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Abstract

Many-body localisation is studied in a disordered quantum spin-1/2 chain with long-
ranged power-law interactions, and distinct power-law exponents for interactions be-
tween longitudinal and transverse spin components. Using a self-consistent mean-field
theory centring on the local propagator in Fock space and its associated self-energy, a
localisation phase diagram is obtained as a function of the power-law exponents and the
disorder strength of the random fields acting on longitudinal spin-components. Analyti-
cal results are corroborated using the well-studied and complementary numerical diag-
nostics of level statistics, entanglement entropy, and participation entropy, obtained via
exact diagonalisation. We find that increasing the range of interactions between trans-
verse spin components hinders localisation and enhances the critical disorder strength.
In marked contrast, increasing the interaction range between longitudinal spin compo-
nents is found to enhance localisation and lower the critical disorder.
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1 Introduction

The presence of disorder in nature is as much an inevitability as it is a source of rich and
often unexpected phenomena. In quantum condensed matter, much of the study of disor-
dered systems falls under the umbrella of Anderson localisation, with its origins in Anderson’s
seminal work [1] showing that sufficiently strong disorder can induce spatial localisation of
the wavefunctions of a system of non-interacting particles. In fact in one-dimension, Mott
and Twose [2] later showed that single-particle states are localised even for an infinitesimally
small disorder strength. A natural subsequent question is the robustness of localisation to the
inclusion of interactions, the importance of which has long been appreciated and studied in
the context of ground state phases [1,3]. More recently, the last decade or so has seen consid-
erable attention given to this issue for highly excited quantum states at finite energy densities
above the ground state, under the banner of many-body localisation [4–6] (see Refs. [7,8] for
reviews and further references therein). Its fundamental importance stems in part from the
fact that many-body localised systems fail to thermalise, and hence lie beyond the established
norms of thermodynamic ensembles in statistical mechanics; allowing e.g. for the possibility
of novel phenomena such as emergent integrability and unusual quantum order extending to
arbitrary energy densities [9,10]. Rapid progress in experimental quantum simulators, and ob-
servation of many-body localisation in such experiments [11–13], has also spurred theoretical
development.

The great majority of theoretical studies on many-body localisation have focussed on mod-
els with short-ranged interactions. In d = 1 spatial dimension, extensive numerical stud-
ies [14–18], phenomenological real-space renormalisation group formulations [19–26], ap-
proaches based on local and non-local propagators in Fock space [27, 28], and treatments of
classical percolation analogues on Fock space [29, 30], have shown that there exists a finite
critical disorder for the many-body localisation transition, although the precise nature of the
transition remains an open question.

On the other hand, the current literature on many-body localisation in systems with power-
law interactions paints a relatively pessimistic picture of the possibility of localisation. Ar-
guments based on simple resonance counting and breakdown of the locator expansion have
suggested that systems with interactions longer-ranged than 1/r2d cannot host a many-body
localised phase [31–35]; though such arguments can be debated on the grounds that simple
resonance counting does not account for correlations in the Fock space (in both off-diagonal
and diagonal matrix elements of the many-body Hamiltonian), and that the breakdown of
the bare locator expansion does not itself guarantee the absence of localisation. Interestingly
enough, experiments with trapped ions [12] and dipolar systems [36,37], where power-law in-
teractions appear naturally, seem to suggest the presence of localised phases in regimes where
common lore would deem localisation impossible. In fact, arguments for the low-energy the-
ory based on bosonisation [38] show that low-temperature many-body localisation is indeed
possible in such long-ranged interacting systems. Nevertheless, the question of whether local-
isation persists at infinite temperatures – in other words for eigenstates in the middle of the
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spectrum – remains very much open. That is the question we seek to address in the present
work.

In order to obtain an analytical, albeit approximate, understanding of the localisation phase
diagram, we study the local propagators in Fock space within a self-consistent mean-field
framework [28]. We focus in particular on the imaginary part of the associated self-energy
and its distribution. Its typical value is expected to vanish with unit probability in the lo-
calised phase, but correspondingly to be non-zero in the delocalised phase, thereby signalling
the phase transition. Free from the approximations underlying the mean-field theory, its essen-
tial predictions are corroborated using numerical results obtained from exact diagonalisation,
for the ubiquitous diagnostics of level statistics, entanglement entropy, and participation en-
tropy, and their finite-size scaling analyses.

The archetypal model for studying many-body localisation in one-dimensional short-ranged
systems is a chain of spinless fermions with a disordered onsite potential, and nearest-neighbour
hoppings and density-density interactions, which, via a Jordan-Wigner transformation, maps
onto the random-field XXZ spin-1/2 chain. In this work we consider a long-ranged generali-
sation of the disordered XXZ chain described by the Hamiltonian

H =
∑

i

hiσ
z
i + Jz

∑

i> j

σz
iσ

z
j

(i − j)β
+ J

∑

i> j

1
(i − j)α

(σx
i σ

x
j +σ

y
i σ

y
j ) , (1)

where the σ’s are Pauli matrices for spins-1/2, and the hi ∈ [−W, W ] describes the disor-
dered fields (independent random variables for each site i). The model in Eq. (1) conserves
total magnetisation, Mz =

∑N
i=1σ

z
i , whence one can work independently in each Mz sec-

tor. We chose to work in the Mz = 0 sector, which has the largest Fock-space dimension
NH(Mz = 0) =

� N
N/2

�

and dominates the 2N -dimensional Fock space of all Mz sectors in the
thermodynamic limit (system size N → ∞). The infinite temperature trace, whenever re-
ferred to henceforth, thus denotes the trace over all states in the Mz = 0 sector. Although we
consider the Mz = 0 sector explicitly, we add that the analysis holds for all Mz sectors whose
Fock-space dimensions scale exponentially with N .

As the disordered fields couple to the σz-component of the spins, we refer to the interac-
tion between the σz spin components, proportional to Jz and decaying as a power law with
exponent β in the separation between the spins, as the longitudinal interaction. Similarly, we
refer to the interaction between the σx and σ y spin components, proportional to J and decay-
ing with an exponent α, as the transverse interaction. The long-ranged interacting spin chain
is not trivially related to a fermionic problem with long-ranged hopping, though we comment
on the connection of our results to those of fermionic models later in the paper.

The central result of this work is the localisation phase diagram in the three-dimensional
parameter space spanned by α, β , and W . We find that making the transverse interactions
longer ranged (by decreasing α) aids delocalisation and increases the critical disorder strength
for localisation. The mean-field treatment in fact predicts that the model Eq. (1) lacks a lo-
calised phase for α < 0.5. On the other hand, quite remarkably, making the longitudinal
interactions longer ranged (decreasing β) favours localisation and lowers the critical disor-
der. In fact the mean-field theory in this case predicts that the system is always localised for
β < 0.5. Physically, the long-ranged longitudinal interaction can be understood as providing
the system with a rigidity against the spin-flips arising from transverse interactions, thus aiding
localisation and eventually driving the system into a phase similar to an interaction-induced
localised one.

The paper is organised is follows. In Sec. 2 we describe the local Fock-space propaga-
tors and their associated self-energies, discussing how the thermodynamic limit can be taken
appropriately and how they act as indicators of the many-body localisation transition. The
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self-consistent calculation for the imaginary part of the self-energy is set up in Sec. 3, follow-
ing the discussion in Ref. [28]. In Sec. 4 we employ the mean-field theory for the treatment
of the long-ranged disordered XXZ chain Eq. (1) and derive the phase diagram of the model,
which is then compared to numerical exact diagonalisation results in Sec. 5. We finally close
with discussion and concluding remarks in Sec. 6.

2 Local Fock-space propagators and self-energies

The Hamiltonian of a generic quantum many-body system can always be expressed as a tight-
binding Hamiltonian in Fock space,

H =
∑

I

EI |I〉 〈I |+
∑

I 6=K

JIK |I〉 〈K | , (2)

where {|I〉} denotes a set of many-body basis states of the NH-dimensional Fock space, which
act as the Fock-space sites of the tight-binding Hamiltonian Eq. (2). For a one-dimensional
chain of spins-1/2 with disordered fields coupling to the z-component of the spins, a natural
and convenient choice of the Fock space is the configuration space, with the sites |I〉 corre-
sponding to product states in the basis of {σz

`
}. One then expects eigenstates in the many-

body localised phase to behave fundamentally differently on the Fock space from those of the
delocalised phase. That this is indeed the case has been shown e.g. via numerical results for
participation entropies and participation ratios [17,39,40]: in the many-body delocalised and
localised phases respectively, eigenstates typically have support on O(NH) and O(NαH); α < 1
Fock space sites, which are respectively finite and vanishing fractions of the Fock-space dimen-
sion.

