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Abstract  
T h e  theoret ical  available i n s t r u c t i o n  level  paral le l i sm in 
m o s t  b e n c h m a r k s  is v e r y  high. Vulnerabi l i ty  i s  related t o  
t h e  di f f icul ty  with w h i c h  w e  can extract  t h i s  paral le l i sm 
with f i n i t e  resources .  This s t u d y  characterizes  t h e  vu lner-  
abi l i ty  of paral le l i sm t o  resource cons tra in ts  by scheduling 
d y n a m i c  dependence  graphs ( D D G s )  f r o m  traces  of sev- 
eral b e n c h m a r k s  using d i g e r e n t  scheduling a lgor i thms  and  
di f ferent  n u m b e r  of f u n c t i o n a l  un i t s .  It is observed t h a t  
t h e  e z e c u t i o n  tame of t h e  DDGs does n o t  v a r y  s igni f icant ly  
w i t h  low-level  schedul ing algori thms l ike  lazy,  slack, e tc .  
M e a s u r e s  of  vulnerabi l i ty  based o n  slack a n d  load were  also 
considered.  A l t h o u g h  Accslk-Load,  which  u s e s  a combina-  
t i o n  of accurate  s lack and  load t o  m a k e  a predict ion,  has 
a predic t ion  accuracy  of  about 85%, t h e  predic t ion  rate  i s  
only 42%. On t h e  o t h e r  hand,  e v e n  t h o u g h  t h e  predic t ion  
accuracy of a(L,), t h e  s tandard  dev ia t ion  in t h e  load, is 
n o t  a s  h igh ,  t h e r e  is  a predic t ion  in all t h e  cases. T h e  DDG 
e z e c u t i o n  t i m e  i s  also f o u n d  t o  be m o s t  vulnerable  t o  t h e  
f u n c t i o n a l  unit with t h e  greatest  u(Lz). 

1 Introduction 
Recent advances in VLSI technology are making it increas- 
ingly feasible to put multiple (say, 4 8 )  execution pipelines 
on the same chip. To make effective use of such systems, 
high levels of ideal parallelism that is present in many ap- 
plications [8], [3], [2], [5], [7],  [l] should be extractible with 
finite resources. Informally, we use the term vulnerability 
to signify the difficulty with which we can extract the high 
levels of ideal parallelism with finite resources; a formal 
definition is given later in Section 2.3. Due to variations 
in the available parallelism, the efficiency with which the 
resources are used is also of interest. 

Future compilers or OS kernels/runtime systems may be 
able to schedule threads or programs with different vulner- 
abilities to resource constraints so as to maximize perfor- 
mance by operating them at their higher efficiency regimes. 
If there are 2 threads or programs, A and B, and both oper- 
ate at, say, 90% efficiency if k functional units are available 
and, say, 70% efficiency with 2k functional units, then it 
may be advantageous' to use k units each to run A and B 
together rather than use 2k  units to run each in turn[4]. 
If the functional units in question are heavily contended 

'When factoring effects due to caches, TLBs, etc, this deci- 
sion may not be entirely correct due to flushing of state or due to  
contention. 
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such as memory ports, efficiency may increase superlin- 
early with number of functional units; in such cases, the 
vulnerability of a program to resource constraints may be 
high. An intelligent high-level scheduling (at the program 
(or loop) level rather than at  instruction level) requires in- 
formation about the vulnerability of parallelism to resource 
constraints. 

This paper addresses the question of whether high ideal 
parallelism can be characterized to assess it5 extractibility 
with finite resources. 

P r e v i o u s  W o r k :  Theobald et al. [7] analyzed the 
smoothabi l i ty  of parallelism in instruction traces. The 
smoothability measure attempts to quantify whether the 
high ideal parallelism is smoothable enough to be extracted 
with finite resources. Rauchwerger et al. [l] used a mea- 
sure called slack to assess the sustainability of the high 
ideal parallelism to resource constraints. They found that 
high ideal parallelism was mostly associated with a not 
very high average slack, suggesting the vulnerability of this 
parallelism to resource constraints. 

