
Characterizing Vulnerability of Parallelism to Resource Constraints

V. Vivekanand, K. Gopinath, Computer Science & Automation, IISc, Bangalore
Pradeep Dubey, IBM T.J. Watson Research Center, Yorktown Heights

Abstract
T h e theoret ical available i n s t r u c t i o n level paral le l i sm in
m o s t b e n c h m a r k s is v e r y high. Vulnerabi l i ty i s related t o
t h e di f f icul ty with w h i c h w e can extract t h i s paral le l i sm
with f i n i t e resources . This s t u d y characterizes t h e vu lner-
abi l i ty of paral le l i sm t o resource cons tra in ts by scheduling
d y n a m i c dependence graphs (D D G s) f r o m traces of sev-
eral b e n c h m a r k s using d i g e r e n t scheduling a lgor i thms and
di f ferent n u m b e r of f u n c t i o n a l un i t s . It is observed t h a t
t h e e z e c u t i o n tame of t h e DDGs does n o t v a r y s igni f icant ly
w i t h low-level schedul ing algori thms l ike lazy, slack, e tc .
M e a s u r e s of vulnerabi l i ty based o n slack a n d load were also
considered. A l t h o u g h Accslk-Load, which u s e s a combina-
t i o n of accurate s lack and load t o m a k e a predict ion, has
a predic t ion accuracy of about 85%, t h e predic t ion rate i s
only 42%. On t h e o t h e r hand, e v e n t h o u g h t h e predic t ion
accuracy of a(L,), t h e s tandard dev ia t ion in t h e load, is
n o t a s h igh , t h e r e is a predic t ion in all t h e cases. T h e DDG
e z e c u t i o n t i m e i s also f o u n d t o be m o s t vulnerable t o t h e
f u n c t i o n a l unit with t h e greatest u(Lz).

1 Introduction
Recent advances in VLSI technology are making it increas-
ingly feasible to put multiple (say, 4 8) execution pipelines
on the same chip. To make effective use of such systems,
high levels of ideal parallelism that is present in many ap-
plications [8], [3], [2], [5], [7], [l] should be extractible with
finite resources. Informally, we use the term vulnerability
to signify the difficulty with which we can extract the high
levels of ideal parallelism with finite resources; a formal
definition is given later in Section 2.3. Due to variations
in the available parallelism, the efficiency with which the
resources are used is also of interest.

Future compilers or OS kernels/runtime systems may be
able to schedule threads or programs with different vulner-
abilities to resource constraints so as to maximize perfor-
mance by operating them at their higher efficiency regimes.
If there are 2 threads or programs, A and B, and both oper-
ate at, say, 90% efficiency if k functional units are available
and, say, 70% efficiency with 2k functional units, then it
may be advantageous' to use k units each to run A and B
together rather than use 2k units to run each in turn[4].
If the functional units in question are heavily contended

'When factoring effects due to caches, TLBs, etc, this deci-
sion may not be entirely correct due to flushing of state or due to
contention.

1094-7256/97 $10.00 0 1997 IEEE
236

such as memory ports, efficiency may increase superlin-
early with number of functional units; in such cases, the
vulnerability of a program to resource constraints may be
high. An intelligent high-level scheduling (at the program
(or loop) level rather than at instruction level) requires in-
formation about the vulnerability of parallelism to resource
constraints.

This paper addresses the question of whether high ideal
parallelism can be characterized to assess it5 extractibility
with finite resources.

P r e v i o u s W o r k : Theobald et al. [7] analyzed the
smoothabi l i ty of parallelism in instruction traces. The
smoothability measure attempts to quantify whether the
high ideal parallelism is smoothable enough to be extracted
with finite resources. Rauchwerger et al. [l] used a mea-
sure called slack to assess the sustainability of the high
ideal parallelism to resource constraints. They found that
high ideal parallelism was mostly associated with a not
very high average slack, suggesting the vulnerability of this
parallelism to resource constraints.

