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Appendix A: Detailed model description20

The system is modelled as a two dimensional discrete space consisting of N x21

N cells. Each cell can occur in any of two possible states: unoccupied (or dented22

by 0) and occupied (or denoted by 1). The states of each cells are updated proba-23

bilistically and the simulation sequence runs as described below.24

Step 1: Select a cell at random.25

Step 2: If it is unoccupied, return to step 1. If occupied, proceed to step 3.26

Step 3: Select at random, one of the four nearest neighbors of the chosen cell. If27

the selected neighbor cell is unoccupied proceed to Step 4. Else, skip to Step 528

Step 4: Select a random value between 0 and 1. If the value is less than p, update29

the state of the selected neighbor cell from 0 to 1, else, update the state of the first30

chosen cell to 0 (the probability of this is then 1 − p). Return to step 1 for a new31

iteration.32

Step 5: Select a random value between 0 and 1. If the value is less than q, select33

one of the six possible nearest neighbors of the pair and make it occupied (if it34

was already occupied, nothing changes). Else, update the first chosen cell (in35

step 1), to 036

The cells are, thus, updated asynchronously. In each discrete time step, the37

update rules are iteratedN2 number of times sequentially; this procedure ensures38

that, on average, all sites are updated once per discrete time step.39

We ran our simulations with a 1024×1024 system size at increasing resolutions40

of p and q to construct the steady-state phase diagrams of mean density of the41

landscape (Fig 3 of the main text). We then identify the critical driver values: The42

simulations were run for the entire parameter space of 0 to 1 for p as well as q.43

This was done for a base resolution of 0.01 of q and 0.001 of p. For the specific44

values of q (q = 0 and q = 0.92) where precise values of critical points/thresholds45

were required, the simulations were run at a resolution of 0.00001 for p.46

The system was considered to have reached a steady-state once the mean47

density had saturated (typically in 10000 or less time steps away from critical48

points/thresholds; around 1 million time steps close to critical points/thresholds).49

We then compute density, i.e. proportion of occupied cells in the landscape (Fig50

3 of the main text).51

To compute percolation probabilities (Fig 4 of the main text), we ran another52

set of simulations with a system size of 256×256 and obtained 25 replicates for q =53

0, q = 0.92 and the spatial null model. We compute the percolation probability as54

the fraction of these replicate snapshots had a spanning cluster.55

To compute cluster-size distributions (Fig 6 of the main text) and power-56

spectrum functions (Fig 7 of main text), we simulate the model with a 1024×102457

system size and obtain 50 replicate spatial snapshots at steady-state. For each58

replicate, we use equivalence class algorithm to identify clusters (see Glossary59

for the definition of a cluster). Based on all replicates, we compute probability60
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Figure 1: Schematic representation of the model and simulation procedure, for a given ‘Initial
lattice’ shown at the centre of the top row. The parameter p represents baseline birth rate

whereas q represents the strength of local positive feedback; reducing p in this model can be
interpreted as increasing environmental stress. Light blue circles represent (randomly) chosen
cells to update. Depending on the states of chosen cells, the update scheme results in baseline

birth or death (left part of second row), or increased birth or reduced death due to positive
feedback (right part of the second row). The box at the bottom shows (i) neighbours of a focal

pair of cells and (ii) model update rules captured via transition probabilities.

distribution function (pdf, denoted by P (s)) and cumulative distribution function61

(cdf, denoted by C(s)) of cluster-sizes; we note that C(s) =
∫ s
−∞ P (s′)ds′. Inverse62

cdf, plotted in Figure 6 of main text amd Figure 2 in Appendix C, is defined as63

1−C(s). See Appendix B for details of statistical fitting procedures for cluster size64

distributions. Also see Appendix C for cluster-size distributions for a number of65

values of p and q; here we used a system size of 256× 256 with 25 replicates.66

To compute power-spectrum (Fig 7 of the main text), we simulate the model67

with a 1024×1024 system size and obtain 50 replicate spatial snapshots at steady-68

state. For each replicate, we first take the absolute value of the Fast Fourier Trans-69

form (FFT) of the entire landscape (N ×N matrix). To obtain the power at a given70

length of the wave number k, we perform an angular average of the resulting two71

dimensional FFT of the landscape; we average over all replicates. See Appendix72

D for the definitions related to autocovariance function and power spectrum, and73

see Appendix E for statistical fitting procedures of power-spectrum.74

All of our code is available via github: https://zenodo.org/badge/75
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latestdoi/11231834976
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Appendix B: Statistical fitting of cluster-size distributions77

