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Abstract 
Most alias analyses produce approximate results in the pres- 
ence of array slices. This may lead to inefficient code which 
is of concern, especially, in languages like Fortrango. In 
this paper, we present an overview of a static alias analysis 
that gives accurate results in the presence of array slices in 
Fortran90 . 

1 Introduction 

An optimising compiler requires accurate data-flow 
analysis to perform code-improving transformations 
and generate efficient code. To perform effective data- 
flow analysis, we require precise dependence and alias 
information. An alias occurs at  some program point 
during program execution when 2 or more names exist 
for the same memory location, ie. when two or more 
1-value expressions refer to the same memory location. 
The alias problem is to determine the alias relation- 
ships at each program point. Alias analysis has been 
initially developed for non-pointer, non-recursive lan- 
guages like Fortran77. Recent interest has shifted to 
languages like C that support pointers. 

Obtaining accurate alias information for pointer 
supporting languages becomes difficult because of the 
following: the address-of operator can lead to the cre- 
ation of a new pointer relationship at  any program 
point; passing pointers to functions can lead to the 
called function modifying the alias relationship of the 
callee; dynamic allocation of memory for pointers; and 
recursive structures and functions could lead to un- 
bounded number of alias relations. 

In addition, an accurate alias analysis needs the con- 
text in which the function is called. Various approaches 
to this problem are by restricting the flow of alias in- 
formation to realizable paths only[8], by using source 
alias sets of the last call site [9] or by using invocation 
graphs [7]. 

Fortran90 has a restricted notion of pointers com- 
pared to C. But it has support for pointers to array 
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slices which are very useful for specifying computa- 
tion in SIMD, MIMD and other similar machines. The 
existing alias algorithms for pointer-based languages 
provide approximate information about aliases to ar- 
ray slices as they do not make any distinction be- 
tween references to different locations in the same ar- 
ray. Emami[7] does make a distinction between the 
alias to the first element of the array and the alias to 
the rest of the array but this is still not enough to 
ezpZoit the parallelism available in programs that use 
array slices. 

We have extended the alias algorithm reported in 
[7] to produce more accurate results in the presence of 
array indices for Fortrango. Our algorithm assumes a 
SSA form of representation in which every redefinition 
of a variable is renamed. 

2 Motivation 

Consider the following example from Fortrango: 

SUBROUTINE gauss-elim() 
REAL dimension(lO,lO),target : :  A 
INTEGER i,n,j,maxrowloc 
INTEGER dimension(:),pointer::x,y,z 
INTEGER dimension(:),pointer::temprow,maxrow 

S1: DO 50, i = 1,n 
s2 : 
s3 : 
s4 : 
s5 : 
S6 : 

s7 : 
S8 : 
s9 : 

x => A(i,i:n) 
z => A(i:n,i) 
maxrowloc = MAXLOC(z) 
maxrow => A(maxrowloc,i;n) 
ALLOCATE(temprow(n-i)) 
IF (maxrow1oc.ne.i) 
temprow = x 
x = maxrow 
maxrow = temprow 

ENDIF 
DO 200 j = i+l, n 

y => A(j,i:n) 
y = y - x*(y(l)/x(i>> 

628 



SiO: 200 ENDDO 

Sii:50 ENDDO 
END 

... 

In Fortrango, pointer assignments are distinguished 
from normal assignments by =>. At S2, there is a 
pointer assignment with x pointing to a single dimen- 
sional array subsection A ( i , i  : n). This results in the 
alias pair < *x,A(i,i : n) >. a points to the ith row 
starting from the ith element. z points to the ith col- 
umn starting from the ith element. 

The function MAXLOC returns the index of the 
maximum valued element. The statements between 
S6 and S7 swap the elements of the ith row and the 
maxrow. Note that a: still points to the ith row. State- 
ments S7 to S10 perform row operations which trans- 
form the matrix to upper triangular matrix. Note that 
i and j do not take the same value; this can be deter- 
mined by a very simple intraprocedural range analysis 
using reaching definitions. Hence, the array subsec- 
tion pointed to by x and y never overlap. Therefore, 
at S8, we have the alias pairs {< *y, A ( j ,  i : n) >, < 
*a, A(i , i  : n) >}. We can move the normalizing oper- 
ation x/x(l)  outside the loop and rewrite statements 
S7 to S11 based on the alias information as: 

S i ” :  normtemp = x/x(i) 
DO 200, j = i+l,n 

y => A ( j , i : n )  
y = y - normtemp * y ( i )  

Sii’: 200 ENDDO 

Note that it is not possible to perform this optimiza- 
tion if it is not known if a and y refer to the same slice. 
If they refer to the same slice or if there is some over- 
lap in the slices they refer to, incorrect results will be 
obtained. More interestingly, this optimization cannot 
be detected easily (or if at  all) if the slice notation is 
not used. We discuss the results of our analysis for this 
problem in Section 3. 