2 Background

Program dependences can be represented by a par-
tially ordered, directed, acyclic graph referred to as the
d y n a m i c dependence graph (DDG) [2]. The nodes of the
graph represent the specific instruction executions (as-
suming unit execution times) and the edges represent the
inter-instruction dependences during the program execu-
tion. The height of the topologically sorted DDG is the
cri t ical p a t h length of the application, which is also equal
to the minimum number of steps needed to complete the
program execution. A plot of the number of instructions
in a level in the topologically sorted DDG gives the par-
al le l ism profile of the program. The average parallelism
in the program is the average number of instructions in a
level.

2.1 Slack

An instruction I cannot be scheduled any sooner than the
scheduling cycle in which all its source operands become
available to be read as inputs. Also, I must be sched-
uled no later than the cycle preceding the one in which
its result gets used as a source operand. Assuming un-
limited number of resources, this suggests two scheduling

techniques, the greedy schedule which attempts to sched-
ule instructions in the earliest possible time slot and the
lazy schedule which attempts to schedule instructions in
the latest possible time slot. The difference between these
two scheduling algorithms is defined as the slack [l] as-
sociated with instruction I . We now define two variations
in the slack measure, namely, accurate slack and approx-
i m a t e s lack . Every instruction has an earliest start2 and
a latest start3. Slack can be defined as the difference be-
tween the latest sta.rt time(Lstart) and the earliest start
time(Estart). The difference between accurate slack and
approximate slack is in the calculation of the latest start
times:

Lstart,,,(I) = MIN(Lstart , , , (J)) - 1
Lstart,,,(I) = M I N (E s t a r t (J)) - 1

where Jdepends on I.
We also define block slack for a block in a DDG that is a

connected set of instructions such that each instruction in
the block (except the first) has an indegree of one and an
outdegree of one. A Block G r a p h is a partially ordered, di-
rected, acyclic graph. The nodes in a block graph represent
blocks and the edges represent inter-block dependences.

Let Nf, be the number of instructions in block B. Let
Cb be the difference between the latest start time of the
last instruction in € I and the earliest start time of the first
instruction in B. The block slack of B is defined as the
difference between Cb and Nb. Block slack is a measure
of the number of the cycles by which the instructions in
the block can be delayed without an increase in the critical
path length.

2.2 Resource Load

For each instruction Ij in the trace, we know the slots Si,,
and Sj,l corresponding to the greedy and the lazy sched-
uling policies [l] of the instruction in the DDG. Thus, at
any level z in the IDDG, we can define a set @ of live in-
structions as.

The load L is the mean of the cycle load (I+). Mean
parallelism, M P , of a DDG is the number of instructions
in the DDG divided by the critical path length of the DDG.

2.3 Vu 1 ne r a b ili t y

A program A , which is scheduled with Pa resources, is
said to be more vulnerable than a program E , which is
scheduled with PB resources, if A loses more of its ideal

where N A and NB represent the number of instructions in
programs A and B respectively with TA and TB the time

parallelism when compared to B when p - p -

'corresponding to the greedy schedule
3corresponding to the lazy schedule

taken. We define the ratio 6 as the normal i zed n u m b e r
of Tesources.

The ability of a program to hold onto its ideal parallelism
is measured as the ratio of the execution time with the
execution time with infinite resources. This is termed as
Normal ized T i m e .

3 Scope of Study

3.1 Measures of Vulnerability
Earlier work (Rauchwerger e t al. [l]) suggested that slack
could be used as a measure of the vulnerability of paral-
lelism to resource constraints. We have considered both
accurate and approximate slacks, In addition, we have
considered filtered slack to eliminate effects due to taper-
ing (see below). We have also studied the standard de-
viation of load as a candidate measure. Finally, we have
also looked at various combinations of load and slack to
investigate which of them is suitable and their accuracy
and predictive ability.