Cluster size distributions were fit using methods proposed in [4]. It is worth78

recalling the methods of fitting power-laws have attracted much scrutiny in the79

literature. Therefore, we chose the statistical methods proposed by [4] which80

are widely accepted as rigorous to fit power-law distributions and to compare81

with other model candidates. We refer readers to [4] for further technical de-82

tails. Readers may reproduce all of our results following the broad steps de-83

scribed below together with code is available on our github page: https://84

github.com/ssumithra/PowerLawCriticalityPaper (also see [5] for an85

R-package called spatialwarnings).86

Is power-law a good fit?: First step in the process is to find out if power-87

law is even a good fit. The exponent of the distribution was estimated using88

Maximum Likelihood Estimation (MLE), and xmin was identified by minimising89

the Kolmogorov–Smirnov (KS) distance between the fitted model and data. We90

assessed goodness of fit for our power-law model by re-fitting synthetic power91

law distributions (which we generated) with the same estimated exponent and92

xmin values. The fraction of synthetic datasets that result in a fitted model with93

a KS distance larger than the KS distance calculated when fitting our dataset,94

was considered the p-value of our fit. As described in [4], a p-value above 0.195

represents a good fit, and only when this condition was satisfied, we proceeded to96

compare with alternative models of cluster size distributions. Indeed, we found97

p-values of 0.49 for the low positive feedback model (q = 0) [see Fig 6a in the98

main text] and 0.53 for the high positive feedback model (q = 0.92) [see Fig. 6b in99

the main text]. This suggests good power-law fit of cluster size distributions for100

both values of positive-feedback, but one of them is away from critical point (Fig101

6a) and the other is right at the critical threshold (Fig 6b).102

Is power-law the best fit?: We compared power-law (PL) fit of the cluster size103

distributions with three different model fits: exponential (EXP), log-normal (LN)104

and power-law with an exponential cut off (PLE). Each of the candidate models105

was fit using MLE. Since power-law is a nested model of power-law with a cut-106

off, these two were compared using log-likelihood ratio. The other two candidate107

models were compared with the power-law model using Vuong test.108

We know from percolation models that as density in the system reduces, clus-109

ter size distributions typically show the following trend: a bimodal distribution,110

a power-law distribution, a power-law with exponential cut-off distribution and111

finally an exponential distribution [7, 9]. Thus, in our investigations of effects of112

positive feedbacks on clustering, these were obvious candidate distributions to113

fit to the data. In addition, we also fit and compare log-normal as a candidate114

function in order to make the reported results comparable with other studies dis-115

cussed in [4]. However, at least to our knowledge, there exists no mechanistic pro-116

cesses that can yield a log-normal cluster size distribution in these models . On117
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the other hand, based on the theory of phase transitions, there is a well-reasoned118

expectation of scale-free behaviour at critical points. Therefore, we do not con-119

sider log-normal distributions for our interpretations below.120

Realising a true scale-free distribution requires, ideally, an infinitely large sys-121

tem. Our datasets consist of 50 replicates of identically sized lattices (of 1024122

x 1024 cells). Even a true power-law distribution in these replicates would in-123

evitably be best fit as a truncated power-law distribution, due to the limit im-124

posed by the system-size. Given these finite size constraints in our data, a power-125

law as the best fit is inferred based on (a) the closeness of estimated parameters126

between the fitted power-law function and fitted power-law with exponential cut127

off function and (b) the range over which the power-law dominates the truncated128

power-law function.129

For the data presented in Fig 6 (a & b) of the main text, power-law with expo-130

nential cut off was identified as the best fit model for both cases (q = 0, p = 0.7225131

and q = 0.92, p = 0.2852). Given in Table 1 is the comparison statistics for the132

power-law (PL) fit with the other three considered models - exponential (EXP),133