Most of the parallelism in programs is present in 
loops. An accurate information about the induction 
variables and the alias information will help in code 
optimisations. Wolfe[l2] detects common forms of in- 
duction variables using SSA form. Consider the exam- 
ple of flip-flop variables: 

j = i  
j o l d  = 2 
DO iter = i , n  /* re laxat ion code */ 

x => A(jo ld ,* ,* )  

DO k = 2 , n  
y => A ( j , * , * )  

y(k) = y(k-1) - ~ ( 2 > / ~ ( i , i )  
ENDDO 
temp = j o l d  
j o l d  = j 
j = temp 

ENDDO 

j and j o l d  never take the same value but take either 
1 or 2. Hence, z and y do not point to overlapping ar- 
eas and we get the a,lias pairs as {< *x, A(j, *, *) >, < 
*y, A(joZd, *, *) >}. Hence, we can move the computa- 
tion x(2)/0(1,1) out the loop as it is a loop invariant. 

Another case that SSA can help is locating mono- 
tonically increasing variables: this can be used to show 
that one array slice can never be aliased by another. 
Our alias framework also needs SSA, in addition to its 
role in detecting indiiction variables. 

Overview of Alias Analysis Framework 
We use the basic framework in [7] for interprocedu- 

ral alias analysis but whose implementation targeted 
the aliasing problem in the context of a parallelizing, 
optimizing C compiler (McCat). The salient features 
of this approach[7] are: 

1: Instead of computing alias pairs, a points-to anal- 
ysis is performed. The points-to abstraction abstracts 
the set of accessible real stack locations with a finite 
set of named abstract locations on an abstract stack. 
Every real stack location (source or target) is repre- 
sented by exactly 1 named abstract location whereas 
each abstract location may represent 1 or more real 
stack locations. While an abstract stack location cor- 
responds to a local, global or parameter variable, only 
a variable that is pari, of some alias relationship has an 
entry in in the abstract stack. The advantage of this 
representation is that both may and must can be easily 
derived. The points-to abstraction is a compact repre- 
sentation of the alias information and is equivalent to 
the way Choi et a1 [4:1 represent aliases. 

2: The analysis computes both definzte and possi- 
ble points-to relation(ships simultaneously. A definite 
relationship implies that on all execution paths the re- 
lationship holds while a possible relationship may hold 
on some execution path. Definite relationships provide 
killing information which can be used to improve accu- 
racy. 

3: Separate methods of alias analysis are provided 
between stack variables and between references to 
dynamically-allocated objects on the heap. 

4: Interprocedural analysis is performed on a mod- 
ified call graph (the ,invocation graph) which encodes 
all possible interprocedural realizable function call se- 
quences. The invocation graph explicitly represents all 
possible invocation pisths with each invocation chain 
having a unique path in the graph, thus providing 
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the calling context. The invocation graph, for non- 
recursive programs, is built by a depth-first traversal 
of the call graph. Approximate nodes are added to 
the graph to prevent infinite unrolling if recursion is 
present. 

5: A simple compositional analysis is used to com- 
pute points-to relationships. Rules are given for the 
analysis of basic constructs in the program (simple 
statements, if, while) and these rules are used to com- 
pute the compound constructs (sequencing, function 
calls). Recursion requires a fixed point computation. 

Overview of the Problem 
In [7], the set of accessible real stack locations is 

abstracted with a finite set of named abstract locations 
on an abstract stack. With array slices, we need to 
ensure that there can be only one abstract location 
for a given data structure. We cannot have 2 abstract 
locations like A[j  : 71 and A[1 : 61 that may overlap. 

Subscripted variables with the same base array but 
non-overlapping indices (this includes various slices 
present in the program) must have unique entries in 
the abstract stack for accurate alias analysis. For ex- 
ample, array locations A[10], A[23], A[i] have different 
locations in the abstract stack if i can never assume 10 
or 23 as values. If i can assume values in the range, 
say, 8..14, then there will be 2 abstract stack locations: 
A[8..14] and A[23]. 

One solution is to do analysis on the indices. But it 
is also important to find ways of decomposing the data 
structure (in this case arrays) so that each slice can 
be seen to be independent of the others without any 
overlap; otherwise parallelism suffers. For this, prior 
analysis of aliasing through indices is needed. In this 
connection, we give an overview of the solution for com- 
bining conditional constant propagation and interpro- 
cedural aliasing[lO] that has to be modified so that it 
works for induction variables in addition to constants. 
Such a solution involves a fixpoint computation that 
computes both the set of induction variables and con- 
stants and the structure that corresponds to the SSA 
representation (see [6] for an example of a fixpoint it- 
eration carried on a SSA structure): both these change 
as more accurate information is available. With such a 
solution, we can detect slices that are independent; give 
implicit or explicit name to each subslice and then as- 
sign each one of them a unique abstract location. This 
will then drive the fixpoint computation of comput- 
ing aliases through slices with the previous subproblem 
fixpoint analyses as its inner core. When the fixpoint 
converges, we are done. 