3.2 Low-level Scheduling Algorithms
We have scheduled the DDGs in this study by four list
scheduling algorithms under resource constraints: naive,
lazy, slack and block. List scheduling algorithms order
all the instructions available for execution in the next time
(the ready instructions) step using a local priority function
without any backtracking. The various algorithms above
differ in the choice of the local priority function. The naive
scheduling algorithm orders the set of ready instructions in
the increasing order of their earliest start times. The lazy
scheduling algorithm orders the set of ready instructions in
the increasing order of their latest start times. In case of a
tie, the algorithm gives priority to an instruction with the
least earliest start time. The slack scheduling algorithm
orders the set of ready instructions in the increasing order
of their slacks. In case of a tie, the algorithm gives pri-
ority to an instruction with the least earliest start time.
The block scheduling algorithm orders the ready instruc-
tions in the increasing order of their block slacks. In case
of a tie, the block with a greater number of instructions is
given more importance. The block scheduling algorithm is
based on the fact that there is only one instruction in the
block that can be ready at any given instant of time. The
algorithm schedules one instruction from each of the first
few blocks in the ready list. The algorithm then modifies
the block slacks in the ready list. This is done by decre-
menting the number of cycles of all the blocks in the ready
list. The number of instructions for the blocks from which
an instruction has been scheduled is also decremented.

3.3 Functional Units

We have assumed that functional units are capable of ex-
ecuting any instruction in the first part of the study. We

237

later relax this so that different types of functional units
are possible (Section 6.6).

4 Simulation Methodology
An instruction level simulation of the RS/6000 instruction
set is done using dynamic instruction traces [6] containing
each instruction that is executed and the da ta addresses
for all the memory references. We have designed and im-
plemented an analysis tool which accepts as input these
dynamic traces and outputs the DDG that could be ex-
ecuted on an abstract machine with unlimited functional
units and various constraints on the rest of the resources.

In order to obtain the oracle limit of parallelism present
in a program, we assume perfect branch prediction. Using
the option of unlimited renaming of registers and memory,
the tool is capable of providing a DDG containing only
essential dependences. For simplicity, we assume that all
the operations are single cycle operations. The scope of
concurrency detection (instruction window) is unlimited.
Thus, two instructions which are arbitrarily far apart in
the trace can be present in the same level in the DDG.

4.1 Construction of the DDG
For every instruction that is executed, the trace contains
the opcode of the instruction. If the instruction makes a
memory reference, the memory address accessed is also a
part of the trace. The parallelizer extracts the instruc-
tion from the trace and computes the earliest time an in-
struction can be executed, taking into account all the data
dependences that have to be satisfied, and places the in-
struction in the appropriate level in the DDG. Essential
dependence is enforced by simply waiting for all the input
resources. Anti and output dependences are enforced by
waiting for the destination resources also. The ready t i m e
of a resource is the time at which the data contained in
the resource is valid. The def ini t ion t i m e of an instruction
is the time when all the source operands and all the des-

emitted is inserted into its corresponding level in the DDG.
If a-resource is never redefined during the execution of the
rest of the program, then it will wait for emission at the
end of the program.

4.2 Data Structures

In order to enforce the dependence relations, we declare
shadow structures for all the visible system resources, the
registers and memory. There is a shadow structure for
every register and every memory object in use. Each
such storage resource has a shadow structure whose fields
record: ready time, instruction id, last use time stamp and
link to co-defined resources.

The DDG is stored as a hash table indexed by the ear-
liest start time of an instruction. The DDG also needs to
keep track of the dependences between various nodes in the
graph, since this information is required while scheduling
the DDG for a given number of resources.

The size of the structure for an instruction in the DDG
with two operands is 28 bytes. Hence, the amount of space
needed to maintain the shadow structures and the DDG
is substantial. Due to the large amount of space needed
to maintain the DDG and the shadow structures and the
unlimited scope of concurrency detection, it is not possible
to construct the DDG for the entire trace. The analysis
tool can generate the DDG for a program, after tracing a
fixed number of instructions. To carry the study further,
we have developed a method of identifying loops from a
trace stream. Since loops are likely to be the most exe-
cuted portions of a program, latching into loops will help
us to trace regions of high dynamic frequency execution.
This handles another problem: program startup is often
anomalous and so a million-instruction sample should be
taken from the middle of the benchmark, perhaps after a
large random number of instructions have already been ex-
ecuted. Detecting loops helps in achieving this objective.