Collating the above two aspects of the problem of many-body localisation, propagators in
Fock space seem natural quantities to consider, since their real-space single-particle analogues
have long been profitably studied in problems of Anderson localisation [1,41]. It is important
to realise that there exist fundamental differences between the problem of many-body local-
isation recast as a disordered tight-binding model on a high-dimensional graph, and single-
particle localisation problems in high dimensions; and considerable caution needs to be ex-
ercised in invoking understandings from high-dimensional Anderson localisation. Fortunately
these issues are not insurmountable, inasmuch as there have been recent works which have
used a mean-field treatment of the local Fock-space propagator [28], as well their non-local
counterparts within the forward scattering approximation [27], to understand the many-body
localisation transition.

We will concern ourselves exclusively with the local Fock-space propagator

GI(t) = −iΘ(t) 〈I | e−iHt |I〉
GI (ω)=

∫

d t GI (t)eiω+ t

⇐===========⇒ GI(ω) = 〈I | (ω+ −H)−1 |I〉 , (3)

the Lehmann representation of which is

GI(ω) =
NH
∑

n=1

|AnI |2

ω+ − En
. (4)

Here, AnI = 〈I |ψn〉 with |ψn〉 an eigenstate of H with eigenvalue En, and ω+ = ω+ iη with
η = 0+. The local propagator is of particular importance as it provides access to two classic
probes of localisation, the local density of states and the imaginary part of the self-energy [41–
43]. While these have been used extensively in studying single-particle localisation, crucial
differences arise in the context of many-body localisation. We now describe briefly the two

4

https://scipost.org
https://scipost.org/SciPostPhys.7.4.042


SciPost Phys. 7, 042 (2019)

notions, taking care to emphasise these important differences, especially in regard to taking
the thermodynamic limit. As shown below, this motivates a necessary rescaling of the energy
scales of the problem in the many-body case, such that the local density of states and imaginary
part of the self-energy have well-defined thermodynamic limits [28].

The local density of states follows from GI(ω) as

DI(ω) = −
1
π

ImGI(ω) =
∑

n

|AnI |2δ(ω− En) (5)

(and is normalised to unity over ω). Physically, DI(ω) is a measure of the number of eigen-
states of energyωwhich overlap Fock-space site I . In the context of single-particle localisation,
it is well known that DI(ω) (with I in this case denoting real-space sites) is pure point-like in
the localised phase, and absolutely continuous in the delocalised phase. This reflects the fact
that, due to exponential localisation (in real-space) of states in the former case, only a finite
number O(1) of eigenstates with energies close to ω can overlap any real-space site; while in
the delocalised phase by contrast, that number is proportional to the system size, and hence
DI(ω) forms a continuum in the thermodynamic limit. The situation is slightly more delicate
in the case of many-body localisation, where the spectrum DI(ω) strictly speaking forms a con-
tinuum in the thermodynamic limit in both phases. However, the number of eigenstates close
to some given energyωwhich overlap a Fock-space site I are, respectively, vanishing and finite
fractions of the Fock-space dimension in the localised and delocalised phases in the thermody-
namic limit (similarly, the ratio of the number of Fock-space sites on which an eigenstate has
support in the MBL phase, to the corresponding number in the delocalised phase, vanishes in
the thermodynamic limit, as implied by the behaviour of participation entropies [17,39,40]).
This suggests that the spectrum of DI(ω)will appear point-like in a many-body localised phase
if viewed on energy scales relative to that for the delocalised phase.

An essential characteristic of the many-body delocalised phase can in turn be understood by
considering the limit of weak disorder, under the standard assumption made here that all basis
states are essentially equivalent and hence |AnI |2 ∼ 1/NH. Eq. (5) then gives
DI(ω) ' N−1

H
∑

nδ(ω − En) = D(ω), with D(ω) the normalised total density of eigenstates.
Since one expects the latter to be Gaussian [44], DI(ω)∝ µ−1

E , with µE the standard devi-
ation/width of the total density of states. But for generic many-body systems µE diverges in
the thermodynamic limit N →∞ (with µE ∝

p
N for short-ranged models [44]). Hence the

appropriate quantity to consider is the rescaled local density of states, D̃I = µE DI . With this
rescaling of the local spectrum (and hence propagator), the thermodynamic limit can safely
be taken. This is a first indication that the energy scales in the problem should be rescaled
with µE .

We turn our attention next to the self-energy, ΣI(ω), defined via the local propagator as

GI(ω) = [ω
+ − EI −ΣI(ω)]

−1; ΣI(ω) = X I(ω)− i∆I(ω) , (6)

where X I(ω) and ∆I(ω) respectively denote its real and imaginary parts; we will be partic-
ularly interested in the latter. Physically, ∆I(ω) can be interpreted as the inverse lifetime
associated with the decay of weight from |I〉 into states of energy ω, and hence it naturally
acts as a diagnostic for a localisation transition. In the context of single-particle localisation
for example, it is well understood that in the localised phase ∆I(ω) is vanishingly small with
unit probability over an ensemble of disorder realisations; specifically ∆I(ω)∝ η→ 0+. In a
delocalised phase by contrast, ∆I(ω) is non-zero and finite with probability unity.

As with the local density of states, caution must however be exercised in taking the ther-
modynamic limit [28]. From the definition of the self-energy in Eq. (6), one can express∆I(ω)
as

∆I(ω) =
πDI(ω)

Re[GI(ω)]2 + [πDI(ω)]2
−η , (7)
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where the Lehmann representation of GI(ω), Eq. (4), gives

Re[GI(ω)] =
NH
∑

n=1

(ω− En)|AnI |2

(ω− En)2 +η2
, πDI(ω) =

NH
∑

n=1

η|AnI |2

(ω− En)2 +η2
. (8)

As pointed out above, deep in the delocalised phase |AnI |2 ∼ N−1
H , and hence DI(ω) ' D(ω)

with D(ω) the total density of states. Since Re[GI(ω)] is related to its spectral density DI(ω)
by a Hilbert transform, it follows likewise that Re[GI(ω)] ' Re[G(ω)] (the Hilbert transform
of D(ω)). The important point here is that D(ω), and hence Re[G(ω)], are each proportional
to µ−1

E . From Eq. (7) it follows immediately that ∆I(ω)∝ µE in the many-body delocalised
phase. And since µE itself diverges as N → ∞, it is thus ∆̃I = ∆I/µE that admits a well-
defined thermodynamic limit, and as such is the appropriate quantity to study. Here we have
of course shown this explicitly in the weak-disorder regime, but the result holds in general
throughout the delocalised phase.

The essential message of this section was simply to point out that, to enable the thermo-
dynamic limit to be taken, the relevant energy scales in the problem must be rescaled with
the width of the density of eigenstates, and that quantities such as the appropriately rescaled
self-energies or local densities of states are useful to study in the context of many-body locali-
sation.

3 Imaginary part of the self-energy: self-consistent calculation

We now set up a self-consistent mean-field calculation for the appropriately rescaled imaginary
part of the self-energy. The basic structure of the theory is the same as for the short-ranged
case discussed in Ref. [28], where further information may be found.

Using the Feenberg renormalised perturbation series [42, 43], the self-energy ΣI(ω) can
be expressed as

ΣI(ω) =
∑

K

J 2
IK GK(ω) + · · ·

=
∑

K

J 2
IK

ω+ − EK −ΣK(ω)
+ · · · .