2 Background 

Program dependences can be represented by a par- 
tially ordered, directed, acyclic graph referred to as the 
d y n a m i c  dependence graph (DDG) [2]. The nodes of the 
graph represent the specific instruction executions (as- 
suming unit execution times) and the edges represent the 
inter-instruction dependences during the program execu- 
tion. The height of the topologically sorted DDG is the 
cri t ical  p a t h  length  of the application, which is also equal 
to the minimum number of steps needed to complete the 
program execution. A plot of the number of instructions 
in a level in the topologically sorted DDG gives the par-  
al le l ism profile of the program. The average parallelism 
in the program is the average number of instructions in a 
level. 

2.1 Slack 

An instruction I cannot be scheduled any sooner than the 
scheduling cycle in which all its source operands become 
available to be read as inputs. Also, I must be sched- 
uled no later than the cycle preceding the one in which 
its result gets used as a source operand. Assuming un- 
limited number of resources, this suggests two scheduling 



techniques, the greedy schedule which attempts to sched- 
ule instructions in the earliest possible time slot and the 
lazy  schedule which attempts to schedule instructions in 
the latest possible time slot. The difference between these 
two scheduling algorithms is defined as the slack [l] as- 
sociated with instruction I .  We now define two variations 
in the slack measure, namely, accurate slack and approx- 
i m a t e  s lack .  Every instruction has an earliest start2 and 
a latest start3. Slack can be defined as the difference be- 
tween the latest sta.rt time(Lstart) and the earliest start 
time(Estart). The difference between accurate slack and 
approximate slack is in the calculation of the latest start 
times: 

Lstart,,,(I) = MIN(Lstart , , , (J))  - 1 
Lstart,,,(I) = M I N ( E s t a r t ( J ) )  - 1 

where Jdepends on I. 
We also define block slack for a block in a DDG that is a 

connected set of instructions such that each instruction in 
the block (except the first) has an indegree of one and an 
outdegree of one. A Block G r a p h  is a partially ordered, di- 
rected, acyclic graph. The nodes in a block graph represent 
blocks and the edges represent inter-block dependences. 

Let Nf, be the number of instructions in block B. Let 
Cb be the difference between the latest start time of the 
last instruction in € I  and the earliest start time of the first 
instruction in B.  The block slack of B is defined as the 
difference between Cb and Nb. Block slack is a measure 
of the number of the cycles by which the instructions in 
the block can be delayed without an increase in the critical 
path length. 

2.2 Resource Load 

For each instruction Ij in the trace, we know the slots Si,, 
and Sj,l corresponding to the greedy and the lazy sched- 
uling policies [l] of the instruction in the DDG. Thus, at  
any level z in the IDDG, we can define a set @ of live in- 
structions as. 

The load L is the mean of the cycle load (I+). Mean 
parallelism, M P ,  of a DDG is the number of instructions 
in the DDG divided by the critical path length of the DDG. 

2.3 Vu 1 ne r a b ili t y 

A program A ,  which is scheduled with Pa resources, is 
said to be more vulnerable than a program E ,  which is 
scheduled with PB resources, if A loses more of its ideal 

where N A  and NB represent the number of instructions in 
programs A and B respectively with TA and TB the time 

parallelism when compared to B when p - p  - 

'corresponding to the greedy schedule 
3corresponding to  the lazy schedule 

taken. We define the ratio 6 as the normal i zed  n u m b e r  
of Tesources. 

The ability of a program to hold onto its ideal parallelism 
is measured as the ratio of the execution time with the 
execution time with infinite resources. This is termed as 
Normal ized  T i m e .  

3 Scope of Study 

3.1 Measures of Vulnerability 
Earlier work (Rauchwerger e t  al. [l]) suggested that slack 
could be used as a measure of the vulnerability of paral- 
lelism to resource constraints. We have considered both 
accurate and approximate slacks, In addition, we have 
considered filtered slack to eliminate effects due to taper-  
ing  (see below). We have also studied the standard de- 
viation of load as a candidate measure. Finally, we have 
also looked at various combinations of load and slack to 
investigate which of them is suitable and their accuracy 
and predictive ability. 

