
Alias Analysis for Fortran90 Array Slices

E(. Gopinath & R. Seshadri*
Department of Computer Science & Automation

Indian Institute of Science, Bangalore

Abstract
Most alias analyses produce approximate results in the pres-
ence of array slices. This may lead to inefficient code which
is of concern, especially, in languages like Fortrango. In
this paper, we present an overview of a static alias analysis
that gives accurate results in the presence of array slices in
Fortran90 .

1 Introduction

An optimising compiler requires accurate data-flow
analysis to perform code-improving transformations
and generate efficient code. To perform effective data-
flow analysis, we require precise dependence and alias
information. An alias occurs at some program point
during program execution when 2 or more names exist
for the same memory location, ie. when two or more
1-value expressions refer to the same memory location.
The alias problem is to determine the alias relation-
ships at each program point. Alias analysis has been
initially developed for non-pointer, non-recursive lan-
guages like Fortran77. Recent interest has shifted to
languages like C that support pointers.

Obtaining accurate alias information for pointer
supporting languages becomes difficult because of the
following: the address-of operator can lead to the cre-
ation of a new pointer relationship at any program
point; passing pointers to functions can lead to the
called function modifying the alias relationship of the
callee; dynamic allocation of memory for pointers; and
recursive structures and functions could lead to un-
bounded number of alias relations.

In addition, an accurate alias analysis needs the con-
text in which the function is called. Various approaches
to this problem are by restricting the flow of alias in-
formation to realizable paths only[8], by using source
alias sets of the last call site [9] or by using invocation
graphs [7].

Fortran90 has a restricted notion of pointers com-
pared to C. But it has support for pointers to array

'Author for correspondence:gopi@csa.iisc.ernet .in

1063-7133/97 $10.00 0 1997 IEEE

slices which are very useful for specifying computa-
tion in SIMD, MIMD and other similar machines. The
existing alias algorithms for pointer-based languages
provide approximate information about aliases to ar-
ray slices as they do not make any distinction be-
tween references to different locations in the same ar-
ray. Emami[7] does make a distinction between the
alias to the first element of the array and the alias to
the rest of the array but this is still not enough to
ezpZoit the parallelism available in programs that use
array slices.

We have extended the alias algorithm reported in
[7] to produce more accurate results in the presence of
array indices for Fortrango. Our algorithm assumes a
SSA form of representation in which every redefinition
of a variable is renamed.

2 Motivation

Consider the following example from Fortrango:

SUBROUTINE gauss-elim()
REAL dimension(lO,lO),target : : A
INTEGER i,n,j,maxrowloc
INTEGER dimension(:),pointer::x,y,z
INTEGER dimension(:),pointer::temprow,maxrow

S1: DO 50, i = 1,n
s2 :
s3 :
s4 :
s5 :
S6 :

s7 :
S8 :
s9 :

x => A(i,i:n)
z => A(i:n,i)
maxrowloc = MAXLOC(z)
maxrow => A(maxrowloc,i;n)
ALLOCATE(temprow(n-i))
IF (maxrow1oc.ne.i)
temprow = x
x = maxrow
maxrow = temprow

ENDIF
DO 200 j = i+l, n

y => A(j,i:n)
y = y - x*(y(l)/x(i>>

628

SiO: 200 ENDDO

Sii:50 ENDDO
END

...

In Fortrango, pointer assignments are distinguished
from normal assignments by =>. At S2, there is a
pointer assignment with x pointing to a single dimen-
sional array subsection A (i , i : n). This results in the
alias pair < *x,A(i,i : n) >. a points to the ith row
starting from the ith element. z points to the ith col-
umn starting from the ith element.

