Supplementary Information

Unravelling the Role of Silent Mutation in ω- subunit of *E. coli* RNA polymerase: Structure Transition Inhibits Transcription

Unnatiben Rajeshbhai Patel, Sudhanshu Gautam, Dipankar Chatterji*

Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India

Figure S1. Mass spectroscopic analysis of wild type ω and its silent mutant ω_9 . ESI analysis of protein shows that the protein sequence remains the same as wild type ω in silent mutant. The fragmentation pattern was similar for wild type and silent mutant protein.

Figure S2. Refolding experiment followed for ω and ω_9 . Proteins were unfolded by incubating them with 7M urea for 2 hours. CD curve shows unfolded protein at the start of refolding experiment. Protein refolding was followed by CD spectroscopy by collecting aliquots at different time interval. Curves were plotted without smoothening and presence of urea showed noisy baseline.

(A)

Figure S3. SEC-MALS data for ω and its silent mutant.s (A). ω (B). ω_7 . Both wild type and mutant proteins exists as monomers in solution. It indicates that the protein did not form oligomers due to misfolding and CD profil is of monomeric soluble proteins. Absence of any other peak in the SEC profile of the wild type and silent mutant protein indicates that there is no aggregation of over expressed proteins.

(A)
Ŀ		•

Amino Acid	Codon	Frequency of codon usage
Valine	GTT	0.29
Valine	GTC	0.20
Valine	GTA	0.17
Valine	GTG	0.34

(C)

Figure S4. ω_{83} silent mutation for value at 83rd position in *rpoZ* gene (A) Codon usage index for value. (B) CD profile of value silent mutant at 83rd position (GTT \rightarrow GTA), frequent codon to a rare codon mutation. (C) Lethality check for the mutant upon induction

Figure S5. CD curve of all the mutants. (A) CD curves of the mutant showing lethal phenotype and (B) CD curves of mutant which had no change in phenotype. Lethal phenotype indicates that when their expression was induced, cells were dying.

Figure S6. CFU assay to follow rescue phenotype for mutants.

BL21 and codon plus strain transformed cells were plated on LB agar plates with and without IPTG (Inducer). It could be seen that lethal phenotype of structured mutant protein was rescued in codon plus background.

S8

Figure S7. *In vitro* Reconstitution and Transcription assay. (*A*) Individual purified subunit and reconstituted RNA polymerase (*B*) Multi-round transcription assay. RNA polymerase reconstituted with ω silent mutants which are structured were transcriptionally compromised. RNA polymerase reconstituted with structured mutants showed five times less activity as compared to that reconstituted with wild type protein

(A)

Figure S8. Secondary structure of free form and bound Omega (A). Secondary structure in bound form of ω from RNA polymerase crystal structure (PDB id 4JKR) (B) Interaction between ω and β ' at the mutation sites. ω latches β ' and helps in assembly of RNA polymerase ¹⁵.

Supplementary Table S1 . List of primers used to generate silent mutants of $\boldsymbol{\omega}$

Primers	Sequence
$\omega_1 F$	5' CATATGGCAAGGGTAACTGTTCAGGACGCTGTAGAGAAAATT 3'
$\omega_1 R$	5' ACGGTTACCAATTTTCTCTACAGCGTCCTGAACAGTTACCCTTGCCAT 3'
ω ₂ F	5' GTTCGCGAAAGGCAGGAACAGCAAGAGCAGGAAGCCGCTGAA 3'
$\omega_2 R$	5' CTGTTCCTGCCTTTCGCGAACGTCGAGGATCTGGTTGTTGAT 3'
ω ₅ F	5' AACAACCAGATACTCGACGTTCGCGAACGCCAGGAACAGCAA 3'
ω ₅ R	5' AACGTCGAGTATCTGGTTGTTGATCAGACCTTCTTCGAT 3'
ω ₇ F	5' ACCACTGTAATAGCGCTGCGCGAAATAGAAGAAGGTCTGATCAACAACCAG 3'
ω ₇ R	5'
	CAGACCTTCTTCTATTTCGCGCAGCGCTATTACAGTGGTTTTATCGTTTTCTTCCGG
	3'
ω ₈ F	5' ACCACTGTAATAGCGCTGCGCGAAATCGAAGAAGGTCTG 3'
ω ₈ R	5'GCGCAGCGCTATTACAGTGGTTTTATCGTTTTCTTCCGGTAC 3'
$\omega_{10}F$	5' ATAGCGCTGCGCGAAATAGAAGAAGGTCTGATAAACAACCAGATCCTC 3'

$\omega_{10}R$	5'
	CTGGTTGTTTATCAGACCTTCTTCTATTTCGCGCAGCGCTATTACAGTGGTTTTATC
	3'
$\omega_{11}F$	5' ACC GCT ATT GCT GAA GGT AGA AGA TAA AAG CTT
$\omega_{11}R$	5' AAGCTTTTATCTTCTACCTTCAGCAATAGCGGTAACGGCTTGTAATTCAGC 3'

Supplementary Table S2: List of strains used for the study

Strains/Plasmid	Description	Source/Reference
<i>E. coli</i> DH5α	<i>E. coli</i> host strain for	Laboratory stock
	DNA cloning	
E. coli BL21 (DE3)	<i>E. coli</i> host strain for	Laboratory stock
	protein expression	
<i>E. coli</i> codon plus	<i>E. coli</i> host strain for	Laboratory stock
	protein expression	
pET21b	<i>E. coli</i> expression vector	Novagen
	(Amp ^r)	
pET28b	<i>E. coli</i> expression vector	Novagen
	(Kan ^r)	
E. coli RL916	E. coli rpoC	A kind gift from Robert
	chromosomally His-	Landick
	tagged	
pET-ω	<i>rpoZ</i> cloned in pET28b	Generated for this work
	vector	