(9)

Specifically, we consider the problem at the second order renormalised level only and neglect
the higher order terms. In addition, as motivated and argued for in the previous section, all
energies are rescaled with the standard deviation µE of the density of eigenstates. We thus
consider Σ̃I = ΣI/µE in terms of G̃ = µEG, ω̃= (ω−E)/µE , and ẼK = (EK −E)/µE . Note that
in addition to rescaling by µE , the Fock-space site energies are taken relative to their mean
(E), so that ω̃ = 0 corresponds to energies at the band centre where the density of states has
a peak. With this, the rescaled self-energy can be expressed as

Σ̃I(ω̃) =
1

µ2
E

∑

K

J 2
IK G̃K(ω̃) =

1

µ2
E

∑

K

J 2
IK

ω̃+ − ẼK − Σ̃K(ω̃)
, (10)

where ω̃+ = ω̃+ iη̃ with η̃ = η/µE = 0+. This is now in a form which makes it amenable to
a probabilistic mean-field treatment, consisting of three essential steps. The first consists of re-
placing the self-energy on the right-hand side of Eq. (10) by a typical value,
Σ̃K(ω̃) → Σ̃typ(ω̃) = X̃ typ(ω̃) − i∆̃typ(ω̃). The second step is to obtain the probability dis-
tribution P∆̃(∆̃I) for the imaginary part of the self-energy (at the chosen ω̃), which itself
depends on the typical value ∆̃typ. Finally, self-consistency is imposed by equating the ‘in-
put’ ∆̃typ to the typical value obtained from the geometric mean of the full distribution, as

∆̃typ = exp
�

∫∞
0 d∆̃I (log ∆̃I)P∆̃(∆̃I)

�

.
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To proceed further on a concrete footing, we need to recast the Hamiltonian of the long-
range interacting quantum spin chain, Eq. (1), in terms of the tight-binding Hamiltonian on
the Fock space, Eq. (2), using a suitable choice of basis. Since disorder in the model couples
to the z-component of the spins, the set of product states |{σz

l }〉 in the z-direction is a natural
choice of basis, as they are eigenstates of the Hamiltonian in the J = 0 and infinite disorder
limits. With this basis choice, the diagonal ({EI}) and off-diagonal ({JIK}) elements of the
Fock-space tight-binding Hamiltonian can be identified as

EI = 〈I |
∑

i> j

Jz

(i − j)β
σz

iσ
z
j +
∑

i

hiσ
z
i |I〉

JIK = 〈I |
∑

i> j

J
(i − j)α

(σx
i σ

x
j +σ

y
i σ

y
j )|K〉

(11)

(where (σx
i σ

x
j +σ

y
i σ

y
j ) = 2(σ+i σ

−
j +σ

−
i σ
+
j ) for the Pauli matrices we employ).

Inspection of Eq. (11) leads to the important observation that any pair of Fock-space basis
states |I〉 and |K〉 with a finite JIK differ only by a pair of spin-flips; and hence

|EI − EK | ∼O(W, Jz) ∀(I , K) such that JIK 6= 0 , (12)

which naturally implies that for such pairs |ẼI − ẼK | = |EI − EK |/µE vanishes in the thermo-
dynamic limit, since µE diverges. This is a manifestation of the fact that the on-site energies
in the Fock-space tight-binding Hamiltonian are highly correlated, which makes this problem
fundamentally different from Anderson localisation on high-dimensional graphs; in addition
to the fact that the normalised density of states in the many-body problem scales with sys-
tem size, unlike in a one-body problem. Within the probabilisitc mean-field framework, the
self-energy in Eq. (10) can then be expressed as

Σ̃I(ω̃) =
Γ 2

I

ω̃+ − ẼI − Σ̃typ(ω̃)
. (13)

Here Γ 2
I =

∑

K J 2
IK/µ

2
E , which encodes information about the connectivity of the state |I〉 on

the Fock space weighted by the power-law decay of the interactions in Eq. (11), and hence
depends on the power-law exponent α. We will replace Γ 2

I by its mean over the Fock-space

graph, Γ 2, with which the imaginary part of the rescaled self-energy reads

∆̃I(ω̃) =
Γ 2(η̃+ ∆̃typ(ω̃))

(ω− ẼI)2 + (η̃+ ∆̃typ(ω̃))2
, (14)

where the real part of the self-energy has been absorbed for convenience intoω := ω̃−X̃ typ(ω̃).
It is clear from Eq. (14) that two ingredients are necessary to construct the probability distri-
bution of ∆̃I : (i) the weighted average connectivity on Fock space, Γ 2, and (ii) the distribution
of the Fock-space site energies, which we denote by PẼ . Derivation of analytical expressions
for the two, as functions of the power-law exponents α and β respectively, will be the focus of
the next two subsections.

3.1 Average weighted connectivity on Fock space

Note from Eq. (11) that the off-diagonal part of the many-body Hamiltonian connects two
Fock-space basis states by flipping a pair of anti-parallel spins at arbitrary separation, the cor-
responding matrix element being suppressed algebraically in the separation. The average
weighted connectivity can thus be obtained by first calculating the average number of states,

7
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×
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23 24
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µ
E

∝ N
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∝ N
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β = 4.0
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E
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0.2

P
E
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E

0.0

0.1

P
E

Figure 1: Distributions of Fock-space site energies: For β = 0.25 and 4, and for
system sizes N = 8−16, the first two panels show the distributions PE vs (E−E)/µE ,
i.e. taken relative to their means and scaled with their standard deviations, µE . The
red dashed line shows a standard Normal distribution, which clearly captures the
numerics. The insets show the bare distributions, vs E . The right panel shows µE vs
N on logarithmic axes for the same two values of β . The exponents for the polynomial
growth in N , as shown by the dashed lines, corroborate the predictions of Eq. (26).
Results are shown for Jz = 1=W .

Z(r), to which any Fock-space basis state is connected by such a flip for a pair of spins separated
by r, and then summing over all possible values of r weighted with the corresponding matrix
element. In the Mz = 0 sector considered, it is readily shown that the average connectivity
corresponding to a pair of spin-flips at separation r is

Z(r) =
1
2

N
(N − 1)

(N − r) . (15)

Hence Γ 2 can be calculated,

Γ 2 =
�

2J
µE

�2 N−1
∑

r=1

Z(r)
r2α

N�1
=

2J2

µ2
E











Nζ(2α); α > 1/2

N log N ; α= 1/2

z(α)N2−2α; α < 1/2 ,

(16)

where the right-hand side gives the leading large-N asymptotic behaviour of the sum. ζ(s)
denotes the Riemann zeta function, and the function z(α) can be obtained by performing the
summation in Eq. (16) exactly (modulo these prefectors, the leading large-N form can in fact
be obtained simply by replacing the sum in eq. (16) by an integral).

3.2 Moments of distributions of Fock-space site energies

We now turn our attention to the distribution of Fock-space site energies, PE . For the short-
ranged limit of the model, with nearest-neighbour spin couplings (α =∞ = β), it is known
that PE is precisely a Normal distribution [44], and thus characterised solely by its mean (E)
and standard deviation (µE). We assume the same to hold for the long-ranged case. This
is well justified by numerical results, which also corroborate the scalings of the mean and
standard deviation with N which we derive analytically below. Fig. 1 shows numerical results
for PE for system sizes N = 8 − 16, and for two different values of β . In both cases, when
the distributions are taken relative to their means and scaled with their standard deviations,
they clearly collapse onto a common form for different system sizes. That common form is
practically indistinguishable from a standard Normal distribution, shown by the red dashed
line. From here on, we thus focus solely on the first two moments of PE .
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We start with the first moment, E , which is given simply by

E =
*

Tr′





∑

i> j

Jz

(i − j)β
σz

iσ
z
j +
∑

i

hiσ
z
i





+

disorder

. (17)

Here Tr′[·] =
∑′

I〈I | · |I〉/NH, with the primed summation running over all Fock-space basis
states satisfying Mz = 0, and the dimension of the corresponding Hilbert space is NH =

� N
N/2

�

for a system with N spins. Using the result that in the Mz = 0 sector

Tr′[σz
i ] = 0 and Tr′[σz

iσ
z
j ] = −

1
N − 1

, (18)

E can be expressed as

E = −Jz

N − 1

∑

i> j

1
(i − j)β

=
−Jz

N − 1

N−1
∑

r=1

N − r
rβ

, (19)

where the second equality reflects the fact that the number of ways of finding a pair i > j
such that i − j = r is N − r. The asymptotic behaviour of E as the thermodynamic limit is
approached is again readily obtained, with the limiting large-N behaviour given for various
ranges of β by

E N�1
=











−Jzζ(β); β > 1

−Jz log N ; β = 1

−Jz y1(β)N1−β ; β < 1 ,

(20)

where y1 is a function solely of β that can be obtained from evaluating the summation in
Eq. (19) exactly.