The function MAXLOC returns the index of the
maximum valued element. The statements between
S6 and S7 swap the elements of the ith row and the
maxrow. Note that a: still points to the ith row. State-
ments S7 to S10 perform row operations which trans-
form the matrix to upper triangular matrix. Note that
i and j do not take the same value; this can be deter-
mined by a very simple intraprocedural range analysis
using reaching definitions. Hence, the array subsec-
tion pointed to by x and y never overlap. Therefore,
at S8, we have the alias pairs {< *y, A (j , i : n) >, <
*a, A(i , i : n) >}. We can move the normalizing oper-
ation x/x(l) outside the loop and rewrite statements
S7 to S11 based on the alias information as:

S i ” : normtemp = x/x(i)
DO 200, j = i+l,n

y => A (j , i : n)
y = y - normtemp * y (i)

Sii’: 200 ENDDO

Note that it is not possible to perform this optimiza-
tion if it is not known if a and y refer to the same slice.
If they refer to the same slice or if there is some over-
lap in the slices they refer to, incorrect results will be
obtained. More interestingly, this optimization cannot
be detected easily (or if at all) if the slice notation is
not used. We discuss the results of our analysis for this
problem in Section 3.

Most of the parallelism in programs is present in
loops. An accurate information about the induction
variables and the alias information will help in code
optimisations. Wolfe[l2] detects common forms of in-
duction variables using SSA form. Consider the exam-
ple of flip-flop variables:

j = i
j o l d = 2
DO iter = i , n /* re laxat ion code */

x => A(jo ld ,* ,*)

DO k = 2 , n
y => A (j , * , *)

y(k) = y(k-1) - ~ (2 > / ~ (i , i)
ENDDO
temp = j o l d
j o l d = j
j = temp

ENDDO

j and j o l d never take the same value but take either
1 or 2. Hence, z and y do not point to overlapping ar-
eas and we get the a,lias pairs as {< *x, A(j, *, *) >, <
*y, A(joZd, *, *) >}. Hence, we can move the computa-
tion x(2)/0(1,1) out the loop as it is a loop invariant.

Another case that SSA can help is locating mono-
tonically increasing variables: this can be used to show
that one array slice can never be aliased by another.
Our alias framework also needs SSA, in addition to its
role in detecting indiiction variables.

Overview of Alias Analysis Framework
We use the basic framework in [7] for interprocedu-

ral alias analysis but whose implementation targeted
the aliasing problem in the context of a parallelizing,
optimizing C compiler (McCat). The salient features
of this approach[7] are:

1: Instead of computing alias pairs, a points-to anal-
ysis is performed. The points-to abstraction abstracts
the set of accessible real stack locations with a finite
set of named abstract locations on an abstract stack.
Every real stack location (source or target) is repre-
sented by exactly 1 named abstract location whereas
each abstract location may represent 1 or more real
stack locations. While an abstract stack location cor-
responds to a local, global or parameter variable, only
a variable that is pari, of some alias relationship has an
entry in in the abstract stack. The advantage of this
representation is that both may and must can be easily
derived. The points-to abstraction is a compact repre-
sentation of the alias information and is equivalent to
the way Choi et a1 [4:1 represent aliases.

2: The analysis computes both definzte and possi-
ble points-to relation(ships simultaneously. A definite
relationship implies that on all execution paths the re-
lationship holds while a possible relationship may hold
on some execution path. Definite relationships provide
killing information which can be used to improve accu-
racy.

3: Separate methods of alias analysis are provided
between stack variables and between references to
dynamically-allocated objects on the heap.

4: Interprocedural analysis is performed on a mod-
ified call graph (the ,invocation graph) which encodes
all possible interprocedural realizable function call se-
quences. The invocation graph explicitly represents all
possible invocation pisths with each invocation chain
having a unique path in the graph, thus providing

629

the calling context. The invocation graph, for non-
recursive programs, is built by a depth-first traversal
of the call graph. Approximate nodes are added to
the graph to prevent infinite unrolling if recursion is
present.

5: A simple compositional analysis is used to com-
pute points-to relationships. Rules are given for the
analysis of basic constructs in the program (simple
statements, if, while) and these rules are used to com-
pute the compound constructs (sequencing, function
calls). Recursion requires a fixed point computation.

Overview of the Problem
In [7], the set of accessible real stack locations is

abstracted with a finite set of named abstract locations
on an abstract stack. With array slices, we need to
ensure that there can be only one abstract location
for a given data structure. We cannot have 2 abstract
locations like A[j : 71 and A[1 : 61 that may overlap.