4.3 Loop Detection
tination operands are ready. This gives the earliest start
time of an instruction. The jirst u s e t i m e of an instruction
is the time of first use of any of the resources defined by
the instruction. This gives the latest start time4 of the in-
struction. The IBM RS/SOOO instructions can potentially
define several resources at the same time. For example,
the load update instruction (lu) defines a memory address
and also a register variable. In order to keep an accurate
first use stamp of an instruction, we have to keep links
between these simultaneously defined resources. When a
resource is being redefined these links are broken and new
links are established. Every resource has an instruction id,
which identifies the defining instruction. When a resource
that has a valid instruction id is being redefined and it has
no links to other registers or memory locations, then that
instruction is eligible to be emi t ted . An instruction that is

Due to the difficulty of generating traces for a large num-
ber of instructions due to memory constraints, we have
generated traces for those portions of the program that
are more frequently executed by latching onto loop bodies
and scheduling the DDGs generated using these traces.

This section describes our algorithm for detecting loops
given a dynamic execution trace of a program. The souTce
of a branch instruction is the address of the branch in-
struction and the target of a branch instruction is the tar-
get address of the branch. We define a backward branch
as a branch whose target is lesser than the souTce. The
algorithm assumes that a branch forms the tail of a loop
if it is backward branch and the branch is taken atleast
twice. The targe t of this branch is considered the head of
the loop.

The algorithm groups all tails of a branch at the tail
' Lstartapp mentioned in Section 2.1 with the greatest value of the source. Let the targe t for

238

branch B be represented by TB. During the execution of
a backward branch B , the program may or may not be in
a loop with the loop head given by TB. If the program is
in a loop with the loop head given by TB, the branch B is
nothing but another of the tails of the loop with the head
at TB. If the program is not in a loop with the loop head
given by TB, the branch B could be the tail of another
loop.

A branch, B1 belongs to the same group as another
branch B2 if they both B1 and Bz have the same target
and the program is already in a loop due to the branch B2.
For each backward branch, the group to which the branch
belongs is identified. If a branch to the target of this group
has been taken by members of this group more than once,
the program is in a loop.

For every branch, if the target of the branch exceeds the
target of the innermost nested loop, we assume that we
have exitted from the innermost nested loop. Thus, the
algorithm speculatively exits from a loop.

5 Experiments Conducted

compress
eqnt o t t
hydro 2d

li
l ud

ocean
spice
trf d

uncompr es s

Performs data compression on a file
Translates boolean eqn into table
Solves Navies-Stokes equations
A lisp interpreter C solving 9 queens
Solves Az = b by LU factorization
Simulates eddy currents in a basin
Simulates an electronic circuit
A kernel simulating a 2-electron
integral transformation
Uncompresses a compressed file

Table 1: The benchmarks used

The DDG generated by the analysis tool is scheduled
by the scheduler under various constraints on the number
of functional units. The functional units are assumed to
be capable of executing any instruction. (We later assume
different types of functional units in Section 6.6.) The
scheduler also assumes that all instructions execute in a
single cycle. We have scheduled the DDGs by the follow-
ing four list scheduling algorithms: naive, lazy, slack and
block. Results of using traces from loop is discussed in
Section 6.7.

We have compared various parameters including slack,
o(&) as possible measures to predict vulnerability. For
the purposes of this study the DDGs have been obtained
from the first one million instructions of the benchmarks
in Table 1. The results are presented in Section 6.

We have also scheduled the DDGs assuming different
types of functional units. For this purpose, the IBM
RS/6000 instruction set has been divided into four cat-
egories as follows: logzcal (all branch & those that operate
on condition register; executed by instruction and cache

0.51 0 10 " 20 30 ' 40 " M 60 " 70 80 " 90 tW '
Numberof ReVUhO.

Figure 1: Difference between Scheduling Algorithms

unit), floating-point (executed by floating point unit),
memory (ld/st; executed by fixed point unit) and inte-
ger (arithmetic or logical operations on integer operands
which are stored in the GPRs; also executed by fixed point
unit).