The condition on the subscripted variables is 
very stringent and may involve extensive analy- 
sisfcomputation. Partitioning an array so that as many 

non-overlapping slices as necessary for the needed ac- 
curacy is a difficult problem that has been addressed 
in the literature[3], [l], [ll], [12]. To reduce the cost, 
we may follow any of the following strategies: 

1: Use SSA representation for arrays with extensive 
induction variable analysis. But aliasing analysis needs 
to be done on the induction variables and other scalar 
variables beforehand. This requires an approach sim- 
ilar to Cytron[G] where constants are detected in the 
presence of aliasing. In our case, a fixpoint iteration 
on the SSA structure is needed for detecting induction 
variables in the presence of aliasing. This uncoupling 
of the aliasing analysis for scalars and structures will 
result in approximate but conservative information as 
the interactions between these has to be conservatively 
estimated. However, these interactions are also not 
very common. 

2: Use memory disambiguation techniques (includ- 
ing omega test in conjunction with predicates to repre- 
sent conditionals). 3: Use regular section descriptors[l] 
to subdivide an array into regular sections and provide 
abstract stack locations for them. 

We now present alias analysis in the presence of 
pointers to array slices assuming that aliases are not 
transmitted between scalar and non-scalar variables. 
Due to lack of space, we do not present the solution 
to recognizing induction variables in the presence of 
aliases which is also needed. 

3 Alias Analysis for Slices 

Definitions and Preliminaries 
Definite Alias: An abstract stack location x defi- 

nitely points-to abstract stack location y if x and y each 
represent exactly the same set of real stack locations 
and the real stack location corresponding to 2 contains 
the starting address of the real stack location of y. It 
is represented as (z, y, D) 

Possible Alias: An abstract stack a: possibly 
points-to abstract stack location y if it is possible that 
one of the real stack locations corresponding to x con- 
tains the starting address of one of the real stack loca- 
tions corresponding to y. It is represented as (8, y, P ) .  

May Alias Pairs: To compute the may alias pairs 
at different program points, we construct a may alias 
graph (MAG) from the abstract stack. By applying 
transitive closure on this undirected graph, we get the 
may alias pairs. An alias relation (a, y) has an edge in 
MAG if any one of the following conditions holds true 
in the abstract stack: 

x and y have a definite relationship. 
x and y have a possible relationship. 
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2: and z have a possible or definite relationship and 
z and y are aliased to slices or locations that overlap in 
the same array. Symbolic analysis (and more powerful 
methods[ll]) is needed for accurate determination of 
overlap in the general case. 

Must Alias Pairs To compute the must alias pairs 
at different program points, we construct a must alias 
graph (MUG)  from the abstract stack and then apply 
transitive closure on this graph to get the must alias 
pairs. An alias relation (z, y) has an edge in MUG if z 
and y have a definite relationship in the abstract stack. 

Dataflow Analysis 
Intraprocedural analysis 
In Fortrango, only explicit pointer assignment af- 

fect alias sets. The changes in the alias pairs can be 
represented using the following standard sets at  each 
program point: GEN (the set of all aliases generated 
at the program point p ) ,  INPUT (The set of all aliases 
before p ) ,  KILL (the set of all aliases removed due to 
alias at p )  and OUTPUT (the set of aliases after p ) .  
As an array pointer can be an another name for an 
array or array slice and other pointers can point to it, 
all pointers are normalized to indices on the base array 
by giving intermediate expressions names and changing 
bounds (possible as we use SSA). 

Consider the assignment statement in Fortrango: 
S : A j B. Let A be a Fortran90 pointer and B be one 
of: a scalar, an array location of the form X[c]  with X 
a Fortran90 array, an array location of the from X [ i ] ,  
an array slice of the form X[i. . j] ,  a scalar pointer that 
points to a constant location, a pointer of the form 
Y[e] with Y itself a Fortran90 pointer. Here i , j  are 
variables, c a constant, e an expression. To capture 
all the various possibilities, we define Llocs (left loca- 
tions) to be the set of abstract locations referred to by 
a reference on the lhs of an assignment and Rlocs (right 
locations) that of the rhs. We give the exact semantics 
for only some cases (due to lack of space) in Table 1; 
the cases omitted can be generated with some effort by 
looking at the ones listed. We have not explicitly given 
the semantics for the case where B is a pointer of the 
form Y[e] with Y itself a Fortran90 pointer; we assume 
that all pointers are normalized to indices on the base 
array beforehand. Then 

KILL = { ( p ,  a, D)l(p,  D) E Llocs(A)}: Kill all re- 
lationships of definite Llocs. 