The second moment of the distribution can likewise be computed via

E2 =

*

Tr′





 

∑

i> j

Jz

(i − j)β
σz

iσ
z
j +
∑

i

hiσ
z
i

!2




+

disorder

. (21)

The calculation is however slightly tedious, so we simply sketch the derivation here and rel-
egate the details to Appendix A. To derive the expression for E2, in addition to Eq. (18), we
will use that in the Mz = 0 sector

Tr′[σz
iσ

z
jσ

z
k] = 0 and Tr′[σz

iσ
z
jσ

z
kσ

z
l ] =

3
(N − 1)(N − 3)

, (22)

for i 6= j 6= k 6= l. Using Eqs. (18) and (22) together with the fact that 〈hi〉disorder = 0 and
〈hih j〉disorder = δi jW

2/3, Eq. (21) can be recast as

E2 = J2
z

�

3
(N − 1)(N − 3)

Υ0 −
1

N − 1
Υ1 + Υ2

�

+ N
W 2

3
, (23)

where

Υ0 =
∑

i 6= j 6=k 6=l

1
4|i − j|β |k− l|β

, Υ1 =
∑

i 6= j 6=k

1
|i − j|β | j − k|β

, Υ2 =
∑

i 6= j

1
2|i − j|2β

. (24)

Note from Eq. (21) that the terms proportional to J2
z will generically contain a product of four

σz-operators. Physically, the Υ0 term is associated with the sum of such terms in which all
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four operators act on distinct sites, whence the prefactor to Υ0 in Eq. (23) is given by Eq. (22).
Likewise, the Υ1 term corresponds to terms where only three of the four sites are distinct,
i.e. of form σz

iσ
z
jσ

z
kσ

z
k. Since [σz

k]
2 = 1, we are left with Tr′ of a product of two distinct

σz-operators, and hence the prefactor is −1/(N − 1) (Eq. (18)). Finally, Υ2 corresponds to
the sum of terms where just two of the site indices are unique, whence the overall operator
squares to the identity, as reflected by the unit prefactor in Eq. (23).

As discussed in Appendix A, the leading large-N asymptotic forms of the sums in Eq. (24)
can be obtained, giving the asymptotic behaviour of E2 as

E2 N�1
=











(J2
z ζ(2β) +W 2/3)N ; β > 1/2

J2
z N log N ; β = 1/2

J2
z y2(β)N2−2β ; β < 1/2

(25)

where y2 = y2(β) can be obtained exactly by evaluating the summations in Eq. (24).
With the large-N forms of E and E2 at hand, the asymptotic behaviour of the standard

deviation µE = [E2 − E2
]1/2 in various ranges of β can then be expressed as

µE
N�1
=











q

�

J2
z ζ(2β) +W 2/3

�

N ; β > 1/2

Jz
p

N log N ; β = 1/2

Jz

q

(y2(β)− y2
1 (β))N

1−β ; β < 1/2 .

(26)

Three comments may be made here. First, the N -dependence of µE in Eq. (26) is nicely exem-
plified by the numerical results of Fig. 1, right panel, where examples for both β > 1/2 and
< 1/2 are shown. Second, for β ≤ 1/2 the ‘external’ disorder strength W arising from the
disordered fields drops out of the leading asymptotics, because its N -dependence (∝ N) is
sub-dominant to that arising from the spin-interaction contribution embodied in Jz . In physi-
cal terms, the occurrence of the latter reflects the fact that interactions effectively self-generate
disorder in the {EI}, due to configurational disorder in the distribution of spins {σz

l } prescrib-
ing the |I〉’s. Finally here, though essentially superfluous in the following, we mention for
completeness that the variance µ2

E of the density of states is readily obtained on noting that
〈I |H2|I〉= E2

I +
∑

K J 2
IK , and is given by

µ2
E = µ

2
E +

∑

K

J 2
IK ≡ µ

2
E +µ

2
EΓ

2 , (27)

where the leading N -dependence of µ2
EΓ

2 is given explicitly by Eq. (16).

As shown in subsequent sections, it is the scaling of Γ 2 and µE with system size N , Eqs. (16)
and (26) respectively, which play a crucial role in determining the phase diagram of the model
in the (α,β) parameter space.

3.3 Criterion for the many-body localisation transition

Having established that PE is normally distributed, and obtained explicit expressions for its mo-
ments as well as for Γ 2, we can self-consistently compute the distribution of ∆̃I using Eq. (14)
as

P∆̃(∆̃) =

∫ ∞

−∞
dẼI PẼ(ẼI)δ

 

∆̃−
Γ 2(η̃+ ∆̃typ(ω̃))

(ω− ẼI)2 + (η̃+ ∆̃typ(ω̃))2

!

, (28)

where

PẼ(ẼI) =
1

Ç

2πµ2
Ẽ

exp

�

−
ẼI

2

2µ2
Ẽ

�

: µẼ = µE/µE . (29)
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The Normal form of PẼ allows us to do the integration in Eq. (28) analytically, yielding

P∆̃(∆̃) =

�

1−
∆̃(η̃+ ∆̃typ)

Γ 2

�−1/2s
κ

π

1

∆̃3/2
exp

�

−κ
�

1

∆̃
−
η̃+ ∆̃typ

Γ 2

��

, (30)

where κ = Γ 2(η̃+ ∆̃typ)/2µ2
Ẽ
, and we set ω = 0 (equivalently ω̃ = 0), which corresponds to

band centre states of energy ω= Tr′[H]. Self-consistency can then be imposed by calculating
the typical value of ∆̃ from this distribution and equating it to ∆̃typ, via

exp

�∫ ∞

0

d∆̃ P∆̃(∆̃) log ∆̃

�

= ∆̃typ . (31)

In the following we impose self-consistency separately in the two phases, as done in Ref. [28]
for a short-ranged system. The criterion for each of the two phases to exist self-consistently is
found to break down at the same point in parameter space, indicating that the point (or set of
such points) is a critical point for the many-body localisation transition.

We start with the localised phase, in which ∆typ ∝ η is vanishingly small and hence the
appropriate distribution to study is that of y :=∆/η= ∆̃/η̃. Since η̃→ 0, the distribution for
y follows directly from Eq. (30) as

Py(y) =
√

√ κ

η̃π

1
y3/2

exp
�

−
κ

η̃y

�

: y =
∆̃

η̃
, (32)

which is precisely a normalised Lévy distribution (with the expected power-law tail [28]
∝ y−3/2). Hence ∆̃typ can be computed as

∫ ∞

0

d y Py(y) log y = log (4κ/η̃) + γ = log
�

∆̃typ/η̃
�

, (33)

where γ (= 0.577216..) is the Euler-Mascheroni constant. Since κ = Γ 2(η̃+ ∆̃typ)/2µ2
Ẽ
, solu-

tion of this self-consistency condition for ∆̃typ/η̃ yields

∆̃typ

η̃
=

2Γ 2

µ2
Ẽ

eγ
�

1−
2Γ 2

µ2
Ẽ

eγ
�−1

. (34)

Recall that in physical terms ∆̃ is effectively an inverse lifetime, and is thus non-negative.
Hence from Eq. (34), the many-body localised phase is self-consistently possible only if

Λ :=
2Γ 2

µ2
Ẽ

eγ ≤ 1 , (35)

where the equality corresponds to points in parameter space which give the limits of stability
of the self-consistent localised solution.

Next we analyse the corresponding self-consistency of the delocalised phase. Since ∆̃typ in
this phase is finite, the limit η̃ = 0 can be taken from the outset, and the self-consistent ∆̃typ
for the distribution Eq. (28) can be directly computed as

log ∆̃typ =

∫ ∞

−∞
dẼI PẼ(ẼI)

∫ ∞

0

d∆̃ δ

 

∆̃−
Γ 2∆̃typ

Ẽ2
I + ∆̃

2
typ

!

log ∆̃

=
1

Ç

2πµ2
Ẽ

∫ ∞

−∞
dẼI exp

�

−
ẼI

2

2µ2
Ẽ

�

log





Γ 2∆̃typ

Ẽ2
I + ∆̃

2
typ



 .