Power-law with exponential truncation (PLE) and Log-normal (LN) fits. Based on134

the Table, for both datasets, log-normal could not be ruled out as a potential fit (p135

value given in brackets), while power-law with exponential cut-off was found to136

be the best fit.137

Table 1: Results of likelihood ratio test for fitted power-law vs other models. Positive values
suggest that the power-law is a the better fit and negetive values favour the alternative model.
Significance levels are as follows : ‘***’ for p < 0.001, ‘**’ for p < 0.01 ‘*’ for P < 0.1 and ‘’ ’ for
P > 0.1. For both datasets, log-normal could not be ruled out as a potential fit (p value given in

brackets), while power-law with exponential cut-off was found to be the best fit.

Table 2: Estimated parameter values of fitted power-law and power-law with exponential cut-off
functions. The exponent estimates are very close for both model fits. The rate of exponential
cut-off is very low, suggesting that the power-law persists over a large range of patch sizes.

We now compare parameters of the PL and PLE fits. The fitted PLE, x−βe−x/Xmax ,138

has a rate 1/Xmax that is inverse of the largest patch-size Xmax. We see from the139
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estimated rate (Table 2), that the Xmax is larger than the largest patch-size in the140

system. The power-law behaviour persists without any effect of the exponen-141

tial truncation till at least four orders of magnitude in patch sizes. Hence, the142

observed best-fit of PLE could entirely be a consequence of finite-sizes we have143

used. Therefore, for all practical purposes, it is reasonable to interpret the ob-144

served pattern as a power-law distribution.145

146

We also note the following: There is only a single point (i.e. one specific147

value of the driver or the density) where power-law cluster size distribution is148

observed. At densities higher than that, the clustering pattern shows a bimodal149

distribution of sizes and at lower densities, a truncated power-law distribution.150

Previous studies (such as [6, 7]) have dubbed the region where a bimodal distri-151

bution occurs with the point where power-law scale-free clustering emerges and152

have called that entire parameter space as within the power-law regime. This is153

because the first mode of the bimodal size distribution may indeed show power-154

law decay; however, the existence of bimodality in such cases may correspond to155

a characteristic size. Since the focus of our manuscript is only on the scale-free156

behaviour of the system with no characteristic size, we only consider the percola-157

tion density but not the bimodal region. Hence, only one point in our parameter158

space (or one density) shows scale-free power-law clustering.159

7



Appendix C: Cluster-size distributions160

Figures 2 and 3 demonstrate that trends in cluster size distributions can vary161

depending on the strength of positive feedback (q) (see section III-B of the main162

text for detailed context and explanations of the results.)163

Figure 2: Trends in cluster size distributions depend on the strength of positive feedback. The
right most column of plots is of systems very near/at critical points/thresholds, with the driver
value shown in red. The lower row from left to right shows that when positive-feedback is low
((q = 0.2), we see the entire range of cluster-size distributions: bimodal at very high density, far
from the critical point to a power-law to a truncated power-law to an exponential, very near the

critical point. The middle and upper rows show that as positive-feedback increases, 1) high
densities prevail for lower p values, 2) system begins to collapse from higher density states (see

Fig 3 of the main text). We then see power-law or, with very high positive-feedback, even
bimodal clustering at the critical threshold of collapse. System size of 256× 256 was used for

these graphs

Appendix D: Effect of positive feedback on percolation and critical thresholds/points.164

In the main text (section III-C) we discussed how the percolation density and165

density at critical points/thresholds come closer with positive feedback, till they166

begin to overlap. Thus with high positive feedback in the system, scale-free clus-167

tering can occur closer and closer to the critical point/threshold and early warn-168

ing signals in cluster size distribution patterns may thus fail. Here we show that169

the same result, in terms of the driver (p). It can be seen from Fig. 4 that as the170
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Figure 3: At the same density (50% in the above graphs), different cluster size distributions can
be observed depending on positive-feedback strength (q). Since positive-feedback also results in

the system collapsing from higher densities, at high positive-feedback values, fat tailed
distributions occur closer to the critical threshold. System size of 256× 256 was used for these

graphs.