6 Results

6.1 Effect of Scheduling Algorithms
In order to study the effect of different scheduling algo-
rithms on the vulnerability, we scheduled all the DDGs us-
ing the four scheduling algorithms, naive scheduling, lazy
scheduling, slack scheduling and block scheduling. Our re-
sults indicate that there is very little difference between
the execution times for the schedules generated using dif-
ferent scheduling algorithms. Figure 1 shows the difference
between the various scheduling algorithms for the DDG ob-
tained from spice. From this, we have concluded that the
differences in the scheduling algorithms can be neglected
for the purposes of this study.

Though the various scheduling algorithms did not have a
perceptible impact on the execution times, it should be em-
phasized that a higher-level scheduling of a program based
on its vulnerability is the issue that this study addresses.

6.2 Tapering

It has been observed in a few cases that some levels in
a DDG have fewer instructions than the remaining levels.
On closer inspection, the profile of instructions per level
(paral le l ism prof i le) of the DDG reveals that the levels in
which there are fewer number of instructions are signifi-
cant and clustered. This phenomenon was first observed by
sampling the parallelism at various levels (corresponding
to 5%, 10% . . . loo% of the total number of instructions)
of the DDG. The plot of the parallelism as a function of
the cumulative number of instructions scheduled is called
paral le l ism p lo t . This phenomenon has been named taper-
ing effect due to the effect it has on the parallelism plot
of the DDG. Figure 2 and Figure 3 show the parallelism

239

Figure 2: Parallelism plot of the DDG for ocean

% of
instructions

70
75
80
85
90
95

100

parallelism DDG Level

109.5 3139
101.76 3619
95.86 4099
91.17 4579
87.43 5056
80.69 5782
19.94 24626

Table 2: Parallelism in the DDG for ocean

plots for the DDGs of ocean and lud respectively. It can
be observed from Figure 2 and Table 2 that the instruc-
tions in the last 75% of the levels in the DDG of ocean
are only 5% of the total instructions. It can be seen from
Figure 3 that tapering is not observed in the parallelism
plot of the DDG obtained from lud. The effect of taper-
ing on the parallelism profile is a sudden sharp decline in
the number of instructions per level of the DDG. Figure 5
and Figure 4 show the parallelism profiles of the DDGs of
ocean and lud respectively. The effect of tapering on the
parallelism profile can be observed in Figure 5, where the
number of instructions in most levels of the DDG in the
range 5000 to 25000 is close to zero.

Since the number of resources for which the DDG is
scheduled depends on the amount of parallelism in the
DDG, tapering effect plays an important role. Table 2
shows that there is considerable difference between the
parallelism for 95% of the instructions and for 100% of
the instructions. Hence, we schedule only that portion of
the DDG which is not affected by the tapering effect. For
the example in Table 2, the parallelism is chosen to be
equal to 81 and only the first 5782 levels of the DDG are
scheduled. Figure 6 shows the parallelism profile for the
DDG of ocean when only the initial 5782 levels of the DDG
are considered. It can observed that the tapering effect is
absent in Figure 6.

Figure 3: Parallelism plot of the DDG for lud

Figure 4: Parallelism profile of lud DDG for 512K instrs

-yI - Py.U.lun W6*
IMM

om

8W

7M

1 ::
B 4W

3W

ZW

l W

0
1 1.5 2
Lmlollnoffi

X I

0 5

Figure 5: Parallelism profile of ocean DDG for 512K instrs

Figure 6: Parallelism profile of ocean DDG for 1st 5782
levels

240

I, - mmprslir

5 -

4 5 -

4 -

E
i=- 1 3 -
z

2 5 -

2 -

Figure 7: l i ' s DDG is less vulnerable than compress's
DDG (number in bracket refers to accurate slack of DD
G)

compress
eqn to t t
hydro2d

li
lud

ocean
sp ice
trf d

uncompr

Approx
Slack

381.90
332 5 5
52.26
180.98
53.46

784.61
172.13
927.06
434.23

--

Table 3: Filtere slack for the va:

Ik
95%
89.14

125.56
25.77
36.37
51.01
80.63
28.66
59.17

278.76

'US DD

99%
88.29
148.75
58.02
33.09
46.12
71.75
37.64
53.11

368.80

6.3 Slack as a Measure of Vulnerability

Rauchwerger e t a l . [l] suggest that slack could be used
as a measure of the vulnerability of parallelism to resource
constraints. A higher slack in the DDG implies greater
freedom in scheduling instructions, which could lead to
better utilization of the resources. However, although
there are instances where a DDG with greater slack is less
vulnerable than a DDG with lesser slack, there are also
cases where the opposite is true. It can be seen in Figure 7
that a DDG with a slack of 311 is less vulnerable than a
DDG with a slack of 657.

One of the reasons for slack not being an accurate mea-
sure of the vulnerability is that a few instructions with
very high slacks can increase the slack of the entire DDG.
To evaluate the effect of instructions with very high slack,
we have computed the slack of the DDG by neglecting
the slacks of instructions which have either very high or
very low slacks. This measure of the slack is called filtered
slack. Filtered slack can be calculated by not considering
the slacks of various percentages of instructions. A filtered
slack of z%, implies that 2% of the total number of instruc-
tions have been considered in calculating the filtered slack.
The slacks of the outliers ((1 - z)% of the instructions) are
ignored in calculating a filtered slack of 2% as they either

have a very high or a very low slack. The filtered slacks of
various programs are given in Table 3, which illustrates the
effect on slack due to instructions with a very high slack.

A large slack in a level of the DDG accompanied by
a small number of instructions, implies that even though
these instructions can be scheduled in later cycles, they are
scheduled in this cycle because the number of resources is
sufficient. Hence, for slack to be an accurate measure of
the vulnerability, it is essential for the the large slack to be
accompanied by a large number of instructions. We have
observed that there is no strong correlation between the
slack profile and the parallelism profile, implying that a
large slack is not always accompanied by a large number
of instructions. Slack profi le is the profile of the average
slack of the instructions in a level of the DDG. The corre-
lation between the slack profile and the parallelism profile
is shown in Table 4.

benchmark
compress
e qnt o t t
hydro2d

li
lud

ocean
s p i c e
t r f d

uncompr e s s

correlation
0.036
0.329
0.289
0.066
0.175
0.377
0.08

-0.001
0.571

Table 4: Correlation between slack and parallelism profile

6.4 Load as a Measure of Vulnerability
For every scheduling algorithm, SI we define T.,N(D) to
be the execution time of the DDG D, when D is scheduled
with N resources.

Theorem 1 If in a dependence graph, D, CT(L,)~ = 0,
t h e n 3 a scheduling algori thm, S , such tha t T s , M ~ (D) =
T S , ~ (D) , where MP is t h e m e a n paral le l ism of D.

Due to the above theorem (stated without proof due to
lack of space), one could hypothesize that a DDG with a
lesser value of a(L,) indicates that the DDG is less vulner-
able to resource constraints. However, even a(L,) is not
an accurate measure of the vulnerability.

6.5 Some More Measures of Vulnerability
We have seen that neither slack nor a(L,) are accurate

measures of the vulnerability of parallelism to resource con-
straints. It is clear that a high slack and a low a(L,) are
desirable if a DDG is to be less vulnerable to resource con-
straints. Based on this, we have considered a few other

'sigma(r) is the standard deviation of the random variable I

24 1

AppSlk
FiltSlk

StdLoad
FiltLoad

AccSlk-Load
AppSlk-Load
FiltSlk-Load

Corr I Wrong 1 Inconsis
47.2 I 36.1 I 16.6
41.6
50

69.4
55.5
86.6
80

78.9
59.1

41.6
33.3
13.8
27.7
6.6
13.3
10.5
22.7

16.6
16.6
16.6
16.6
6.6
6.6
10.5
18.2

Table 5: Prediction accuracies (percentages)
measures

58.3
58.3
47.2
38.8

of various

measures, which are combinations of slack and load, to
predict the vulnerability. Let A and B be two different
DDGs. Consider the following cases:

sZacb(A) > sZacL(B) & a(L,(A)) < a(L,(B)): in this
case we predict that A is less vulnerable to resource
constraints than B.