Subscripted variables with the same base array but
non-overlapping indices (this includes various slices
present in the program) must have unique entries in
the abstract stack for accurate alias analysis. For ex-
ample, array locations A[10], A[23], A[i] have different
locations in the abstract stack if i can never assume 10
or 23 as values. If i can assume values in the range,
say, 8..14, then there will be 2 abstract stack locations:
A[8..14] and A[23].

One solution is to do analysis on the indices. But it
is also important to find ways of decomposing the data
structure (in this case arrays) so that each slice can
be seen to be independent of the others without any
overlap; otherwise parallelism suffers. For this, prior
analysis of aliasing through indices is needed. In this
connection, we give an overview of the solution for com-
bining conditional constant propagation and interpro-
cedural aliasing[lO] that has to be modified so that it
works for induction variables in addition to constants.
Such a solution involves a fixpoint computation that
computes both the set of induction variables and con-
stants and the structure that corresponds to the SSA
representation (see [6] for an example of a fixpoint it-
eration carried on a SSA structure): both these change
as more accurate information is available. With such a
solution, we can detect slices that are independent; give
implicit or explicit name to each subslice and then as-
sign each one of them a unique abstract location. This
will then drive the fixpoint computation of comput-
ing aliases through slices with the previous subproblem
fixpoint analyses as its inner core. When the fixpoint
converges, we are done.

The condition on the subscripted variables is
very stringent and may involve extensive analy-
sisfcomputation. Partitioning an array so that as many

non-overlapping slices as necessary for the needed ac-
curacy is a difficult problem that has been addressed
in the literature[3], [l], [ll], [12]. To reduce the cost,
we may follow any of the following strategies:

1: Use SSA representation for arrays with extensive
induction variable analysis. But aliasing analysis needs
to be done on the induction variables and other scalar
variables beforehand. This requires an approach sim-
ilar to Cytron[G] where constants are detected in the
presence of aliasing. In our case, a fixpoint iteration
on the SSA structure is needed for detecting induction
variables in the presence of aliasing. This uncoupling
of the aliasing analysis for scalars and structures will
result in approximate but conservative information as
the interactions between these has to be conservatively
estimated. However, these interactions are also not
very common.

2: Use memory disambiguation techniques (includ-
ing omega test in conjunction with predicates to repre-
sent conditionals). 3: Use regular section descriptors[l]
to subdivide an array into regular sections and provide
abstract stack locations for them.

We now present alias analysis in the presence of
pointers to array slices assuming that aliases are not
transmitted between scalar and non-scalar variables.
Due to lack of space, we do not present the solution
to recognizing induction variables in the presence of
aliases which is also needed.

3 Alias Analysis for Slices

Definitions and Preliminaries
Definite Alias: An abstract stack location x defi-

nitely points-to abstract stack location y if x and y each
represent exactly the same set of real stack locations
and the real stack location corresponding to 2 contains
the starting address of the real stack location of y. It
is represented as (z, y, D)

Possible Alias: An abstract stack a: possibly
points-to abstract stack location y if it is possible that
one of the real stack locations corresponding to x con-
tains the starting address of one of the real stack loca-
tions corresponding to y. It is represented as (8, y, P) .

May Alias Pairs: To compute the may alias pairs
at different program points, we construct a may alias
graph (MAG) from the abstract stack. By applying
transitive closure on this undirected graph, we get the
may alias pairs. An alias relation (a, y) has an edge in
MAG if any one of the following conditions holds true
in the abstract stack:

x and y have a definite relationship.
x and y have a possible relationship.

630

2: and z have a possible or definite relationship and
z and y are aliased to slices or locations that overlap in
the same array. Symbolic analysis (and more powerful
methods[ll]) is needed for accurate determination of
overlap in the general case.

Must Alias Pairs To compute the must alias pairs
at different program points, we construct a must alias
graph (MUG) from the abstract stack and then apply
transitive closure on this graph to get the must alias
pairs. An alias relation (z, y) has an edge in MUG if z
and y have a definite relationship in the abstract stack.