3.2 Low-level Scheduling Algorithms 
We have scheduled the DDGs in this study by four list 
scheduling algorithms under resource constraints: naive, 
lazy, slack and block. List scheduling algorithms order 
all the instructions available for execution in the next time 
(the ready instructions) step using a local priority function 
without any backtracking. The various algorithms above 
differ in the choice of the local priority function. The naive  
scheduling algorithm orders the set of ready instructions in 
the increasing order of their earliest start times. The lazy  
scheduling algorithm orders the set of ready instructions in 
the increasing order of their latest start times. In case of a 
tie, the algorithm gives priority to an instruction with the 
least earliest start time. The slack scheduling algorithm 
orders the set of ready instructions in the increasing order 
of their slacks. In case of a tie, the algorithm gives pri- 
ority to an instruction with the least earliest start time. 
The block scheduling algorithm orders the ready instruc- 
tions in the increasing order of their block slacks. In case 
of a tie, the block with a greater number of instructions is 
given more importance. The block scheduling algorithm is 
based on the fact that there is only one instruction in the 
block that can be ready at  any given instant of time. The 
algorithm schedules one instruction from each of the first 
few blocks in the ready list. The algorithm then modifies 
the block slacks in the ready list. This is done by decre- 
menting the number of cycles of all the blocks in the ready 
list. The number of instructions for the blocks from which 
an instruction has been scheduled is also decremented. 

3.3 Functional Units 

We have assumed that functional units are capable of ex- 
ecuting any instruction in the first part of the study. We 
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later relax this so that different types of functional units 
are possible (Section 6.6). 

4 Simulation Methodology 
An instruction level simulation of the RS/6000 instruction 
set is done using dynamic instruction traces [6] containing 
each instruction that is executed and the da ta  addresses 
for all the memory references. We have designed and im- 
plemented an  analysis tool which accepts as input these 
dynamic traces and outputs the DDG that could be ex- 
ecuted on an  abstract machine with unlimited functional 
units and various constraints on the rest of the resources. 

In order to obtain the oracle limit of parallelism present 
in a program, we assume perfect branch prediction. Using 
the option of unlimited renaming of registers and memory, 
the tool is capable of providing a DDG containing only 
essential dependences. For simplicity, we assume that all 
the operations are single cycle operations. The scope of 
concurrency detection (instruction window) is unlimited. 
Thus, two instructions which are arbitrarily far apart in 
the trace can be present in the same level in the DDG. 

4.1 Construction of the DDG 
For every instruction that is executed, the trace contains 
the opcode of the instruction. If the instruction makes a 
memory reference, the memory address accessed is also a 
part of the trace. The parallelizer extracts the instruc- 
tion from the trace and computes the earliest time an in- 
struction can be executed, taking into account all the data 
dependences that have to be satisfied, and places the in- 
struction in the appropriate level in the DDG. Essential 
dependence is enforced by simply waiting for all the input 
resources. Anti and output dependences are enforced by 
waiting for the destination resources also. The ready t i m e  
of a resource is the time at which the data contained in 
the resource is valid. The def ini t ion t i m e  of an  instruction 
is the time when all the source operands and all the des- 

emitted is inserted into its corresponding level in the DDG. 
If a-resource is never redefined during the execution of the 
rest of the program, then it will wait for emission at the 
end of the program. 

4.2 Data Structures 

In order to enforce the dependence relations, we declare 
shadow structures for all the visible system resources, the 
registers and memory. There is a shadow structure for 
every register and every memory object in use. Each 
such storage resource has a shadow structure whose fields 
record: ready time, instruction id, last use time stamp and 
link to co-defined resources. 

The DDG is stored as a hash table indexed by the ear- 
liest start time of an instruction. The DDG also needs to 
keep track of the dependences between various nodes in the 
graph, since this information is required while scheduling 
the DDG for a given number of resources. 