0 sZacL(A) > sZacL(B) & a(L , (A)) > a (L (B)) : In this
case nothing is predicted regarding the vulnerabilities
of A a n d B .

0 sZacL(A) < sZacb(B) & a(L,(A)) < a(L,(B)): In
this case also nothing is predicted regarding the vul-
nerabilities of A and B.

0 sIack(A) < sIack(B) & o(L,(A)) > a(L(I3)) : In
this case A is predicted to be more vulnerable than
B .

To summarize, while using both slack and load to predict
vulnerability, a prediction is made if and only if the pre-
dictions made using slack and a(L,) agree.

We have compared the following as measures of vulnera-
bility with a view of comparing their prediction accuracies:
accurate, approx slack (AccSlk, AppSlk); 95% filtered slack
(FiltSlk); o(L,) (StdLoad); filtered load (FiltLd) 6 ; accu-
rate, approx slack, FiltSlk each with a(L,) (AccSlkLoad,
AppSlkLoad, FiltSlkLoad); both FiltSlk & FiltLd (FiltSlk-
FiltLoad). The outcome of the prediction by each of these
measures can be one of the following: corect, wrong, in-
consistent (there is no discernible difference between the
DDGs compared, but a prediction is made which is in-
consistent with the observation), unpredicted (the measure
used is unable to make any prediction regarding the vul-
nerabilities; applies measures which are combinations of
slack and load).

We have made pairwise comparisons of the DDGs of
the nine benchmarks to obtain the prediction accuracies

We have neglected cycles with either a very high or a very low
load in the calculation of u(Lt). This is analogous to filtered slack
and is included here only for the purpose of completion. Only 95%
of the levels of the DDG are considered in calculating o(LI).

2

Figure 8: Scheduling a hydroad DDG for different memory
and FP units

of the various measures considered. Table 5 gives the pre-
diction accuracies of each of the measures considered. In
Table 5, %Correct, %Wrong and %Inconsistent are calcu-
lated as percentages of the number of predictions made.
From Table 5, the highest prediction accuracy is obtained
when both accurate slack and Load are used as a measure
of vulnerability. Also, although the prediction accuracy is
high using this measure, in more than 50% of the instances,
there is no prediction.

Although the prediction accuracy of AccSlk-Load is very
high, the rate of prediction is low. On the other hand,
while using Load as the measure to predict we get a good
prediction accuracy with a prediction in all cases.

The above results have been obtained by studying the
vulnerability of the DDGs obtained from the initial one
million instructions of the trace. Since, these instructions
are all in the initial stages of execution of the program, we
constructed DDGs for a set of instructions which are exe-
cuted after 10 million instructions. We have compared the
vulnerability of these DDGs with the predictions made by
the various measures considered and now find that a(L,)
has a prediction accuracy of 61%.

6.6
The above results have been obtained by assuming that the
functional units are capable of executing any instruction.
In this section, we present results for the case when a given
functional unit is capable of executing only certain types
of instructions.

We have scheduled each DDG with varying number of
functional units of each kind. The number of functional
units used of each type is proportional to the number of
instructions of each type. We have found that the DDG is
more vulnerable to the availability of the functional unit
with a greater u(L,). Figure 8 compares the effect of
scheduling a DDG of hydro2d with memory anits and
floating point units. The o(L,) values for the memory
instructions and floating point instructions are 154 and
201 respectively. iFrom the Figure 8, it can be seen that
the DDG is more vulnerable to the functional unit with a

Different Types of Functional Units

242

greater a(L,).