Dataflow Analysis
Intraprocedural analysis
In Fortrango, only explicit pointer assignment af-

fect alias sets. The changes in the alias pairs can be
represented using the following standard sets at each
program point: GEN (the set of all aliases generated
at the program point p) , INPUT (The set of all aliases
before p) , KILL (the set of all aliases removed due to
alias at p) and OUTPUT (the set of aliases after p) .
As an array pointer can be an another name for an
array or array slice and other pointers can point to it,
all pointers are normalized to indices on the base array
by giving intermediate expressions names and changing
bounds (possible as we use SSA).

Consider the assignment statement in Fortrango:
S : A j B. Let A be a Fortran90 pointer and B be one
of: a scalar, an array location of the form X[c] with X
a Fortran90 array, an array location of the from X [i] ,
an array slice of the form X[i. . j] , a scalar pointer that
points to a constant location, a pointer of the form
Y[e] with Y itself a Fortran90 pointer. Here i , j are
variables, c a constant, e an expression. To capture
all the various possibilities, we define Llocs (left loca-
tions) to be the set of abstract locations referred to by
a reference on the lhs of an assignment and Rlocs (right
locations) that of the rhs. We give the exact semantics
for only some cases (due to lack of space) in Table 1;
the cases omitted can be generated with some effort by
looking at the ones listed. We have not explicitly given
the semantics for the case where B is a pointer of the
form Y[e] with Y itself a Fortran90 pointer; we assume
that all pointers are normalized to indices on the base
array beforehand. Then

KILL = { (p , a, D)l(p, D) E Llocs(A)}: Kill all re-
lationships of definite Llocs.

GEN = {(p,zldlAd2)~(p,dl) E Llocs(A)A(z,d2) E
Rlocs(B)}: Generate all possible relationships between
Llocs(A) and Rlocs(B). Definite if both are definite.

CHANGE = { (p , ~ , D)I(p, P) E Llocs(A) A
(p , z , D) E I N P U T } : Change from D to P , all re-
lationships from possible Llocs(A).
OUTPUT = (INPUT - CHANGE) U

63 1

{ (p , 2, P) ((p , 3, D) E C H A N G E } - KILL U G E N .
In conditional and loop statements, alias informa-

tion flows from more than one point. At these points
a conservative summary of the information flowing in
has to be computed: computing the points-to alias in-
formation of the then-body and else-body independently
and then merge the resulting alias sets in case of con-
ditional and fixed-point iteration in case of loops. For
select statement (similar to the C switch statement),
we compute the alias information for each case of the
select statement and then the output of all the case
statements are merged.

If the variable is of the form z.fl. f 2 . . . f n , where z
is a structure variable, z.fl.f2.. . f n is given a unique
location in the abstralct stack and treated as any other
variable. If z is a po'inter to structure variable, then
we retrieve *z. fl. f 2 . . . fn from the abstract stack and
compute aliases as for any other variable in the abstract
stack.

Analysis of Gaussian Elimination
Assuming that induction variables and array indices

will not be aliased (no cases of j = *p + c, etc.) in
our implementation, we have successfully shown that
the Gaussian elimination example given in Section 2
can be optimized as expected. The abstract stack is as
follows:

S2: < *z, A(i , i : n), D >, < *y, A(n, i : n), D >, <
*z, A(i - 1 : n, i - l), i9 >, < *temprow, heaploc, D >

S 8 : < *E, A(i , i : n), D >, < *y, A (j , i : n) , D >, <
*z, A(i : n, i), D >, < *temprow, heaploc, D >

When the may and must aliases are computed from
the abstract stack, we do not get spurious aliases be-
tween, say, z and y, as might be reported by less accu-
rate aliases.

Interprocedural Analysis
The dataflow analysis consists of these steps [7]:

constructing the invocation graph, followed by map,
intraprocedural ana1ys;is and unmap for each function
call. The C and Fortra.nS0 versions do not differ in the
interprocedural aspect i5s the Fortran90 specific aspects
are present more in the intraprocedural part than in the
interprocedural part (assuming the standard solutions
for handling the aliasing through reference parameters
in Fortran[5], [2]) We give a brief overview and omit
details here except as relating to the ones we have at-
tempted differently.