The size of the structure for an instruction in the DDG 
with two operands is 28 bytes. Hence, the amount of space 
needed to maintain the shadow structures and the DDG 
is substantial. Due to the large amount of space needed 
to maintain the DDG and the shadow structures and the 
unlimited scope of concurrency detection, it is not possible 
to construct the DDG for the entire trace. The analysis 
tool can generate the DDG for a program, after tracing a 
fixed number of instructions. To carry the study further, 
we have developed a method of identifying loops from a 
trace stream. Since loops are likely to be the most exe- 
cuted portions of a program, latching into loops will help 
us to trace regions of high dynamic frequency execution. 
This handles another problem: program startup is often 
anomalous and so a million-instruction sample should be 
taken from the middle of the benchmark, perhaps after a 
large random number of instructions have already been ex- 
ecuted. Detecting loops helps in achieving this objective. 

4.3 Loop Detection 
tination operands are ready. This gives the earliest start 
time of an  instruction. The jirst u s e  t i m e  of an  instruction 
is the time of first use of any of the resources defined by 
the instruction. This gives the latest start time4 of the in- 
struction. The IBM RS/SOOO instructions can potentially 
define several resources at the same time. For example, 
the load update instruction (lu) defines a memory address 
and also a register variable. In order to keep an accurate 
first use stamp of an  instruction, we have to keep links 
between these simultaneously defined resources. When a 
resource is being redefined these links are broken and new 
links are established. Every resource has an instruction id, 
which identifies the defining instruction. When a resource 
that has a valid instruction id is being redefined and it has 
no links to other registers or memory locations, then that 
instruction is eligible to be emi t ted .  An instruction that is 

Due to the difficulty of generating traces for a large num- 
ber of instructions due to memory constraints, we have 
generated traces for those portions of the program that 
are more frequently executed by latching onto loop bodies 
and scheduling the DDGs generated using these traces. 

This section describes our algorithm for detecting loops 
given a dynamic execution trace of a program. The souTce 
of a branch instruction is the address of the branch in- 
struction and the target  of a branch instruction is the tar- 
get address of the branch. We define a backward branch  
as a branch whose target  is lesser than the souTce. The 
algorithm assumes that a branch forms the tail of a loop 
if it is backward branch and the branch is taken atleast 
twice. The targe t  of this branch is considered the head of 
the loop. 

The algorithm groups all tails of a branch at the tail 
' Lstartapp mentioned in Section 2.1 with the greatest value of the source.  Let the targe t  for 
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branch B be represented by TB. During the execution of 
a backward branch B ,  the program may or may not be in 
a loop with the loop head given by TB. If the program is 
in a loop with the loop head given by TB, the branch B is 
nothing but another of the tails of the loop with the head 
at TB. If the program is not in a loop with the loop head 
given by TB,  the branch B could be the tail of another 
loop. 

A branch, B1 belongs to the same group as another 
branch B2 if they both B1 and Bz have the same target 
and the program is already in a loop due to the branch B2. 
For each backward branch, the group to which the branch 
belongs is identified. If a branch to the target  of this group 
has been taken by members of this group more than once, 
the program is in a loop. 

For every branch, if the target  of the branch exceeds the 
target of the innermost nested loop, we assume that we 
have exitted from the innermost nested loop. Thus, the 
algorithm speculatively exits from a loop. 

5 Experiments Conducted 

compress 
eqnt o t t 
hydro 2d 

li 
l ud  

ocean 
spice  
trf d 

uncompr es s 

Performs data compression on a file 
Translates boolean eqn into table 
Solves Navies-Stokes equations 
A lisp interpreter C solving 9 queens 
Solves Az = b by LU factorization 
Simulates eddy currents in a basin 
Simulates an electronic circuit 
A kernel simulating a 2-electron 
integral transformation 
Uncompresses a compressed file 

Table 1: The benchmarks used 

The DDG generated by the analysis tool is scheduled 
by the scheduler under various constraints on the number 
of functional units. The functional units are assumed to 
be capable of executing any instruction. (We later assume 
different types of functional units in Section 6.6.) The 
scheduler also assumes that all instructions execute in a 
single cycle. We have scheduled the DDGs by the follow- 
ing four list scheduling algorithms: naive, lazy, slack and 
block. Results of using traces from loop is discussed in 
Section 6.7. 

