**Supporting Information for** 

## Gemini-based lipoplexes complement the mitochondrial phenotype in MFN1-Knockout mouse embryonic fibroblasts

Mónica Muñoz-Úbeda,<sup>1</sup> Andrés Tolosa-Díaz,<sup>1,2</sup> Santanu Bhattacharya,<sup>3</sup> Elena Junquera,<sup>2</sup> Emilio Aicart,<sup>2</sup> Paolo Natale,<sup>1, 2</sup> and Iván López-Montero.<sup>1, 2, \*</sup>

<sup>1</sup> Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.

<sup>2</sup> Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.

<sup>3</sup> Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

\*Correspondence to: <u>ivanlopez@quim.ucm.es</u>

KEYWORDS: gemini cationic lipids (GCL), mitofusin 1, lipoplexes, mitochondrial dynamics, mitochondrial diseases, gene therapy, drug delivery

## Determination of the effective charge of the gemini cationic lipid (GCL) and the MYC-MFN1 plasmid.

The composition of the mixed lipid acting as cationic gene vector is given in terms of its molar fraction ( $\alpha$ ) of the cationic lipid in the total lipid, while in the lipoplex, the composition may be expressed by: a) the total lipid to DNA mass ratio, defined as ( $m_L/m_D = (m_L^+ + m_L^0)/m_D$ ), where  $m_L$ ,  $m_L^+$ ,  $m_L^0$  and  $m_D$  are the masses of the total mixed lipid, GCL, DOPE, and DNA, respectively, or b) the effective charge ratio ( $\rho_{eff}$ ) expressed as the ratio between the charges of positive GCL/DOPE mixed lipid and negative DNA phosphate groups. All these quantities are related by the following two equations:

$$\alpha = \frac{m_{L^+} / M_{L^+}}{(m_{L^+} / M_{L^+}) + (m_{L^0} / M_{L^0})}$$
(1)

$$O_{eff} = \frac{n^{+}}{n^{-}} = \frac{q_{eff, L^{+}}^{+} (m_{L^{+}} / M_{L^{+}})}{q_{eff, D}^{-} (m_{D} / M_{D})}$$
(2)

where  $n^+$  and  $n^-$  are the number of moles of positive and negative charges of GCL and DNA respectively;  $(q_{eff,L}^+)$  and  $(q_{eff,D}^-)$  are the effective charges of GCL and plasmid DNA (pDNA, MYC-MFN1 in our case) per bp; and  $M_L^0$ ,  $M_L^+$  and  $M_D$  are the molecular weight of the DOPE, GCL and MYC-MFN1 per bp, respectively.

The eletroneutrality ratio of the lipoplex  $((m_L^+ + m_L^0) / m_D)_{\Phi}$  is reached for a particular formulation at which the positive charges of the mixed lipid and those negative of DNA balance  $(\rho_{eff} = 1)$ . Values of  $\rho_{eff}$  higher than the electroneutrality ratio are required for lipoplexes to become a potentially cell transfecting agent as the positively charged lipoplexes allow them crossing the negatively charged cell membranes.<sup>1</sup> The electroneutrality ratio can be accurately determined by measuring the zeta potential ( $\zeta$ ) of lipoplexes as a function of  $(m_L/m_D)_{\Phi}$  and this value is related to  $\alpha$  through the equations (1-2) by:

$$\left(\frac{m_L}{m_D}\right)_{\Phi} = \left(\frac{m_{L^+} + m_{L^0}}{m_D}\right)_{\phi} = \frac{q_D^- [\alpha M_{L^+} + (1 - \alpha) M_{L^0}]}{q_L^+ \alpha M_D}$$
(3)

