measure.

https://doi.org/10.1371/journal.pcbi.1007518.t001
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RMS errors in predicting these two quantities are shown in Tables 6 and 7. The naive method

is not included since the naive method forecast is just a one time-point offset of the observa-

tional time series. Hence, for the naive method the peak value matches exactly with that of

observations. Further, the peak time error for the naive method is always 1 month due to the

offset. It should be noted that we do not predict the peak values and peak times at the start of

the season but obtain them in a post-facto manner after we have the forecast values for the

entire season. The same procedure is followed for all the methods.

Table 2. Taiwan: Realtime dengue incidence forecast error comparison.

Method RMSE MAE MAPE

ARLR 0.398 0.445 0.401

ARGO 2.180 1.264 0.359

Glmnet lasso 1.905 1.215 0.312

Kalman 0.783 0.786 0.340

Ensemble 1.414 1.271 0.402

Naive 1 (2330) 1 (1011) 1 (1.579)

Comparison of the six methods using three different error measures. Each displayed number is the ratio of the actual

error for a given method to the error for the naive method. The absolute error for the naive method is shown in

parenthesis for each error measure.

https://doi.org/10.1371/journal.pcbi.1007518.t002

Table 3. Thailand: Realtime dengue incidence forecast error comparison.

Method RMSE MAE MAPE

ARLR 0.484 0.518 0.522

ARGO 0.715 0.715 0.706

Glmnet lasso 0.865 0.789 0.773

Kalman 0.851 0.823 0.801

Ensemble 1.464 1.457 1.927

Naive 1 (2059) 1 (1276) 1 (0.326)

Comparison of the six methods using three different error measures. Each displayed number is the ratio of the actual

error for a given method to the error for the naive method. The absolute error for the naive method is shown in

parenthesis for each error measure.

https://doi.org/10.1371/journal.pcbi.1007518.t003

Table 4. Brazil: Realtime dengue incidence forecast error comparison.

Method RMSE MAE MAPE

ARLR 0.504 0.458 0.459

ARGO 0.394 0.369 0.389

Glmnet lasso 0.784 0.596 0.511

Kalman 0.875 0.666 0.467

Ensemble 1.374 1.225 1.221

Naive 1 (30560) 1 (21678) 1 (0.546)

Comparison of the six methods using three different error measures. Each displayed number is the ratio of the actual

error for a given method to the error for the naive method. The absolute error for the naive method is shown in

parenthesis for each error measure.

https://doi.org/10.1371/journal.pcbi.1007518.t004
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Performance of ARLR method. In Fig 1 we compare the performance of real-time den-

gue incidence forecast using the ARLR method with the actual values for Singapore. The real-

time forecast error (actual—forecast) is also plotted. Figures for the remaining countries/states

can be found in the Supporting Information (S1 Fig).

ILI

Comparison of different methods. The standard forecast error measures defined above

are computed for all the methods. The results are summarized in Table 8. As before, rather

than displaying the actual error, the ratio of the error for a given method to the error for the

naive method is shown. The actual error values are given in parenthesis only for the naive

method. The smaller the ratio, the better the performance of corresponding method. Results

for RMS errors in predicting peak value and peak time for each season are shown in Table 9.

The naive method is not included for the reasons stated earlier. As before, it should be noted

Table 6. Dengue: Peak value forecast error comparison.

Method Singapore Taiwan Thailand Brazil Mexico

ARLR 285 1609 1506 27781 2359

Glmnet lasso 516 5632 1714 68008 3925

Kalman 669 2164 2226 72091 7403

Ensemble 863 6323 2018 82069 10506

Comparison of the absolute RMS error for the forecast peak value of the dengue case count using four different methods for five countries. This is done post-facto as

described in the text.

https://doi.org/10.1371/journal.pcbi.1007518.t006

Table 7. Dengue: Peak time forecast error comparison.

Method Singapore Taiwan Thailand Brazil Mexico

ARLR 0.707 0.577 0.000 0.000 0.471

Glmnet lasso 0.707 0.000 0.707 0.408 0.471

Kalman 4.717 1.000 1.541 4.500 1.134

Ensemble 6.325 1.915 3.381 6.764 3.780

Comparison of the absolute RMS error for the forecast peak time of the dengue case count using four different methods for five countries. This is done post-facto as

described in the text.

https://doi.org/10.1371/journal.pcbi.1007518.t007

Table 5. Mexico: Realtime dengue incidence forecast error comparison.