(36)
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The integral here can be reorganised in the form

log ∆̃typ = log

�

2eγΓ 2

µ2
Ẽ

∆̃typ

�

−
1

Ç

2πµ2
Ẽ

∫ ∞

−∞
dẼI exp

�

−
ẼI

2

2µ2
Ẽ

�

log

�

1+
∆̃2

typ

Ẽ2
I

�

. (37)

Since ∆̃typ vanishes as the transition is approached from the delocalised side, in the vicinity of
the critical point only the low-∆̃typ behaviour of the integral in Eq. (37) is required. From it,
the self-consistency condition is obtained as

∆̃typ
∆̃typ�1
=

2eγΓ 2

µ2
Ẽ

∆̃typ

�

1−
p

2π
µẼ
∆̃typ +

[1+π]
µ2
Ẽ

∆̃2
typ +O(∆̃3

typ)

�

. (38)

Since ∆̃typ is necessarily non-negative, Eq. (38) has a non-trivial solution only for

Λ=
2eγΓ 2

µ2
Ẽ

≥ 1 , (39)

with the equality denoting the boundary in parameter space beyond which the delocalised
phase fails to exist self-consistently. In addition, as Λ→ 1+ and the transition is approached,
∆̃typ∝ [Λ− 1] is seen to vanish continuously, with a critical exponent of unity.

It is important to note that self-consistency for the many-body localised and delocalised
phases, calculated separately, breaks down at precisely the same set of points as shown in
Eqs. (35) and (39). The phase boundary between the two phases is thus given by

Λ=
2eγΓ 2

µ2
Ẽ

= 1 , (40)

with Λ< 1 indicating a many-body localised phase and Λ> 1 a delocalised phase.

4 Phase diagram from mean-field theory

Armed with the criterion for the many-body localisation transition from the mean-field theory,
Eq. (40), we now derive the phase-diagram of the model in the parameter space spanned by
α, β , and W . In particular, we will obtain the critical disorder strength, Wc , as a function of
the power-law exponents α and β .

From Eq. (40), it is clear that the critical boundary is governed by the interplay between
Γ 2 and µ2

Ẽ
. Inspecting the expressions for them, Eqs. (16) and (26) respectively, clearly shows

that the lines α = 1/2 and β = 1/2 are natural boundaries in the α-β plane. As such, the
regions separated by them warrant separate analyses.

In the following, we analyse these regions systematically:

I. β ≤ 1/2 and β < α. This can be separated into three sub-regions:

• α > 1/2. In this region, Γ 2 ∼ N/µ2
E . By contrast, µ2

Ẽ
∼ N log N/µ2

E for β = 1/2

and ∼ N2−2β/µ2
E for β < 1/2; whence Λ ∼ (log N)−1 and N2β−1 in the two cases

respectively. Hence, in the thermodynamic limit N → ∞, Λ vanishes for both
β = 1/2 and β < 1/2. The system is thus always many-body localised in this
domain, and no transition exists.

• α = 1/2. In this case, Γ 2 ∼ N log N/µ2
E . Since β < α, we thus consider β < 1/2.

So in this sub-region, Λ∼ N2β−1 log N → 0 as N →∞. Hence, as for the previous
sub-region, the system is always many-body localised.
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Figure 2: Mean-field phase diagram: (a) Schematic of the phase diagram in the α-
β plane obtained from the scaling of Γ 2 and µ2

Ẽ
with N in the thermodynamic limit.

Within the yellow [dark blue] region the system is always delocalised [localised],
as the critical disorder diverges [vanishes] in the thermodynamic limit. In the green
region, both Γ 2 and µ2

Ẽ
scale in the same way with N , and there is thus a finite critical

disorder. Note that the boundaries between the green and the yellow [dark blue]
regions corresponding to α= 1/2 [β = 1/2] are not phase boundaries (critical lines),
but simply represent no-go regions for the localised [delocalised] phases. The actual
critical lines on the α-β plane (which depend on the disorder strength) are shown
in (c1). (b) The critical disorder surface, Wc(α,β), obtained from the mean-field
treatment, Eq. (42), shown as a function of α and β , with Jz = J (≡ 1). The region
above and below the surface corresponds respectively to localised and delocalised
phases. (c1)-(c3) Sections of this surface are shown in their complementary planes
of constant Wc , β andα. The constant Wc contours (c1) in theα-β plane shift towards
low α and high β regions as Wc is increased (the localised phase lies below and to
the right of the lines shown). The constant β contours (c2), and constant α contours
(c3), clearly show respectively that Wc increases with decreasing α, and decreases
with decreasing β .

• α < 1/2. Here, Γ 2 ∼ N2−2α/µ2
E . So for β < 1/2, Λ ∼ N2(β−α) → 0 as N →∞

owing to β < α. Here too the system is therefore always localised.

This analysis shows that throughout the region defined by β ≤ 1/2 and β < α (shown in
dark blue in Fig. 2(a)), the system is always many-body localised in the thermodynamic
limit.

II. α ≤ 1/2 and β > α. In this region, Γ 2 ∼ N log N/µ2
E for α = 1/2 and ∼ N2−2α/µ2

E
for α < 1/2. As in the previous case, we analyse the region by splitting it into three
sub-regions:
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• β > 1/2. In this case µ2
Ẽ
∼ N/µ2

E . Hence, Λ ∼ log N and N1−2α for α = 1/2 and
α < 1/2 respectively. In either case, Λ→∞ as N →∞. Consequently the system
is delocalised for any finite value of W .

• β = 1/2. On this line, µ2
Ẽ
∼ N log N/µ2

E . Since β > α, only α < 1/2 is relevant

here. Hence Λ ∼ N1−2α/ log N , which diverges in the thermodynamic limit, show-
ing that here too the system is always delocalised.

• β < 1/2. Here, µ2
Ẽ
∼ N2−2β/µ2

E and hence Λ ∼ N2(β−α). Since β > α, Λ again
diverges as N →∞, making localisation impossible.

Hence, throughout the region defined by α ≤ 1/2 and β > α (shown in yellow in
Fig. 2(a)), the system is always delocalised in the thermodynamic limit.

III. α > 1/2 and β > 1/2. In this region of the α-β plane, shown in green in Fig. 2(a),
both Γ 2 and µ2

Ẽ
scale as N/µ2

E . Consequently Λ is finite in the thermodynamic limit,
and the interplay between J , Jz , and W can lead to a phase transition at a finite crit-
ical Wc , which naturally depends on α and β . In this regime µ2

E = µ
2
int + µ

2
dis, where

µdis ∝ W is the contribution due to the external disorder strength W arising from the
disordered fields, and µint ∝ Jz is the contribution to µE from the interactions, reflect-
ing the configurational disorder in the Fock-space basis states. From Eq. (26), one can
read off µ2

int = J2
z ζ(2β)N and µ2

dis = W 2N/3, such that µ2
Ẽ
= [J2

z ζ(2β) +W 2/3]N/µ2
E .

Additionally, from Eq. (16), in this region Γ 2 = 2J2

µ2
E

Nζ(2α). Hence from Eq. (40),

Λ= 4eγ
J2ζ(2α)

J2
z ζ(2β) +W 2/3

, (41)

which when set to unity yields an expression for the critical disorder,

Wc =
p

3
q

4eγJ2ζ(2α)− J2
z ζ(2β) . (42)

The Riemann zeta function ζ(s) diverges as s→ 1+, but decreases rapidly and monoton-
ically with increasing s towards its asymptotic limit ζ(∞) = 1 (such that ζ(s) is within
a few percent of unity for s ¦ 4).

The resultant critical disorder surface Wc(α,β) represented by Eq. (42) is shown in
Fig. 2(b) for the case Jz = J , while sections of it in the complementary planes of con-
stant Wc , α and β are given in Fig. 2(c1-3). Note that at a fixed α, decreasing β de-
creases Wc; in other words, increasing the range of the interaction in the longitudinal
direction drives the system more towards a many-body localised phase. The critical dis-
order strength eventually falls to zero (see also Fig. 2(c3)) at a value βc ≥ 1/2 given by
ζ(2βc) = 4eγJ2ζ(2α)/J2

z . On the other hand, decreasing α at a fixed β acts to delocalise
the system, as indicated by a growing Wc . As α decreases, Wc rises towards infinity (see
also Fig. 2(c2)), and for α < αc the system is inexorably delocalised, with αc ≥ 1/2
given by ζ(2αc) = J2

z ζ(2β)/(4eγJ2).

In summary, for α,β > 1/2 a many-body localisation transition is possible at a finite
critical disorder strength given by Eq. (42). Increasing the range of the interactions in
the transverse direction favours delocalisation while, in marked contrast, increasing the
range of the longitudinal interactions favours localisation.