positive feedback in the system increases, the percolation point moves closer and171

closer and eventually overlaps with the critical point/threshold.172

Figure 4: The distance between the percolation point pp and the critical point/threshold pc

reduces as a function of positive feedback (q). The raw driver values at with these thresholds
occur are shown in (a) and the difference between them, in (b).
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Appendix E: Power-spectrum and correlations173

One way to capture the spread of disturbance in a system or the length scale of174

spatial fluctuations, is by constructing the spatial covariance function. The spatial175

autocovariance function for local density ρ for a distance r is defined as176

C(r) = 〈(ρ(x)− ρ̄)(ρ(x′)− ρ̄)〉 (E1)

where ρ̄ represents mean density over the entire landscape, angular brackets de-177

note average over all locations x and x′ in the landscape that are separated by a178

distance r. Ecologists widely use the correlation function which is defined as179

K(r) =
〈(ρ(x)− ρ̄)(ρ(x′)− ρ̄)〉

σ2
) (E2)

where σ2 is the spatial variance of densities in the ecosystem. Thus the covariance180

function is a product of the correlation function and the spatial variance of the181

data.182

The correlation length is defined as the mean of the covariance function and can183

be interpreted as the average distance to which local fluctuations spread. The184

correlation length becomes infinite at the critical thresholds. This means that the185

covariance function then follows a power-law with an exponent less than two.186

The power spectrum, denoted by S(k), is the Fourier transform of its autocovari-187

ance function [1, 8]. Therefore, it can be calculated as188

S(k) =

∫
C(r)e−ikrdr (E3)

At critical thresholds, we expect the spatial covariance function to exhibit a189

power-law relation with distance190

C(x) = c0x
−α (E4)

where c0 is a constant and α is an exponent less than two. The corresponding
spectral function for an n-dimensional system is given by

|S(k)| ∼ k−(n−α)

Therefore, evidence of a power-law spectral function is also evidence of a power-191

law autocovariance function.192
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Appendix F: Power-spectrum fitting193

1. Resilient systems (far from transition points)194

It is well known that in systems far from transition the power-spectrum typi-195

cally exhibits a Lorentzian functional form . Theoretically it is also expected that196

as the system reaches a critical point, its spectral function shifts to a power-law197

form. In our model too we found the Lorentzian function to be a good fit for198

resilient systems (both, with high and low positive feedback). The function was199

fit by running a non-linear least squared regression on the data. We present the200

results of the analyses below:201

Dataset: low positive feedback(q = 0)202

Formula: y = k ∗ a/((x− x0)2 + a2)203

Parameters:204205

Estimate Std. Error t value Pr(>|t|)
k 1.36x10−6 1.6x10−8 87.97 <2e-16 ***
x0 -0.2308 0.0051 -45.35 <2e-16 ***
a 0.4116 0.0073 564.89 <2e-16 ***

206

Signif. codes: 0 ’∗ ∗ ∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.0001061 on 25647 degrees of freedom
Number of iterations to convergence: 8
Achieved convergence tolerance: 0.0000000149207

Dataset: high positive feedback (q = 0.92)208

Formula: y k ∗ a/((x− x0)2 + a2)209

Parameters:
210

Estimate Std. Error t value Pr(>|t|)
k 2.06x10−6 1.13x10−8 182.99 <2e-16 ***
x0 -0.0085 0.00017 -49.67 2.72x10−11 ***
a 0.0254 6.79x10−5 374.72 <2e-16 ***

211

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.0004837 on 25647 degrees of freedom
Number of iterations to convergence: 8
Achieved convergence tolerance: 0.0000000149212

2. Systems near/at transition points213

For systems near transition, as expected, we found that the power-law function214

was a good fit over a large range of the data. There are two approaches to fitting215

power-law relations: one is by log transforming the data and then fitting a lin-216

ear model and the other, by directly fitting a non-linear model. Several studies217

demonstrate that log-transforming probability distribution functions (pdf) or fre-218

quency data violates assumptions underlying linear regressions such as normally219

distributed residuals. This, however, is not always the case - especially when the220
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(b) High positive feedback and close to
critical threshold: q = 0.92, p = 0.2865