Method RMSE MAE MAPE

ARLR 0.566 0.537 0.562

ARGO 0.680 0.651 0.678

Glmnet lasso 0.861 0.756 0.739

Kalman 1.035 0.899 0.809

Ensemble 1.513 1.411 1.686

Naive 1 (3570) 1 (2161) 1 (0.492)

Comparison of the six methods using three different error measures. Each displayed number is the ratio of the actual

error for a given method to the error for the naive method. The absolute error for the naive method is shown in

parenthesis for each error measure.

https://doi.org/10.1371/journal.pcbi.1007518.t005
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that we do not predict the peak values and peak times at the start of the season but obtain them

in a post-facto manner after we have the forecast values for the entire season. The same proce-

dure is followed for all the methods. Finally the RMS errors for two-week, three-week, and

four-week ahead forecasts for the top two methods (ARLR and ARGO) are compared with

Fig 1. Dengue incidence forecast for Singapore. Comparison of real-time forecasts of dengue case counts with the actual values and real-

time dengue forecast error (actual—predicted values) over several years for Singapore. The x-axis indicates the months starting and ending

with the dates indicated.

https://doi.org/10.1371/journal.pcbi.1007518.g001

Table 8. USA: Realtime ILI incidence forecast error comparison.

Method RMSE MAE MAPE

ARLR 0.263 0.343 0.464

ARGO 0.315 0.403 0.481

Glmnet lasso 0.312 0.405 0.560

Kalman 1.402 1.521 1.698

Ensemble 1.380 1.241 1.165

Naive 1 (0.364) 1 (0.201) 1 (0.083)

Comparison of the six methods using three different error measures. Each displayed number is the ratio of the actual

error for a given method to the error for the naive method. The absolute error for the naive method is shown in

parenthesis for each error measure.

https://doi.org/10.1371/journal.pcbi.1007518.t008

Table 9. ILI: Peak value and peak week forecast error comparison.

Method Peak Value Peak time

ARLR 0.054 0.000

Glmnet lasso 0.175 0.000

Kalman 0.557 1.144

Ensemble 0.906 1.134

Comparison of the RMS error for the forecast peak value and peak time of the ILI case count using four different

methods for USA. This is done post-facto as described in the text.

https://doi.org/10.1371/journal.pcbi.1007518.t009
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those for the naive method in Table 10. As usual, the ratio of the RMS error for a given method

to the RMS error for the naive method is shown. The results for other error measures (MAE

and MAPE) are similar.

Performance of ARLR method. In Fig 2 we compare the performance of the real-time

ILI incidence forecast using the ARLR method with the actual values for USA. The real-time

forecast error (actual—forecast) is also plotted. In Fig 3 we compare the performance of two-

week, three-week, and four-week ahead forecasts of ILI incidence using the ARLR method

with the actual values for USA. The two-week, three-week, and four-week ahead forecast

errors (actual—forecast) are also plotted.

Uncertainty quantification and the effect of backfill

We quantify the uncertainties in our nowcast estimates of ILI incidence. In particular, we

investigate the effect of “backfill” [47] on the forecasting accuracy. ILI incidence values are sub-

ject to backfill [47] which corresponds to a retroactive revision of ILI data as better and addi-

tional data becomes available later. In particular, the initial ILI estimates can be revised by up

to ±25%. These revisions can continue for as long as 40 weeks after the publication of the initial

estimates before they stabilize [47].

Table 10. USA: Multi-week ahead ILI incidence forecast error comparison.

Method 2-week ahead 3-week ahead 4-week ahead

ARLR 0.285 0.386 0.453

ARGO 0.435 0.487 0.459

Naive 1 (0.607) 1 (0.759) 1 (0.873)

Comparison of the RMS error for two-week ahead, three-week ahead and four-week ahead forecasts of the ILI case

count using three different methods for USA. Each displayed number is the ratio of the actual RMS error for a given

method to the RMS error for the naive method. The absolute RMS error for the naive method is shown in

parenthesis.

https://doi.org/10.1371/journal.pcbi.1007518.t010

Fig 2. ILI incidence forecast for USA. Comparison of real-time forecasts of ILI case counts with the actual values and real-time ILI

forecast error (actual—predicted values) for USA. The x-axis indicates the weeks starting and ending with the dates indicated.

https://doi.org/10.1371/journal.pcbi.1007518.g002
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In order to investigate the effect of this phenomenon on our forecast accuracy, we compare

the accuracies using both the revised ILI incidence data (which incorporates all the retroactive

revisions that were carried out subsequent to the first reporting of the data) and the historical

real-time ILI incidence data that was available [59] for each submission week of the forecasting

challenge. The latter data enables us to better mimic the actual forecasting conditions [46].