For completeness, we reiterate that the lines α= 1/2 and β = 1/2 are not phase bound-
aries, but simply define regions (Fig. 2(a)) where localisation or delocalisation is for-
bidden owing to the scaling arguments discussed in points I and II above. The actual
mean-field phase boundaries, given by Eq. (42), can lie well away from these lines, as
also illustrated in Fig. 2(c1).
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The only part of the (α,β)-plane not included in the above analysis is the line segment
α = β < 1/2. Here the disorder strength W is irrelevant as µ2

E is completely dominated by

µ2
int, but both Γ 2 and µ2

Ẽ
scale as N2(1−α)/µ2

E so a localisation transition driven by the ratio
of J/Jz can thus in principle lie on this line. We do not however pursue it further here, both
because our primary interest is in possible transitions driven by the disorder strength W , and
because this line segment is likely to be rather delicate, surrounded as it is on either side
(Fig. 2(a)) by phases which are exclusively either delocalised or localised.

5 Numerical results

While the mean-field treatment allows us to derive analytically a phase diagram for the model
in the thermodynamic limit, it is of course approximate. It is thus important to compare the
mean-field phase diagram to that obtained from standard numerical diagnostics, which are
free from the approximations underlying the mean-field theory. In this section we obtain
representative sections of the phase diagram numerically, using three ubiquitous and com-
plementary diagnostics: the statistics of level-spacing ratios, and participation entropies and
entanglement entropies of eigenstates. It should be kept in mind that the largest system size
(N = 18 spins) accessed with our exact diagonalisation calculations is naturally quite far from
the thermodynamic limit, and possibly also not in the scaling regime. Finite-size effects are in
fact significant already in the short-ranged MBL problem, and in the context of long-ranged
interactions it is natural to expect them to be worse. The numerical results presented here
should not therefore be viewed as quantitatively definitive. Nevertheless, we will show that
finite-size scaling analyses of the above range of diagnostics demonstrate clearly that decreas-
ing β at a fixed α decreases the critical disorder strength Wc , while decreasing α at a fixed β
enhances Wc; consistent with the mean-field phase diagram obtained in Sec. 4.

We first describe briefly the three numerical diagnostics, and their expected behaviour in
the two phases. The level spacing ratio rα is defined as [6,45]

rα =
min(sα, sα−1)
max(sα, sα−1)

: sα = Eα − Eα−1 , (43)

where Eα−1, Eα are consecutive eigenvalues of the Hamiltonian Eq. (1). Ergodic systems are
well described by random matrix ensembles, with a Wigner-Dyson distribution for r depending
on the symmetries (in our case, the Gaussian Orthogonal Ensemble (GOE)). In a non-ergodic
localised phase by contrast the energy levels are uncorrelated, with absence of level repulsion
leading to a Poisson distribution. For the former the mean 〈r〉 ' 0.53, and for the latter
〈r〉 ' 0.38 [45]. For a model hosting a many-body localisation transition as a function of
disorder, 〈r〉 for a finite system crosses over from the GOE value to the Poisson value, with
the data for various system sizes showing crossings as N is varied. The critical disorder is
estimated by collapsing the 〈r〉 for various system sizes onto a common scaling function of the
form gr[(W −Wc)N1/ν] (with ν the correlation length exponent).

In addition to spectral properties, many-body localisation also manifests itself in real space
via a transition of the bipartite entanglement entropy measured on an eigenstate, from an area
law in the localised phase to a volume law in the delocalised phase [16, 17, 46, 47]. For an
eigenstate |ψ〉, the entanglement entropy of the left-half of the chain (L) with the right-half
(R) of the chain is given by

SE = −Tr[ρL logρL] , (44)

where ρL = TrRρ and ρ = |ψ〉 〈ψ| (with TrR representing the partial trace over the right-
half of the system). In the localised phase, SE ∼ N0, while in the delocalised phase SE ∼ N .
Deep in the delocalised phase in particular, one expects the entanglement to be close to that
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of a random state in Hilbert space, i.e. SE = N log 2− 1/2 [48]; adding that for models with
conserved quantities, such as Mz in our case, the conservation leads to a slight deficit from
the maximal entanglement value (see Ref. [49] for details), which is evident in the results
shown below. For a finite system, the critical disorder can be obtained by noting that SE/N
plotted against W also shows a crossing for various N , whence the data can be collapsed onto
a common scaling form gs[(W −Wc)N1/ν]. In addition, the fluctuations of SE over disorder
realisations, as measured by their standard deviation, σE , also show a peak at the localisation
transition [16,17].

Finally, since many-body localisation is a Fock-space phenomenon, its signatures are also
revealed by participation entropies of the eigenstates |ψ〉 [17,39,40], defined by

SP
q (|ψ〉) =

1
1− q

log
∑

I

|〈ψ|I〉|2q , SP
1 (|ψ〉) = −

∑

I

|〈ψ|I〉|2 log |〈ψ|I〉|2 ; (45)

and in particular the first participation entropy SP
1 on which we focus. Similarly to Ref. [17]

we analyse the data by fitting it to the form

SP
1 = a1SP

0 + l1 log SP
0 : SP

0 = log NH , (46)

where a1 ' 1 in the delocalised phase whereas a1 < 1 in the localised phase.
The above diagnostics are calculated via exact diagonalisation for systems with up to 18

spins. To access band centre states appropriately, we consider only a few tens of eigenstates
with their energies close to Tr′[H]. The case J = Jz (≡ 1) is considered throughout, with
statistical errors determined by the standard bootstrap method with 500 resamplings.

We first discuss results in the (α, W )-plane, for a fixed value β = 10. A relatively large β is
taken so that the longitudinal interactions do not have a particularly long-range, and we can
effectively distil out the interplay of α and W . The results are shown and described in Fig. 3.
Since the critical disorder grows with decreasing α, it is more convenient to present the data
as a function of inverse disorder 1/W .

Representative results for 〈r〉, SE , and σE versus 1/W are shown in panels (a) and (b), for
two values of α (= 4 and 0.1), and for system sizes ranging from N = 8−18. For α= 4, which
the mean-field theory suggests is connected adiabatically to the α→∞ (short-ranged) limit,
there is a clear crossing of the data for various system sizes in 〈r〉 as well as in SE , indicating
the occurrence of a transition. By contrast, no such crossing appears in the α = 0.1 case, and
the trend with system size suggests that the system is delocalised at any finite value of W in
the thermodynamic limit. This is consistent with the prediction of the mean-field theory.

Further, the coefficient a1 defined in Eq. (46) can be computed by fitting the participation
entropy data to the form Eq. (46), as shown in Fig. 3(c). The a1 value thus extracted for
a set of points in the (α, 1/W )-plane can be plotted as a colour-map as in Fig. 3(d), which
clearly shows the phase boundary between the many-body localised and delocalised phases.
Finite-size scaling analyses of 〈r〉 and SE/N have been performed; an example of the scaling
function gr is given in the inset to Fig. 3(a1) (for α = 4), and shows good scaling collapse.
These analyses of 〈r〉 and SE/N also yield critical Wc values consistent with, and quite close
to, the phase boundary resulting from a1, as likewise shown in Fig. 3(d). We add that, where
we obtain a transition via exact diagonalisation, an exponent ν ≈ 1 is found, which violates
the Harris/CCFS bounds [50,51] (requiring ν≥ 2/d with d the space dimension). Reflecting
finite-size effects, this is also as found in other exact diagonalisation studies [17,52].

While the quantitative accuracy of the numerically-determined phase diagram in Fig. 3(d)
could be questioned owing to finite-size limitations, it is nevertheless seen to be remarkably
consistent overall with the prediction from mean-field theory, the corresponding phase bound-
ary for which is also shown in the figure (light blue line). The qualitative mean-field prediction
that the critical disorder increases with decreasing α is entirely clear in the numerical data;
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Figure 3: Numerical phase diagram in a constant-β plane: Top two rows show
data for the mean level-spacing ratios 〈r〉, the mean entanglement entropy SE , and
the fluctuations in the entanglement entropyσE , as a function of the inverse disorder
strength, 1/W , for a fixed value of β = 10 and two values of α= 4 (top panels (a1)-
(a3)) and α = 0.1 (middle panels (b1)-(b3)). Data are shown for N = 8− 18 spins.
For α= 0.1, 〈r〉 stays pinned to the GOE value even for large W and there is no visible
crossing of the data for various N , indicating the absence of the MBL phase. For α= 4
on the other hand, there is a clear crossing of the data at finite W suggesting a tran-
sition, with 〈r〉 going to the GOE and Poisson values (blue and orange dashed lines
respectively) at weak and strong disorder; the inset to panel (a1) gives the scaling
function gr[(W −Wc)N1/ν], which shows good scaling collapse. The half-chain en-
tanglement entropy SE/N also shows the same behaviour: for α= 0.1 it remains very
close to the Page corrected volume-law value SE/N = log2− 1/(2N) [48] (dashed
lines) even for large W , whereas for α = 4 there is a clear crossing of the data sug-
gesting a transition. Fluctuations in entanglement entropy are likewise consistent,
showing for α = 0.1 that with increasing N its peak shifts to progressively higher
values of W , suggesting a delocalised phase throughout in the thermodynamic limit;
whereas the peak for α = 4 lies quite close to the critical Wc predicted by the 〈r〉
and SE data. Panel (c) shows the scaling of the first participation entropy SP