We have compared various parameters including slack, 
o(&) as possible measures to predict vulnerability. For 
the purposes of this study the DDGs have been obtained 
from the first one million instructions of the benchmarks 
in Table 1. The results are presented in Section 6. 

We have also scheduled the DDGs assuming different 
types of functional units. For this purpose, the IBM 
RS/6000 instruction set has been divided into four cat- 
egories as follows: logzcal (all branch & those that operate 
on condition register; executed by instruction and cache 

0.51 0 10 " 20 30 ' 40 " M 60 " 70 80 " 90 tW ' 
Numberof ReVUhO. 

Figure 1: Difference between Scheduling Algorithms 

unit), floating-point (executed by floating point unit), 
memory (ld/st; executed by fixed point unit) and inte- 
ger (arithmetic or logical operations on integer operands 
which are stored in the GPRs; also executed by fixed point 
unit). 

6 Results 

6.1 Effect of Scheduling Algorithms 
In order to study the effect of different scheduling algo- 
rithms on the vulnerability, we scheduled all the DDGs us- 
ing the four scheduling algorithms, naive scheduling, lazy 
scheduling, slack scheduling and block scheduling. Our re- 
sults indicate that there is very little difference between 
the execution times for the schedules generated using dif- 
ferent scheduling algorithms. Figure 1 shows the difference 
between the various scheduling algorithms for the DDG ob- 
tained from spice.  From this, we have concluded that the 
differences in the scheduling algorithms can be neglected 
for the purposes of this study. 

Though the various scheduling algorithms did not have a 
perceptible impact on the execution times, it should be em- 
phasized that a higher-level scheduling of a program based 
on its vulnerability is the issue that this study addresses. 

6.2 Tapering 

It has been observed in a few cases that some levels in 
a DDG have fewer instructions than the remaining levels. 
On closer inspection, the profile of instructions per level 
(paral le l ism prof i le )  of the DDG reveals that the levels in 
which there are fewer number of instructions are signifi- 
cant and clustered. This phenomenon was first observed by 
sampling the parallelism at various levels (corresponding 
to 5%, 10% . . . loo% of the total number of instructions) 
of the DDG. The plot of the parallelism as a function of 
the cumulative number of instructions scheduled is called 
paral le l ism p lo t .  This phenomenon has been named taper- 
ing effect due to the effect it has on the parallelism plot 
of the DDG. Figure 2 and Figure 3 show the parallelism 
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Figure 2: Parallelism plot of the DDG for ocean 

% of 
instructions 

70 
75 
80 
85 
90 
95 

100 

parallelism DDG Level 

109.5 3139 
101.76 3619 
95.86 4099 
91.17 4579 
87.43 5056 
80.69 5782 
19.94 24626 

Table 2: Parallelism in the DDG for ocean 

plots for the DDGs of ocean and lud respectively. It can 
be observed from Figure 2 and Table 2 that the instruc- 
tions in the last 75% of the levels in the DDG of ocean 
are only 5% of the total instructions. It can be seen from 
Figure 3 that tapering is not observed in the parallelism 
plot of the DDG obtained from lud. The effect of taper- 
ing on the parallelism profile is a sudden sharp decline in 
the number of instructions per level of the DDG. Figure 5 
and Figure 4 show the parallelism profiles of the DDGs of 
ocean and lud respectively. The effect of tapering on the 
parallelism profile can be observed in Figure 5, where the 
number of instructions in most levels of the DDG in the 
range 5000 to 25000 is close to zero. 

Since the number of resources for which the DDG is 
scheduled depends on the amount of parallelism in the 
DDG, tapering effect plays an important role. Table 2 
shows that there is considerable difference between the 
parallelism for 95% of the instructions and for 100% of 
the instructions. Hence, we schedule only that portion of 
the DDG which is not affected by the tapering effect. For 
the example in Table 2, the parallelism is chosen to be 
equal to 81 and only the first 5782 levels of the DDG are 
scheduled. Figure 6 shows the parallelism profile for the 
DDG of ocean when only the initial 5782 levels of the DDG 
are considered. It can observed that the tapering effect is 
absent in Figure 6. 