6.7 Scheduling DDGs of loops

We have obtained the DDGs of various benchmarks by
tracing only the loops of the benchmark. A loop is only
traced once, thus reducing the number of DDGs gener-
ated. We have scheduled the DDGs obtained from these
loops and have observed that U(&) predicts vulnerability
with an accuracy of 65%. AccslkLoad has a greater accu-
racy of prediction, but the prediction rate is lesser than
50%. Since these results are close to other results that are
not based on loop detection, we believe that our results
reported previously are qualitatively valid.

7 Conclusions
In this paper, we have attempted to characterize the vul-
nerability of paral.lelism to resource constraints by con-
structing DDGs from instruction traces and scheduling
these DDGs for various numbers of functional units. The
effect of scheduling algorithms on the execution time of the
DDGs for the benchmarks we have considered is negligible.

We have Considered a number of candidate measures of
vulnerability but none of these measures is an accurate
measure of the Vulnerability. Although Accslk-Load has a
high prediction accuracy of about 85%, the rate of predic-
tion is only 42%. On the other hand, even though c(L,)
has a prediction accuracy of 70%, there is a prediction in
all cases.

We have also scheduled each DDG assuming the exis-
tence of four different types of functional units, logical
units, floating point units, memory units and integer units.
We have observed that the DDG is more vulnerable to the
functional unit with a greater c(L,).

7.1 Future Directions
In the DDGs that have been used for this study, the num-
ber of instructions is 512k, which is small compared the
total number of instructions executed by the benchmarks.
The limitations of the size of memory for keeping the DDG
in memory currently prevent any larger set of instructions
to be considered (our machine for the simulations has been
a RS6000 server 590 with 256MB of memory). Since the
choice of the scheduling algorithm does not play an impor-
tant role in deciding the vulnerability, one could dispense
with the DDG and schedule the instructions while tracing
the benchmarks. This approach has the additional advan-
tage of eliminating the effect due to tapering,

The measure with the highest prediction accuracy
(Accslk-Load) has a very low prediction rate while both
slack and U(&) make a prediction all the time. Since
Accslk-Load makes a prediction if and only if both slack
and c(L,) make the same prediction, a low prediction rate
of Accslk-Load implies that the predictions using slack and
a(L,) disagree most of the time. A closer examination of

the circumstances in which slack and a(L,) make correct
predictions will help in obtaining a better measure of vul-
nerability.

This study assumes that all instructions have unit cycle
latencies. One could study the effect of instructions with
non-unit cycle latencies on the prediction accuracies of the
various measures that have been considered.

References
L. Rauchwerger, P. K. Dubey, R. Nair. Measuring Lim-
its of Parallelism and Characterizing its Vulnerability to
Resource Constraints. In Proceedings of the 26th Annual
International Symposium on Microarchitecture, pages 105-
117, Dec 1993.

T. Austin and S. Sohi. Dynamic Dependency Analysis of
Ordinary Programs. In Proceedings of the 19th Annual
International Symposium o n Computer Architecture, pages
342-351, May 1992.

M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales, and
M. Shebarow. Single Instruction Stream Parallelism is
Greater Than Two. In Proceedings of the 18th Annual Inter-
national Symposium on Computer Architecture, pages 276-
286, May 1991.

S h a n k Ramaswamy et al.. A Convex Programming Ap-
proach for Exploiting Data and Functional Parallelism on
Distributed Memory Multicomputers. In Proceedings of
1994 ICPP, Chicago, 1994.

M. Lam and R. Wilson. Limits of Control Flow on Par-
allelism. In Proceedings of the 19th Annual International
Symposium on Computer Architecture, pages 46-57, May
1992.

Ravi Nair. Profiling IBM RS/6000 Applications. Interna-
tional Journal of Computer Simulation, 6(1):101-111, 1996.

K. Theobald, G. Gao, and L. Hendren. On the Limits of
Program Parallelism and its Smoothability. In Proceedings
of the 25th Annual International Symposium o n Microar-
chitecture, pages 10-19, Dec 1992.

D. Wall. Limits of Instruction Level Parallelism. In Pro-
ceedings of the 4th International Conference on Architec-
tuml Support for Programming Languages and Operating
Systems, pages 176-188, April 1991.

243