In Table 11, using the standard format specified by CDC’s flu prediction challenge [60, 61],

we provide the probability that the ILI incidence nowcast by ARLR method lies in the same

bin (usually of width.1) as the actual value (in the Table, this row is labeled by 0). Calling this

bin as the central bin, we also list the probabilities that the ILI incidence nowcast by ARLR

method lies in 5 bins before the central bin (rows labeled −5 to −1) and the probabilities that

the forecast lies in 5 bins after central bin (rows labeled 1 to 5). We also report the log score as

defined by the CDC’s flu prediction challenge [60, 61]:

log score ¼ log
X5

i¼� 5

pi; ð15Þ

where pi is the probability that the ILI incidence nowcast by ARLR method lies in the ith bin as

defined above and log refers to the natural logarithm. All these probabilities and log scores are

listed for three different forecast weeks exhibiting a range of log scores. In order to demon-

strate the effect of backfill, we replace the ILI incidences with the historical real-time ILI inci-

dences. The probabilities and log scores for the same three forecasting weeks obtained using

this historical data is shown in Table 12.

Fig 3. ILI incidence multi-week ahead forecast for USA. Comparison of one-week, two-week, and three-week ahead forecasts of ILI

case counts with the actual values and ILI forecast error (actual—predicted values) over several years for USA. The x-axis indicates the

weeks starting and ending with the dates indicated.

https://doi.org/10.1371/journal.pcbi.1007518.g003
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The mean log score obtained by averaging across all forecasting windows is another quan-

tity of interest. However, this is often reported in terms of forecast skill (or score) which is

defined to be the exponential of the mean log score [42]. Forecast skills for both the backfilled

and historical ILI incidence data are shown in Fig 4.

Table 11. ILI: Uncertainty quantification of ARLR method’s nowcast (one-week ahead forecast) using revised

(backfilled) ILI data for 3 different forecast weeks.

Bin December 28, 2013 March 14, 2014 December 20, 2014

-5 0.049 0.000 0.013

-4 0.147 0.000 0.012

-3 0.244 0.000 0.029

-2 0.142 0.000 0.062

-1 0.160 0.046 0.172

0 0.088 0.175 0.201

1 0.065 0.454 0.175

2 0.040 0.212 0.110

3 0.003 0.095 0.089

4 0.008 0.007 0.072

5 0.000 0.004 0.038

Log Score -0.056 -0.007 -0.027

Probabilities of the ILI incidence nowcast using ARLR method lying the in the various bins defined by the CDC’s flu

prediction challenge [60, 61]. The probabilities are listed for the central bin (row labeled 0) and 5 bins before and 5

bins after this central bin (rows labeled from −5 to −1 and from 1 to 5, respectively). Probabilities for three different

forecast weeks are considered. The last row displays the log score as defined by the CDC’s flu prediction challenge

[60, 61].

https://doi.org/10.1371/journal.pcbi.1007518.t011

Table 12. Historical ILI: Uncertainty quantification of ARLR method’s nowcast (one-week ahead forecast) using

historical (without backfill) ILI data for 3 different forecast weeks.

Bin December 28, 2013 March 14, 2014 December 20, 2014

-5 0.178 0.000 0.067

-4 0.148 0.000 0.091

-3 0.126 0.000 0.130

-2 0.095 0.009 0.150

-1 0.092 0.031 0.128

0 0.029 0.157 0.099

1 0.012 0.291 0.084

2 0.000 0.288 0.036

3 0.005 0.166 0.039

4 0.002 0.048 0.022

5 0.000 0.003 0.019

Log Score -0.3754 -0.007 -0.145

Probabilities of the ILI incidence nowcast using ARLR method lying the in the various bins defined by the CDC’s flu

prediction challenge [60, 61]. The probabilities are listed for the central bin (row labeled 0) and 5 bins before and 5

bins after this central bin (rows labeled from −5 to −1 and from 1 to 5, respectively). Probabilities for three different

forecast weeks are considered. The last row displays the log score as defined by the CDC’s flu prediction challenge