GEN = {(p,zldlAd2)~(p,dl)  E Llocs(A)A(z,d2) E 
Rlocs(B)}: Generate all possible relationships between 
Llocs(A) and Rlocs(B). Definite if both are definite. 

CHANGE = { ( p , ~ ,  D)I(p, P )  E Llocs(A) A 
( p , z , D )  E I N P U T } :  Change from D to P ,  all re- 
lationships from possible Llocs(A). 
OUTPUT = (INPUT - CHANGE)  U 

63 1 

{ ( p ,  2, P ) ( ( p ,  3, D) E C H A N G E }  - KILL U G E N .  
In conditional and loop statements, alias informa- 

tion flows from more than one point. At these points 
a conservative summary of the information flowing in 
has to be computed: computing the points-to alias in- 
formation of the then-body and else-body independently 
and then merge the resulting alias sets in case of con- 
ditional and fixed-point iteration in case of loops. For 
select statement (similar to the C switch statement), 
we compute the alias information for each case of the 
select statement and then the output of all the case 
statements are merged. 

If the variable is of the form z.fl. f 2 . .  . f n ,  where z 
is a structure variable, z.fl.f2.. . f n  is given a unique 
location in the abstralct stack and treated as any other 
variable. If z is a po'inter to structure variable, then 
we retrieve *z. fl. f 2 . .  . fn from the abstract stack and 
compute aliases as for any other variable in the abstract 
stack. 

Analysis of Gaussian Elimination 
Assuming that induction variables and array indices 

will not be aliased (no cases of j = *p + c, etc.) in 
our implementation, we have successfully shown that 
the Gaussian elimination example given in Section 2 
can be optimized as expected. The abstract stack is as 
follows: 

S2: < *z, A(i ,  i : n), D >, < *y, A(n,  i : n),  D >, < 
*z, A(i  - 1 : n, i - l), i9 >, < *temprow, heaploc, D > 

S 8 :  < *E, A(i ,  i : n), D >, < *y, A ( j ,  i : n) ,  D >, < 
*z, A(i  : n, i), D >, < *temprow, heaploc, D > 

When the may and must aliases are computed from 
the abstract stack, we do not get spurious aliases be- 
tween, say, z and y, as might be reported by less accu- 
rate aliases. 

Interprocedural Analysis 
The dataflow analysis consists of these steps [7]: 

constructing the invocation graph, followed by map, 
intraprocedural ana1ys;is and unmap for each function 
call. The C and Fortra.nS0 versions do not differ in the 
interprocedural aspect i5s the Fortran90 specific aspects 
are present more in the intraprocedural part than in the 
interprocedural part (assuming the standard solutions 
for handling the aliasing through reference parameters 
in Fortran[5], [2] )  We give a brief overview and omit 
details here except as relating to the ones we have at- 
tempted differently. 

An invocation graph (IG) is constructed by perform- 
ing a depth-first traversal of the call nodes of the ab- 
stract syntax tree (AST). Each call of a function has 
a unique path in the IC: and hence we can distinguish 
between the different c,alls of the same function from 
different contexts. This approach leads to approximate 
analysis for recursive functions as at compile time we 



do not know the number of times a recursive function 
will be called. 

In the construction of the IG we have 3 types of 
nodes: normal, approximate and recursive. We tag any 
non-recursive node as normal. When a recursive node 
has been identified the node is tagged as recursive node. 
Then a backward link is established to the ancestor 
node and it is tagged as approximate node. 

In map, the alias information of the calling function 
is passed to the called function. As the called func- 
tion affects the alias information of the callee in pointer 
based languages, the update of the alias set of the callee 
function is done through unmap. Our approach differs 
slightly in the case of invisible variables, i.e those vari- 
ables whose alias relationships get modified although 
they may not be visible in the function. 

4 Conclusions and Further Work 

In this paper, we have presented an alias analysis 
for Fortran90 with the assumption that aliasing does 
not happen due to interactions between scalar and non- 
scalar variables. We have also developed solutions to 
two important subproblems that needs to be solved en- 
route: that of combining conditional constant propaga- 
tion and induction variables with scalar interprocedu- 
ral alias analysis. We are currently implementing the 
combined algorithm, both for detecting constants and 
induction variables. We also plan to study empirically 
the extent to which array slices and pointers are used 
in Fortran90 code and the usefulness of alias analysis 
in the presence of pointers to array slices. Addition- 
ally, range analysis optimization is also important and 
needs to be done in conjunction with alias analysis (see 
Gough et. a1[13] who consider range analysis in the 
context of SSA). 
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