Figure 3: Parallelism plot of the DDG for lud 

Figure 4: Parallelism profile of lud DDG for 512K instrs 
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Figure 5: Parallelism profile of ocean DDG for 512K instrs 

Figure 6: Parallelism profile of ocean DDG for 1st 5782 
levels 
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Figure 7: l i ' s  DDG is less vulnerable than compress's 
DDG (number in bracket refers to accurate slack of DD 
G) 

compress 
eqn to t t  
hydro2d 

li 
lud 

ocean 
sp ice  
trf d 

uncompr 

Approx 
Slack 

381.90 
332 5 5  
52.26 
180.98 
53.46 

784.61 
172.13 
927.06 
434.23 

-- 

Table 3: Filtere slack for the va: 

Ik 
95% 
89.14 

125.56 
25.77 
36.37 
51.01 
80.63 
28.66 
59.17 

278.76 

'US DD 

99% 
88.29 
148.75 
58.02 
33.09 
46.12 
71.75 
37.64 
53.11 

368.80 

6.3 Slack as a Measure of Vulnerability 

Rauchwerger e t  a l .  [l] suggest that slack could be used 
as a measure of the vulnerability of parallelism to resource 
constraints. A higher slack in the DDG implies greater 
freedom in scheduling instructions, which could lead to 
better utilization of the resources. However, although 
there are instances where a DDG with greater slack is less 
vulnerable than a DDG with lesser slack, there are also 
cases where the opposite is true. It can be seen in Figure 7 
that a DDG with a slack of 311 is less vulnerable than a 
DDG with a slack of 657. 

One of the reasons for slack not being an accurate mea- 
sure of the vulnerability is that a few instructions with 
very high slacks can increase the slack of the entire DDG. 
To evaluate the effect of instructions with very high slack, 
we have computed the slack of the DDG by neglecting 
the slacks of instructions which have either very high or 
very low slacks. This measure of the slack is called filtered 
slack.  Filtered slack can be calculated by not considering 
the slacks of various percentages of instructions. A filtered 
slack of z%, implies that 2% of the total number of instruc- 
tions have been considered in calculating the filtered slack. 
The slacks of the outliers (( 1 - z)% of the instructions) are 
ignored in calculating a filtered slack of 2% as they either 

have a very high or a very low slack. The filtered slacks of 
various programs are given in Table 3, which illustrates the 
effect on slack due to instructions with a very high slack. 

A large slack in a level of the DDG accompanied by 
a small number of instructions, implies that even though 
these instructions can be scheduled in later cycles, they are 
scheduled in this cycle because the number of resources is 
sufficient. Hence, for slack to be an accurate measure of 
the vulnerability, it is essential for the the large slack to be 
accompanied by a large number of instructions. We have 
observed that there is no strong correlation between the 
slack profile and the parallelism profile, implying that a 
large slack is not always accompanied by a large number 
of instructions. Slack profi le is the profile of the average 
slack of the instructions in a level of the DDG. The corre- 
lation between the slack profile and the parallelism profile 
is shown in Table 4. 

benchmark 
compress 
e qnt o t t 
hydro2d 

li 
lud 

ocean 
s p i c e  
t r f d  

uncompr e s s 

correlation 
0.036 
0.329 
0.289 
0.066 
0.175 
0.377 
0.08 

-0.001 
0.571 

Table 4: Correlation between slack and parallelism profile 

6.4 Load as a Measure of Vulnerability 
For every scheduling algorithm, SI we define T.,N(D) to 
be the execution time of the DDG D, when D is scheduled 
with N resources. 

Theorem 1 If in a dependence graph, D, CT(L, )~  = 0,  
t h e n  3 a scheduling algori thm,  S ,  such  tha t  T s , M ~ ( D )  = 
T S , ~ ( D ) ,  where MP is t h e  m e a n  paral le l ism of D. 