Figure 5: The Lorentzian fit (green line) of power spectrum data (black dots) of resilient
systems with low and high positive-feedback. The plotted data correspond to the data shown in

blue in main text Figure 7.

functions are not pdfs. More precisely, fitting power-law data using non-linear221

least squares regressions assumes that the data have a constant standard devia-222

tion, whereas log transformation followed by linear regression is valid for data223

with a constant coefficent of variation [3]. Since our spectral data for systems224

near/at critical points, like other 1/fβ spectra [10], show an increasing trend of225

standard deviation with average power (see Fig.6), we used the linear regres-226

sion method on log-transformed values. The range of the power-law function227

was estimated in the same way as described in the previous section, by identify-228

ing the x-value (spatial frequency) which minimises the KS distance between the229

predicted function and the data.230
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(b) High positive feedback and close to
critical threshold: q = 0.92, p = 0.2852

Figure 6: Varying SD and constant coefficient of variation (SD/mean) of power-spectra of
systems near transition.
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Dataset: low positive feedback(q = 0)231

Formula: y = (k ∗ xa)232

lm(formula = log(y) log(x), weights = x)233

Parameters:
234

Estimate Std. Error t value Pr(>|t|)
a -1.2103 0.00096 -1265 <2e-16 ***

log k -15.4159 0.00159 -9688 <2e-16 ***
235

Significance codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.01954 on 15698 degrees of freedom
Multiple R-squared: 0.9932, Adjusted R-squared: 0.9932
F-statistic: 1.6x106 on 1 and 15698 DF, p-value: < 2.2e-16236

Dataset: high positive feedback (q = 0.92)237

Formula: y = (k ∗ xa)238

lm(formula = log(y) log(x), weights = x)239

Parameters:
240

Estimate Std. Error t value Pr(>|t|)
a -1.7819 0.00128 -1392 <2e-16 ***

log k -16.8830 0.00283 -5976 <2e-16 ***
241

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.1006 on 14798 degrees of freedom
Multiple R-squared: 0.9944, Adjusted R-squared: 0.9944
F-statistic: 1.938e+06 on 1 and 1 DF, p-value: < 2.2e-16242

We note that, the exact numerical values of these exponents may often require243

simulations with much larger system sizes. Hence, we have not emphasized244

much about the estimation of exponents themselves and have focused only on245

qualitative features of the fitted functions.246

3. Comparing Lorenztian and scale-free spectra247

Comparison of the models (Lorentzian vs power-law) for the different data-248

sets is impossible as the models not only have a different number of parameters,249

but are also not fit over the same range of data. One way to get around this250

is to consider the theory underlying the emergence of scale-free power-spectra251

in systems near critical points/thresholds. Even data that follow a Lorentzian252

function, will follow a power-law over some (small) range of spatial frequencies.253

However, as the system approaches a critical point, low frequency interactions254

begin to dominate, thus increasing in power and leading to a shift in the spec-255

trum such that the extent of the power-law region increases. Thus to compare256

the power-spectra behaviour in systems near/at the critical point with that of re-257

silient systems, one can examine the range over which the power-law fit extends.258

To compare the range of power law (PLR), we use the method proposed by [2],
who define it as:

PLR = 1− log[xmin]− log[xsmallest]

log[xmax]− log[xsmallest]
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(c) High positive feedback and away
from critical threshold:

q = 0.92, p = 0.2865, PLR = 0.32
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Figure 7: The shift in the functional form of the power-spectrum is captured by the increased
range of power-law as systems approach critical point/thresholds. Data (from simulations) are
shown with black open circles whereas the fitted power-law functions are shown as green lines;

note that fitted region need not span the entire range, as described in the text.

PLR varies from 0 (when none of the data fall within the fitted power-law) to 1259

(when all the data fall within the power-law region). We see in our power-spectra260

that as the system approaches a critical point/threshold, PLR increases (see Fig 6261

captions). This is congruent with theoretical predictions of diverging correlation262

length at critical points.263
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