1 with
the logarithm of the Fock-space dimension, SP

0 = log NH, for two representative val-
ues of W and two values of α. While for α = 0.1 both values of W show a1 ' 1,
for α = 4, a1 changes from ' 1 at W = 0.25 to ' 0.2 at W = 10, indicating the
occurrence of a transition. The a1 values in the (α, 1/W )-plane are shown a colour-
map in panel (d), clearly showing Wc moves to higher values as α is decreased. The
Wc values extracted from finite-size scaling analyses of 〈r〉 and SE are also shown,
and are concomitant with the phase boundary predicted from participation entropies.
These phase boundaries are remarkably consistent overall with the prediction from
the mean-field theory, which is shown by the light blue line in panel (d).
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Figure 4: Numerical phase diagram in a constant-α plane: Figure is analogous to
Fig. 3, but with a constant α= 10. Top two rows show data as a function of disorder
strength, W , for two values of β = 2.8 (panels (a1)-(a3)) and β = 0.1 (panels (b1)-
(b3)). In the 〈r〉 data there is an apparent crossing for both values of β , but Wc is
clearly smaller for β = 0.1 than β = 2.8. Data for SE/N and σE/N convey the same
message, again showing that Wc decreases for smaller β . Panel (c) shows the the
first participation entropy SP

1 vs SP
0 = log NH, for two representative values of W and

two values of β . For large enough disorder, e.g. W = 7 in the figure, a1 < 1 for both
values of β , indicating a many-body localised phase. However for W = 3, a1 ' 1
for β = 2.8, indicating that the system has transited to a delocalised phase,while
for β = 0.1, a1 continues to be < 1, the system thus remaining localised; and again
showing that Wc decreases with decreasing β . The phase diagram in the (β , W )-
plane for α = 10 is shown in panel (d). The a1 values are shown as a colour-map,
and the Wc values extracted from the finite-size scaling analyses of 〈r〉 and SE are
indicated; the prediction from mean-field theory is shown by the light blue line. All
clearly show that the critical Wc decreases with decreasing β .

indeed it is also remarkable to note from Fig. 3(d) that the critical (1/Wc)→ 0 in the vicinity
of α= 1/2.

We turn now to the complementary case of a fixed value α= 10 for the transverse interac-
tion exponent, and results in the (β , W )-plane. This is a more difficult case to handle numer-
ically, because the critical disorder decreases from the short-ranged value as β is decreased.
For small β , where the mean-field theory predicts localisation at any disorder strength, the
system sizes accessible to exact diagonalisation could well be too small to show localisation
for small values of W , since the interaction range grows with decreasing β . This leads to an
apparent qualitative discrepancy between the numerical and mean-field results, to which we
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return shortly; but first we describe the results shown in Fig. 4 as they are.
Panels (a) and (b) of Fig. 4 show results for β = 2.8 and β = 0.1. In both cases, there

appears to be crossing in the data for various system sizes in both 〈r〉 and SE/N , suggesting a
finite Wc . However, comparison between panels (a) and (b) shows that the Wc decreases with
decreasing β , and this is so far consistent with the mean-field theory. Similar to the analysis
shown in Fig. 3(c), the coefficients a1 can be extracted on a grid of points spanning the (β , W )-
plane. This is shown as a colour-map in Fig. 4(d), with the mean-field phase boundary also
indicated (light blue line). The numerical phase boundary predicted by the a1 values, as well
those obtained by the finite-size scaling analyses of 〈r〉 and SE , also seem consistent with
each other. The numerical results are, remarkedly, concomitant with the prediction of the
mean-field theory that the critical disorder strength Wc decreases with decreasing β . That
consistency, even at this level, is rather reassuring because this result goes against the naive
expectation that increasing the range of interactions (decreasing β) always makes the system
more vulnerable to delocalisation.

We now return to the qualitative discrepancy between the numerical and mean-field re-
sults. Recall from Sec. 4 that the mean-field theory predicted that for β < 0.5 and α > β , a
delocalised phase is not possible and the system is many-body localised throughout. Yet this
is not captured by the numerical results, which show a finite Wc for values of β much below
1/2. We now argue, however, that this is likely to be a finite-size effect. Note that in the β → 0
limit the longitudinal term in the Hamiltonian Eq. (1) can be written as

lim
β→0

Jz

∑

i> j

1
(i − j)β

σz
iσ

z
j =

Jz

2





�

∑

i

σz
i

�2

− N



= −N
Jz

2
, (47)

where the last equality reflects conservation of total magnetisation Mz and that we work in the
Mz = 0 sector. More importantly, in this limit the longitudinal interaction term is a constant,
and hence completely drops out (modulo a constant shift). Next, note that the mean-field
theory suggests that the behaviour arising on decreasing β for some fixed α (> 1/2), is adia-
batically connected to that for α→∞. In the latter limit the transverse interaction is purely
short-ranged, so H in this limit becomes

lim
β→0

lim
α→∞

H =
∑

i

[J(σx
i σ

x
i+1 +σ

y
i σ

y
i+1) + hiσ

z
i ] + constant1

=
∑

i

2[J(c†
i ci+1 + h.c.) + hi c†

i ci ] + constant2 ,
(48)

where the standard Jordan-Wigner transformation is used in the second line. The resulting
fermionic model is simply the Anderson model in one-dimension, which is well known to be
localised for infinitesimally weak disorder. Hence for α →∞, the β = 0 line is completely
localised. One can argue that for β = 0+ and α � 1 (α = 10 is considered in Fig. 4) the
system stays localised, suggesting that the finite Wc at β = 0+ in Fig. 4(d) is a finite-size effect.
Further discussion of this point, in the context of spinless fermion models, is given in Sec. 6
below.

6 Discussion

In summary, the problem of many-body localisation in a long-ranged interacting quantum spin
chain has been considered analytically, using a self-consistent mean-field treatment of the self-
energy associated with the local Fock-space propagator, and our essential results have been
confirmed by numerics obtained from exact diagonalisation.
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In particular, we studied an XXZ chain with disordered fields coupling locally and indepen-
dently to the longitudinal spin component, and with power-law decaying interactions charac-
terised by exponents β and α, respectively, for longitudinal and transverse spin-spin interac-
tions. A central result of the work has been a derivation of the localisation phase diagram of
the model in the parameter space spanned by the power-law decay exponents, and the disor-
der strength. Increasing the range of the transverse interaction was found to make the system
more susceptible to delocalisation, with the critical disorder increasing upon decreasing α.
By contrast, increasing the range of the longitudinal interaction provides the system with a
rigidity against spin flips, which cooperates with the external disorder and makes localisation
increasingly favourable. This is reflected in the fact that the critical disorder decreases with
decreasing β . In fact, the mean-field theory goes so far as to predict that for β < 1/2 and
β < α, the system is always many-body localised even in the absence of external disorder,
much like an interaction-induced localised phase. On the contrary, for α < 1/2 and α < β ,
the mean-field theory concludes that localisation is impossible at any finite disorder strength.

Our results call for discussion of two important and related questions. First, what do they
imply for a disordered model of spinless fermions with long-ranged hoppings and long-ranged
density-density interactions? Unlike the nearest-neighbour models, the fermionic model is
not trivially equivalent to the spin-1/2 chain, due to the presence of non-local Jordan-Wigner
strings. Second, if longer-ranged fermionic density-density interactions are correspondingly
found within mean-field theory to enhance localisation, can a physical rationale be given for
such behaviour, given that it goes against the common lore that long-ranged interactions gen-
erally act to suppress localisation?

To put the question in context, the problem of non-interacting fermions with random
power-law hoppings has a long history [53–60], with applications in dipolar systems, Anderson
transitions, and quantum Hall plateau transitions, and has generated exotic phenomena such
as power-law localised and multifractal wavefunctions. A different phenomenology arises for
non-interacting fermionic models with onsite disorder but non-random power-law hoppings,
which have also attracted considerable attention [61–68]. As discussed below, it is this case
that is relevant to our considerations.