Due to the above theorem (stated without proof due to 
lack of space), one could hypothesize that a DDG with a 
lesser value of a(L,) indicates that the DDG is less vulner- 
able to resource constraints. However, even a(L,) is not 
an accurate measure of the vulnerability. 

6.5 Some More Measures of Vulnerability 
We have seen that neither slack nor a(L,) are accurate 

measures of the vulnerability of parallelism to resource con- 
straints. It is clear that a high slack and a low a(L,) are 
desirable if a DDG is to be less vulnerable to resource con- 
straints. Based on this, we have considered a few other 

'sigma(r) is the standard deviation of the random variable I 
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AppSlk 
FiltSlk 

StdLoad 
FiltLoad 

AccSlk-Load 
AppSlk-Load 
FiltSlk-Load 

Corr I Wrong 1 Inconsis 
47.2 I 36.1 I 16.6 
41.6 
50 

69.4 
55.5 
86.6 
80 

78.9 
59.1 

41.6 
33.3 
13.8 
27.7 
6.6 
13.3 
10.5 
22.7 

16.6 
16.6 
16.6 
16.6 
6.6 
6.6 
10.5 
18.2 

Table 5: Prediction accuracies (percentages) 
measures 

58.3 
58.3 
47.2 
38.8 

of various 

measures, which are combinations of slack and load, to 
predict the vulnerability. Let A and B be two different 
DDGs. Consider the following cases: 

sZacb(A) > sZacL(B) & a(L,(A)) < a(L,(B)): in this 
case we predict that A is less vulnerable to resource 
constraints than B. 

0 sZacL(A) > sZacL(B) & a(L , (A) )  > a ( L ( B ) ) :  In this 
case nothing is predicted regarding the vulnerabilities 
of A a n d  B .  

0 sZacL(A) < sZacb(B) & a(L,(A)) < a(L,(B)): In 
this case also nothing is predicted regarding the vul- 
nerabilities of A and B. 

0 sIack(A) < sIack(B) & o(L,(A)) > a(L( I3 ) ) :  In 
this case A is predicted to be more vulnerable than 
B .  

To summarize, while using both slack and load to predict 
vulnerability, a prediction is made if and only if the pre- 
dictions made using slack and a(L,) agree. 

We have compared the following as measures of vulnera- 
bility with a view of comparing their prediction accuracies: 
accurate, approx slack (AccSlk, AppSlk); 95% filtered slack 
(FiltSlk); o(L,) (StdLoad); filtered load (FiltLd) 6 ;  accu- 
rate, approx slack, FiltSlk each with a(L,) (AccSlkLoad, 
AppSlkLoad, FiltSlkLoad); both FiltSlk & FiltLd (FiltSlk- 
FiltLoad). The outcome of the prediction by each of these 
measures can be one of the following: corect, wrong, in- 
consistent (there is no discernible difference between the 
DDGs compared, but a prediction is made which is in- 
consistent with the observation), unpredicted (the measure 
used is unable to make any prediction regarding the vul- 
nerabilities; applies measures which are combinations of 
slack and load). 

We have made pairwise comparisons of the DDGs of 
the nine benchmarks to obtain the prediction accuracies 

We have neglected cycles with either a very high or a very low 
load in the calculation of u(Lt). This is analogous to filtered slack 
and is included here only for the purpose of completion. Only 95% 
of the levels of the DDG are considered in  calculating o(LI). 

2 

Figure 8: Scheduling a hydroad DDG for different memory 
and FP units 

of the various measures considered. Table 5 gives the pre- 
diction accuracies of each of the measures considered. In 
Table 5, %Correct, %Wrong and %Inconsistent are calcu- 
lated as percentages of the number of predictions made. 
From Table 5, the highest prediction accuracy is obtained 
when both accurate slack and Load are used as a measure 
of vulnerability. Also, although the prediction accuracy is 
high using this measure, in more than 50% of the instances, 
there is no prediction. 