In general, linear DNAs, such as calf thymus DNA (ctDNA), have its negative charge totally available for the cationic lipid, i.e.,  $q_{linear D} = -2$  per base pair. However, plasmid DNA remains in a supercoiled conformation<sup>2-7</sup> rendering a much less negative charge than its nominal one  $(q_{eff,L}^{-} \ll -2/bp)$ . The determination of the effective charge of both, the cationic lipid  $(q_{eff,L}^{+})$  and the pDNA  $(q_{eff,D}^{-})$  is required then to quantitatively formulate lipoplexes with different effective charge ratios ( $\rho_{eff}$ ). For that, the effective charge of the GCL ( $q_{eff,L}^{+}$ ) was first determined for both GCL1/DOPE-ctDNA and GCL2/DOPE-ctDNA ( $\alpha = 0.2$ ) using equation (3) and the experimental value of  $(m_L/m_D)_{\Phi}$  measured from zeta potential (**Figure S2**), and assuming  $q_{linear D} = -2/bp$ . The effective charge of MYC-MFN1 ( $q_{eff,L}^{-}$ ) is then obtained with equation (4) using the effective charge of the GCL ( $q_{eff,L}^{+}$ ) and the GCL/DOPE-pDNA lipoplex containing MYC-MFN1 plasmid DNA (**Figure 1**):

$$q_{eff,D}^{-} = \left(\frac{m_L}{m_D}\right)_{\Phi} \left(\frac{q_{L^+}^+ \alpha M_D}{\alpha M_{L^+} + (1-\alpha)M_{L^0}}\right)$$
(4)

The effective charge ratio ( $\rho_{eff}$ ) of the lipoplex at  $\alpha = 0.2$  is obtained by substituting ( $q_{eff,L^+}^+$ ) and the MYC-MFN1 ( $q_{eff,D}^-$ ) in equation (2).

## REFERENCES

(1) Dias, R. S.; Lindman, B. DNA Interaction with Polymers and Surfactants; *Wiley & Sons: Hoboken, NJ* **2008**.

(2) Muñoz-Úbeda, M.; Misra, S. K.; Barrán-Berdón, A. L.; Aicart-Ramos, C.; Sierra, M. B.; Biswas, J.; Kondaiah, P.; Junquera, E.; Bhattacharya, S.; Aicart, E. Why is less cationic lipid required to prepare lipoplexes from plasmid DNA than linear DNA in gene therapy? *J. Am. Chem. Soc.* **2011**, *133*, 18014-18017.

(3) Barrán-Berdón, A. L.; Misra, S. K.; Datta, S.; Muñoz-Úbeda, M.; Kondaiah, P.; Junquera, E.; Bhattacharya, S.; Aicart, E. Cationic gemini lipids containing polyoxyethylene spacers as improved transfecting agents of plasmid DNA in cancer cells. *J. Mater. Chem. B* **2014**, *2*, 4640-4652.

(4) Martinez-Negro, M.; Guerrero-Martinez, A.; Garcia-Rio, L.; Domenech, O.; Aicart, E.; de Ilarduya, C. T.; Junquera, E. Multidisciplinary approach to the transfection of plasmid DNA by a nonviral nanocarrier based on a gemini-bolaamphiphilic hybrid lipid. *ACS Omega* **2018**, *3*, 208-217.

(5) Misra, S. K.; Muñoz-Úbeda, M.; Datta, S.; Barrán-Berdón, A. L.; Aicart-Ramos, C.; Castro-Hartmann, P.; Kondaiah, P.; Junquera, E.; Bhattacharya, S.; Aicart, E. Effects of a delocalizable cation on the headgroup of gemini lipids on the lipoplex-type nano-aggregates directly formed from plasmid DNA. *Biomacromolecules* **2013**, *14*, 3951-3963.

(6) Lyubchenko, Y. L.; Shlyakhtenko, L. S. Visualization of supercoiled DNA with atomic force microscopy in situ. *Proc. Natl. Acad. Sci. USA* **1997**, *94*, 496-501.

(7) Foldvari, M.; Badea, I.; Wettig, S.; Verrall, R.; Bagonluri, M. Structural characterization of novel gemini non-viral DNA delivery systems for cutaneous gene therapy. *J. Exp. Nanosci.* **2006**, *1*, 165-176.