An invocation graph (IG) is constructed by perform-
ing a depth-first traversal of the call nodes of the ab-
stract syntax tree (AST). Each call of a function has
a unique path in the IC: and hence we can distinguish
between the different c,alls of the same function from
different contexts. This approach leads to approximate
analysis for recursive functions as at compile time we

do not know the number of times a recursive function
will be called.

In the construction of the IG we have 3 types of
nodes: normal, approximate and recursive. We tag any
non-recursive node as normal. When a recursive node
has been identified the node is tagged as recursive node.
Then a backward link is established to the ancestor
node and it is tagged as approximate node.

In map, the alias information of the calling function
is passed to the called function. As the called func-
tion affects the alias information of the callee in pointer
based languages, the update of the alias set of the callee
function is done through unmap. Our approach differs
slightly in the case of invisible variables, i.e those vari-
ables whose alias relationships get modified although
they may not be visible in the function.

4 Conclusions and Further Work

In this paper, we have presented an alias analysis
for Fortran90 with the assumption that aliasing does
not happen due to interactions between scalar and non-
scalar variables. We have also developed solutions to
two important subproblems that needs to be solved en-
route: that of combining conditional constant propaga-
tion and induction variables with scalar interprocedu-
ral alias analysis. We are currently implementing the
combined algorithm, both for detecting constants and
induction variables. We also plan to study empirically
the extent to which array slices and pointers are used
in Fortran90 code and the usefulness of alias analysis
in the presence of pointers to array slices. Addition-
ally, range analysis optimization is also important and
needs to be done in conjunction with alias analysis (see
Gough et. a1[13] who consider range analysis in the
context of SSA).

References

[l] Vasanth Balasubramaniam. A technique for summa-
rizing data access and its use in parallelism enhancing
transformation. SIGPLA N Notices, June 1989.

[Z] John Banning. An efficient way to find the side effects
of procedure calls and the aliases of variables. In Proc
of the Sixth AGM Symposium on POPL, 1979.

The program summary graph and
flow-sensitive interprocedural data flow analysis. SIG-
PLAN Notices, 23(7):47-56, July 1988.

[4] Jong-Deok Choi, Micheal Burke, and Paul Carini. Ef-
ficient flow-sensitive interprocedural computation of
poniter-induced aliases and side effects. In Proc of the
Twentieth AGM Symposium on POPL, 1993.

[3] David Callahan.

Table 1: Llocs and Rlocs sets are relative to points-
to set S; here l..m = RANGE(i); n. .p = RANGE(j)

Variable L-location Set R-location Set
Reference

[5] K. Cooper and K. Kennedy. Complexity of interpro-
cedural side-effect analysis. Technical report, CS Dept
TR87-61, Rice University, Oct 1987.

[6] Ron Cytron and Reid Gershbein. Efficient accomoda-
tion of may-alias information in SSA form. SIGPLAN
Notices, 28(6):36-45, June 1993.

A practical interprocedural alias
analyhis for an optimizing/parallelizing C compiler.
Master’s Thesis, School of CS, McGill University, 1993.

[8] William A. Landi. Interprocedural aliasing in the pres-
ence of pointers. Technical report, PhD Thesis, Rut-
gers University, 1992.

[9] T.J. Marlowe, et.al. Pointer induced aliasing: a clari-
fication. ACM SIGPLAN Notices, 28(8), 1993.

Combining conditional constant
propagation and alias analysis. Master’s Thesis, Indian
Institute of Science, 1995.

Ell] Bill Pugh. Omega test. SZGPLAN Notices, 27(7):140-
151, July 1992.

[12] Michael Wolfe. Beyond induction variables. SIGPLAN
Notices, 27(7):162-174, July 1992.

[13] Gough and Klaeren. Eliminating Range Checks Us-
ing SSA Form, CS Dept., QUT Australia,l995;
http://www.dstc.qut.edu.au/ gough

[7] Maryam Emami.

[IO] K.S. Nandakumar.

632

http://www.dstc.qut.edu.au