Although the prediction accuracy of AccSlk-Load is very 
high, the rate of prediction is low. On the other hand, 
while using Load as the measure to predict we get a good 
prediction accuracy with a prediction in all cases. 

The above results have been obtained by studying the 
vulnerability of the DDGs obtained from the initial one 
million instructions of the trace. Since, these instructions 
are all in the initial stages of execution of the program, we 
constructed DDGs for a set of instructions which are exe- 
cuted after 10 million instructions. We have compared the 
vulnerability of these DDGs with the predictions made by 
the various measures considered and now find that a(L,) 
has a prediction accuracy of 61%. 

6.6 
The above results have been obtained by assuming that the 
functional units are capable of executing any instruction. 
In this section, we present results for the case when a given 
functional unit is capable of executing only certain types 
of instructions. 

We have scheduled each DDG with varying number of 
functional units of each kind. The number of functional 
units used of each type is proportional to the number of 
instructions of each type. We have found that the DDG is 
more vulnerable to the availability of the functional unit 
with a greater u(L,). Figure 8 compares the effect of 
scheduling a DDG of hydro2d with memory anits and 
floating point units. The o(L,) values for the memory 
instructions and floating point instructions are 154 and 
201 respectively. iFrom the Figure 8, it can be seen that 
the DDG is more vulnerable to the functional unit with a 
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greater a(L,).  

6.7 Scheduling DDGs of loops 

We have obtained the DDGs of various benchmarks by 
tracing only the loops of the benchmark. A loop is only 
traced once, thus reducing the number of DDGs gener- 
ated. We have scheduled the DDGs obtained from these 
loops and have observed that U(&)  predicts vulnerability 
with an accuracy of 65%. AccslkLoad has a greater accu- 
racy of prediction, but the prediction rate is lesser than 
50%. Since these results are close to other results that are 
not based on loop detection, we believe that our results 
reported previously are qualitatively valid. 

7 Conclusions 
In this paper, we have attempted to characterize the vul- 
nerability of paral.lelism to resource constraints by con- 
structing DDGs from instruction traces and scheduling 
these DDGs for various numbers of functional units. The 
effect of scheduling algorithms on the execution time of the 
DDGs for the benchmarks we have considered is negligible. 

We have Considered a number of candidate measures of 
vulnerability but none of these measures is an accurate 
measure of the Vulnerability. Although Accslk-Load has a 
high prediction accuracy of about 85%, the rate of predic- 
tion is only 42%. On the other hand, even though c(L,) 
has a prediction accuracy of 70%, there is a prediction in 
all cases. 

We have also scheduled each DDG assuming the exis- 
tence of four different types of functional units, logical 
units, floating point units, memory units and integer units. 
We have observed that the DDG is more vulnerable to the 
functional unit with a greater c(L,). 

7.1 Future Directions 
In the DDGs that have been used for this study, the num- 
ber of instructions is 512k, which is small compared the 
total number of instructions executed by the benchmarks. 
The limitations of the size of memory for keeping the DDG 
in memory currently prevent any larger set of instructions 
to be considered (our machine for the simulations has been 
a RS6000 server 590 with 256MB of memory). Since the 
choice of the scheduling algorithm does not play an impor- 
tant role in deciding the vulnerability, one could dispense 
with the DDG and schedule the instructions while tracing 
the benchmarks. This approach has the additional advan- 
tage of eliminating the effect due to tapering, 

The measure with the highest prediction accuracy 
(Accslk-Load) has a very low prediction rate while both 
slack and U(&) make a prediction all the time. Since 
Accslk-Load makes a prediction if and only if both slack 
and c(L,) make the same prediction, a low prediction rate 
of Accslk-Load implies that the predictions using slack and 
a(L,) disagree most of the time. A closer examination of 

the circumstances in which slack and a(L,) make correct 
predictions will help in obtaining a better measure of vul- 
nerability. 

This study assumes that all instructions have unit cycle 
latencies. One could study the effect of instructions with 
non-unit cycle latencies on the prediction accuracies of the 
various measures that have been considered. 
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