To make a connection to our mean-field theory results, we note that they are in fact in-
sensitive to the presence of long-ranged Jordan Wigner strings. Consider for concreteness

H =
∑

i> j





t
rαi j

�

c†
i c j + h.c.

�

+
V

rβi j

n̂i n̂ j



+
∑

i

εi n̂i , (49)

where n̂i = c†
i ci and εi ∈ [−Wf , Wf ] is the disordered onsite potential. The mean-field locali-

sation criterion (embodied in Λ= 1, Eq. (40)) depends in essence on the ratio of the average
weighted connectivities on the Fock-space graph, and the effective disorder in the Fock space
as measured by the width of the distribution of Fock-space site energies. The latter is identical
for the spin chain and fermionic chain, with the identification Jz = V/4 and W =Wf /2. The
average weighted connectivities count the number of ways of flipping two antiparallel spins
at a distance r, and sum it with weight (2J)2/r2α. In the fermionic model, the mean-field
treatment would count the number of ways of having an occupied and unoccupied site at sep-
aration r and sum it with weight t2/r2α, hence yielding the same result as for the spin chain,
with the identification J = t/2. The mean-field treatment would thus predict the fermionic
chain always to be many-body localised for β < 1/2 and β < α.

The results at small but finite β warrant further elaboration. First, consider the limit of
β → 0 where, using the fact that total particle number

∑

i n̂i is conserved, the interaction term
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can be expressed as

lim
β→0

∑

i> j

V

rβi j

n̂i n̂ j =
V
2

�

N2

4
−

N
2

�

(50)

(considering for specificity the case of half-filling, the counterpart of Mz = 0). Since this
is a constant, it drops out of the Hamiltonian. The model then reduces simply to one of
non-interacting fermions with a disordered onsite potential and non-random power-law hop-
pings [61–68]. In such systems, due to a phenomenon termed cooperative shielding [65,66],
Anderson localisation is found to persist for all values of the disorder strength and power-law
decay exponent α, and for all single-particle states save for a set of measure zero near one
edge of the spectrum (which are delocalised for α < 1). This implies that generic many-body
states, constructed out of Slater determinants of the localised single-particle eigenstates, are
also many-body localised. Hence, on the β = 0 line, the system is many-body localised for all
values of α and W in 1D. Note that this also suggests that the apparent finite Wc for β → 0+

found from numerics (Fig. 4(d)) is indeed a finite-size effect.
Second, consider the case of β ¦ 1. From the reasonably good match between the critical

lines obtained from the mean-field treatment and exact diagonalisation, as shown in Fig. 4(d),
one can confidently predict that there exists a finite critical disorder strength (and an ensuing
many-body localised phase) in this regime. One can also conclude that the critical disorder
strength grows with β and saturates as β → ∞ to its value for the nearest-neighbour XXZ
model.

Since there is no evidence of non-monotonicity in the phase diagram, either with W or
with β , the above arguments suggest only two plausible scenarios: (i) the critical disorder
vanishes at a finite value of β , or (ii) it vanishes as β → 0. While the mean-field theory
predicts the former, determining this precise limiting value of β naturally calls for further
work. However, what still stands firm is that increasing the range of longitudinal interactions
favours localisation and the critical disorder grows with β .

Whether the aforementioned measure-zero delocalised states at the single-particle spec-
tral edge could conjecturally seed a so-called ‘avalanche instability’ [69], eventually destroy-
ing localisation, is a speculative question which would clearly require a much more refined
analysis. In the shorter term, an interesting question for further study is whether dynamical
signatures [70, 71] are consonant with the phase diagram derived in this work. As an exam-
ple, it was recently found that in long-ranged interacting systems in the absence of disorder,
the entanglement entropy grows logarithmically in time, much like many-body localised sys-
tems [72].

Note: During the review process of this paper, another article appeared which reports
numerical results qualitatively consistent with those presented here [73].
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A Derivation of variance of Fock-space site energies

In this appendix, we present details of the derivation of the variance, µE , of the Fock-space basis
state energies. In particular, we show how the asymptotic forms of the Υ s defined in Eq. (24)
can be obtained, which ultimately lead to the asymptotic forms of E2 in Eq. (25). Note that in
Eq. (24), the summations are over sites with constraints on the terms. The strategy we employ
to analyse these summations is to convert them from sums over sites to distances, taking the
combinatorial factors into account.

We start with the simplest case, namely, that of Υ2 which is nothing but the sum over all
distances, `, of `−2β weighted by the number of ways in which two sites in the system can be
separated by a distance `. Hence,

Υ2 =
N−1
∑

`=1

(N − `)
`2β

= N
N−1
∑

`=1

1
`2β
−

N−1
∑

`=1

1
`2β−1

N�1∼











Nζ(2β); β > 1/2

N log N ; β = 1/2

N2−2β ; β < 1/2

, (51)

where the limiting asymptotic forms can be found by replacing the summations with integra-
tions. In fact, for β ≥ 1/2, the summation can be exactly computed in the thermodynamic
limit. For β strictly greater than 1/2, the first summation dominates and the result is the Rie-
mann zeta function by its definition. Hence Υ2 = Nζ(2β) for β > 1/2. For β = 1/2, again the
first summation dominates and the result is N

∑N−1
`=1 `

−1. Using the property of the Harmonic

sum,
∑k
`=1 `

−1 k→∞
= log k, one arrives at Υ2 = N log N for β = 1/2. For β < 1/2, the coef-

ficient of N2(1−β) can be obtained by evaluating the summations directly (although explicit
knowledge of it is not in fact required).

We next consider Υ1, which consists of the terms where there is one common site. Hence,
it can be expressed as

Υ1 =
∑

i 6= j,i 6=l, j 6=l

1
|i − j|β |i − l|β

= 2
∑

j>i,i 6=l, j 6=l

1
|i − j|β |i − l|β

. (52)

The last term in the above equation above can be split up into two cases, (i) l < i and (ii) l > i,
and one can express

Υ1 = 2





∑

j>i,l<i

1
|i − j|β |i − l|β

+
∑

j>i,l>i,l 6= j

1
|i − j|β |i − l|β



 , (53)

where the l 6= j constraint is automatically accounted for in the first term. In order to do
that for the second term, we let the summation over l run freely and subtract the contribution
coming from l = j. Hence

Υ1 = 2





∑

j>i,l<i

1
|i − j|β |i − l|β

+
∑

j>i,l>i

1
|i − j|β |i − l|β

−
∑

j>i

1
|i − j|2β



 . (54)

In the next step, we convert the summation from sites to distances. Note that for a given i, the
summation over j constrained to j > i corresponds to summing over distances which lie in the
range from 1 to N − i. Similarly, summing over l subject to the constraint l < i is equivalent to
summing over distances from 1 to i − 1. Hence, Υ2 can be expressed in terms of summations
over distances as

Υ1 = 2





N−1
∑

i=2

N−i
∑

`1=1

i−1
∑

`2=1

1

`
β
1 `
β
2

+
N−1
∑

i=1

N−i
∑

`1=1

N−i
∑

`2=1

1

`
β
1 `
β
2

−
N−1
∑

`=1

N − `
`2β



 . (55)
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In the limit of N � 1, the summations are well approximated by integrations over the dis-
tances, which yield

Υ1
N�1∼

¨

N ; β > 1

N3−2β ; β < 1
. (56)

Finally we turn to Υ0, which corresponds to terms where none of the four sites are the same.
To compute this, we let both the pair of indices run freely and subtract off the contributions
coming from the terms where the pairs coincide and that where there is only one common
site, which are nothing but Υ2 and Υ1 respectively. Hence

Υ0 =
∑

j>i

1
|i − j|β

∑

l>k

1
|k− l|β

− Υ2 − Υ1 , (57)

which using the same arguments as for Υ2 can be re-expressed as

Υ0 =

�N−1
∑

r=1

N − r
rβ

�2

− Υ2 − Υ1
N�1∼

¨

N ; β > 1

N4−2β ; β < 1
. (58)

Analysing the asymptotic scaling of Υ0, Υ1, and Υ2 with N shows that E2 (Eq. (23)) is domi-
nated by Υ2, Eq. (51), which in turn leads to Eq. (25) for E2 in the thermodynamic limit.
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