Scheme 1. GCL/DOPE mixed lipid formed by  $(C_{16}(CH_3)_2Imidazol)_2C_n$  (n = 2) (GCL1) gemini cationic lipid (M<sub>w</sub> =772.87 g/mol),  $(C_{16}(CH_3)_2Imidazol)_2(C_2O)_n$  (n = 1) (GCL2) gemini cationic lipid (M<sub>w</sub> = 816.92 g/mol) and 1,2-Dioleoil-sn-glicero-3-fosfoetanolamine (DOPE) (M<sub>w</sub> =744.05 g/mol). Scheme of the lipoplex formation and uptake, plasmid release and protein expression.



**Figure S1.** Western Blot images of MEFs wt and MFN1-KO MEFs as revealed with anti-Mfn1 (at 80 KDa, 75 KDa bands) and anti-c-Myc (100 kDa band). The unspecific levels were used to quantify the overexpression of Mfn1 and Mfn1-c-Myc.



**Figure S2.** Zeta potential of GCL/DOPE-ctDNA at different Lipid/DNA mass ratio.  $(m_L/m_D)_{\Phi}$ , is the electroneutrality value. Red squares for GCL1/DOPE-ctDNA and blue circles for GCL2/DOPE-ctDNA.



**Figure S3.** Cell viability of MEFs wt and MFN1-KO MEFs upon incubation with different lipoplexes at **A**)  $\rho_{eff} = 1.5$  **B**)  $\rho_{eff} = 2.5$  **C**)  $\rho_{eff} = 4$  and **D**)  $\rho_{eff} = 6$  after 8, 12 and 24 hrs transfection. The Student's *t* test was performed to measure the significance of statistical difference between the different groups and the negative control (in the absence of treatment). p < 0.05 was considered statistically significant.



**Figure S4.** Uptake of **A**) Lipo2000\*-MFN1 and **B**) GCL1/DOPE-MFN1 mixed lipid at  $\rho_{eff} = 4$  (labeled with the fluorescent dye RhPE, red channel) into MEFs wt (labeled with Lysotracker, green channel) at different incubation times. Scale bars are 10  $\mu$ m.



**Figure S5.** Confocal images of MEFs wt and MFN1-KO MEFs upon incubation with GCL2/DOPE mixed lipid ([GCL] =  $0.5 \mu$ M) or GCL2/DOPE-MFN1 lipoplexes at  $\rho_{eff}$  = 2.5 and 4, and at 0 and 24 hrs after incubation. The mitochondrial network is visualized with Rho123. Scale bars are 10  $\mu$ m.



**Figure S6.** Confocal images of MEFs wt and MFN1-KO MEFs upon incubation with GCL1/DOPE mixed lipid ([GCL] =  $0.5 \mu$ M) or GCL1/DOPE-MFN1 lipoplexes at  $\rho_{eff}$  = 2.5 and 4, and at 0 and 24 hrs after incubation. The mitochondrial network is visualized with Rho123. Scale bars are 10  $\mu$ m.



**Figure S7.** Confocal images of MEFs wt and MFN1-KO MEFs upon incubation with with Lipo2000\* liposomes ([Lipo2000\*] = 0.5  $\mu$ M) or Lipo2000\*-MFN1 lipoplexes at  $\rho_{eff}$  = 2.5 and 4, and at 0 and 24 hrs after incubation. The mitochondrial network is visualized with Rho123. Scale bars are 10  $\mu$ m.



**Figure S8.** Western blot analysis of endogenous Mfn1 protein levels in **A**) MEFs wt and **B**) MFN1-KO MEFs after transfection with different GCL/DOPE-MFN1 lipoplexes at  $\rho_{eff} = 2.5$  and 4 at different incubation times.



**Figure S9.** Western blot analysis of endogenous Mfn1 protein levels in MEFs wt and MFN1-KO MEFs after transfection with Lipo2000\*-MFN1 complexes at  $\rho_{eff} = 2.5$  and 4 at different incubation times. The Student's *t* test was performed to measure the significance of statistical difference between the different groups and the negative control (in the absence of treatment) from 3 independent experiments. *p* < 0.05 was considered statistically significant.