[60, 61].

https://doi.org/10.1371/journal.pcbi.1007518.t012
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Discussion

Forecasting disease dynamics are useful in a number of settings. This includes: planning to

handle surge in hospital admissions (health care workers, protective equipment, ventilators,

etc.), planning and producing pharmaceuticals, including vaccines and antivirals, taking pre-

cautionary measures such closing schools and community activities. For instance, during the

2009 H1N1 pandemic, forecasting was used for taking certain actions that included school clo-

sures in NYC. During the 2014 Ebola outbreak in West Africa, forecasts played an important

role in galvanizing an international response to the outbreak. See [62, 63] for more informa-

tion and discussion on this topic.

Dengue forecasts

From the figures, it is clear that ARLR method does a good job of forecasting the dengue and

ILI incidences. From Fig 3 we observe, as expected, that the forecast error increases as the fore-

cast horizon increases. A quantitative measure of its performance is seen from the Tables. It is

clearly seen that ARLR outperforms the other methods for both dengue and ILI and for all

countries/states except for one (realtime dengue incidence forecast errors for Brazil). In this

context it should be pointed that ARGO method (which performs better than ours in the case

of Brazil) tunes the structure of the regularization parameters to optimize the results for each

country/state (see the supplementary information in [43]). Our method does not require such

tuning. The Glmnet lasso method is essentially identical to ARGO except that no such tuning

is done. Our method does perform better than Glmnet lasso even for Brazil. Further, in all

cases, ARLR forecast error is always better than the forecast error for the baseline naive

method whereas this is not true for the other methods. Compared to ARGO (the next best per-

forming method), our method (ARLR) achieves a 26% average reduction in RMSE for realtime

forecast when averaged across all countries/states; a 21% reduction in MAE; and a 6% reduc-

tion in MAPE. The overall average reduction across all error measures for realtime forecast is

Fig 4. ILI: Comparison of forecast skills for forecasts using backfilled and real-time data. Comparison of forecast skills using backfilled and real-

time data for nowcast, two-week, three-week, and four-week ahead forecasts.

https://doi.org/10.1371/journal.pcbi.1007518.g004
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18% compared to the ARGO method. It should be noted that even if we use a log transforma-

tion of dengue case counts for Taiwan (as for the other countries), our method still outper-

forms ARGO method, but to a lesser extent. Similarly, for predicting peak value, our method

achieves a 43% reduction in errors over the Glmnet lasso method when averaged across all

countries/states. Predictions of peak times are also a bit better.

ILI forecasts

For realtime (one-week ahead) ILI forecasts, ARLR method achieves a 17% reduction in

RMSE, a 15% reduction in MAE, and a 3.5% reduction in MAPE as compared to ARGO. For

two-week, three-week and four-week ahead ILI incidence forecasts, our method (ARLR)

achieves a 19% average reduction in RMSE compared to ARGO. The substantial improve-

ments seen using our method result from an efficient sparse representation of the time series

using the Autoregressive Likelihood Ratio method and proper deseasoning of the raw time

series.

RMSE of the real-time forecast for several countries for shorter window lengths of 2 and 3

years were compared with RMSE of the forecast for a window length of 4 years (that has been

used in this paper). For shorter windows, the RMSE can be up to 25% higher than the RMSE

for a 4-year window.

Effect of backfill on forecast skill

Using ILI incidence data, the forecast skill for the nowcast averaged across all forecast windows

is found to be 0.98 (see Fig 4). The best possible forecast skill is 1. If we use the historical ILI

incidence data without backfill, we get a forecast skill of 0.95. We see that forecast skill when

using backfill data can be substantially better than forecast skill obtained using realtime data

(without correcting for backfill). Similar improvements are also shown in Fig 4 for two-week,

three-week, and four-week ahead forecasts. Such improvements are to be expected [46, 47].

We emphasize that, even after accounting for backfill, our forecast skill values cannot be

directly compared with the values obtained in the realtime CDC flu prediction challenge [60,

61] for the following reasons:

• We use unweighted ILI incidence in order to facilitate comparison with ARGO results. On

the other hand, CDC’s flu prediction challenge [60, 61] uses weighted ILI incidence (where

the ILI incidences are weighted with the region’s population) as the forecast target. Note that

weighted ILI incidences are not simple scaled versions of the unweighted ILI incidences. In

fact, weighted ILI incidence and unweighted ILI incidence can often exhibit different trends.

Therefore, weighted and unweighted ILI incidences are two different forecasting targets and

the corresponding forecasting errors can also be different. If we use the historical weighted

ILI incidence data, we get a forecast skill of 0.90 for nowcast. This value is similar to the

value reported in [45] using Dynamic Bayesian forecasting method on national data.

• We predict the ILI incidence at a national scale whereas the CDC flu prediction challenge

also involves prediction at a regional scale. National scale predictions are typically better

than regional scale predictions.

Comparison across diseases and geographies

It is observed that the real-time forecast errors for ILI are smaller than those for dengue. One

reason for this is the additional data source (electronic health records) that was available for

forecasting ILI incidence. Across geographies, there is again variation in the errors in
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forecasting dengue. There could be several reasons for this such as poorer quality of the dengue

incidence data collection and less widespread usage of internet.

Comparison of different modeling approaches

Our model differs from the ARGO model in two significant ways. The ARLR method esti-

mates the parameters using the Autoregressive Likelihood Ratio algorithm. In ARGO, the

lasso method is used to estimate the parameters. The improved performance of ARLR method

in forecasting dengue and ILI incidences can therefore be explained based on the comparison

in the Supporting Information (S1 Text) between the Autoregressive Likelihood Ratio and

lasso algorithms. In our model, the removal of the seasonal effect is carried out through a sys-

tematic process. In ARGO, this is achieved in an ad-hoc manner by incorporating lags at

months 12 and 24 in the autoregressive model. Further, in ARGO, the regularization parame-

ter is estimated using a cross-validation process. Since this is a random process, the values of

the regularization parameter obtained each time are different. Hence the forecast values and

the forecast error measures can differ from run to run. This drawback is absent in our method.

Limitations

There are limitations to our method as listed below.

• Google Trend queries would be related to disease incidence in countries where a substantial

proportion of the population uses internet. In developing countries with poor internet

usage, such methods might not perform as well.

• Our analysis was at a national level. The data at regional scale might be statistically inferior

leading to lower forecast skill.

• Our forecast skill values for ILI forecasts cannot be compared with the corresponding values

obtained in the realtime CDC flu prediction challenge [60, 61] since we use unweighted ILI

incidence data whereas CDC challenge uses weighted ILI incidence data.

• A recent paper [64] describes other considerations related to data preprocessing and model-

ing that one should be aware of while forecasting epidemics such as ILI.

• We have not used external factors such as urbanization and environmental factors such as

humidity [65] and ambient temperature [66] that could play an important role.

Future work

In our method, we have used online data such as Google Trends data and electronic health rec-

ords data to facilitate comparison with the ARGO method. As directions for future work, one

could also use additional sources of data such as Twitter posts, Wikipedia access logs, and

crowd-sourced reporting systems [67–70]. An online forecasting system could also be imple-

mented using our method thus enabling participation in challenges such as CDC’s flu predic-

tion challenge [60, 61].

Conclusions

In this paper, we have presented ARLR method for estimating a sparse autoregressive model

from observations using a likelihood ratio approach. Using monthly dengue case counts and

Google search term frequency data from 5 countries/states, and weekly ILI case counts, Google

search term frequency data and electronic health records from USA we fitted a sparse
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autoregressive model (with exogenous terms) to these data using the ARLR method and

obtained forecasts for dengue and ILI case counts. It was shown that the forecast error mea-

sures are, on the average, substantially lower for our method when compared to existing meth-

ods like ARGO, Glmnet lasso, Kalman filter, and ensemble method.

Our method would be most useful in cases where we need to forecast using data from mul-

tiple sources, the effect of each of which is modelled using one or more unknown parameters.

In such cases, the training window immediately preceding the forecast time point has to be

necessarily short since data from beyond a certain short time in the past does not contribute to

the predictive ability. In summary, a large number of parameters need to be estimated using a

short training window with a limited number of data points. In such cases, sparse models like

ARLR become essential to obtain robust parameter estimates which then lead to more accurate

forecasts. Our method could also be used to forecast incidence of other diseases.
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