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S1. THOULESS CONDUCTANCE

The Thouless conductance, discussed in Sec.IIA of the main text, is defined as

gT (E) =
δE

∆E
, (S1)

where ∆E is the mean-level-spacing or the typical-level-spacing (i.e., geometric mean of the level spacings) and δE is
the geometric mean of energy level shifts, |εA− εP |, over an energy window [E−w,E+w], with width w � ∆E . Here
εP and εA are eigenvalues of the Hamiltonian with periodic and anti-periodic boundary conditions, respectively. We
calculate the energy spectrum by numerical diagonalization of the quasiperiodic Hamiltonians considered in the main
text. The energy spectrum of the Aubry-Andre model has a Cantor-set structure with bands of states separated by a
dense set of gaps [1–3]. We choose w to be much smaller than the width of the principal bands. Alternatively, gT can
be defined in terms of the mean energy level curvature under a twisted boundary condition or an Aharonov-Bohm
flux in a ring geometry [4, 5]. We have checked that gT, obtained from mean-energy-level curvature, gives results
similar to those from Eq. (S1). Because the latter does not require the computation of eigenvectors, we have used Eq.
(S1) to calculate gT, reported in the main text. We obtain the mean, 〈gT〉, and the typical, 〈exp (gT)〉, conductances
by averaging over φ. We also calculate g∞T , averaged over the whole energy spectrum, as shown in Fig. S1(a) for the
critical point (V = 1) in 1d. This shows the sharp resonances and various sequences of lengths with different power
laws, as in Fig. 1(b) (main text) for gT(E = 0).

We have also calculated gT(L) in 1d for the irrational number b = 1/σs =
√

2− 1, the reciprocal of the silver ratio.
As shown in Fig. S1(b), here also we get similar peaks in the conductance at system sizes related to the Pell numbers,
i.e., Pn+1 = 2Pn + Pn−1, with P0 = 1 and P1 = 2, such that σs = limn→∞(Pn+1/Pn).
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FIG. S1. (a) log-log plots of the infinite temperature (i.e. averaged over the full energy spectrum) Thouless conductance (g∞T )
for 1d, with the inverse of golden ratio as the irrational number (i.e., b = (

√
5− 1)/2) in the potential, versus the system size

L. S’s are the same sequences described in Fig. 1. The conductances for different sequences of system sizes yield different
exponents α, where gT ∝ Lα. (b) The analog of (a) with b = (

√
2− 1). PL1,L2 represents the sequence of system sizes (related

to Pell numbers) started with seeds L1 and L2 (see S1). Both in (a) and (b), the peak of the conductance appears when the
system size belongs to the respective sequences.
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S2. MULTIFRACTAL ANALYSIS

Motivated by the strong-non monotonicity of gT(L) in 1d [Figs. 1(a) and 1(b), main text] and multiple power laws
in Fig. 1(b), we carry out a multifractal fluctuation analysis [6, 7] of the gT(L) data, by analogy with the analysis
of multifractal time series, i.e., gT(i) ≡ gT(Li) with i = 1, . . . , N , where L1 and LN are the minimum and maximum

system sizes studied, respectively. First, we do a cumulative sum of the data, i.e., y(j) =
∑j
i=1 gT(i) for j = 1, . . . , N .

Then, to remove any trend from the data, we subtract moving average from each data point. The moving average ȳ(j)
is the average of y(j)’s over an interval (here we used [j − 13, j + 13]) around j. This gives us the residual sequence
ỹ(j) = y(j) − ȳ(j). Now the residual sequence is divide into non-overlapping segments js = 1, . . . , Ns of width s,
where Ns is the largest integer not larger than N/s−1. The root mean square (rms) fluctuation is calculated for each
segment, i.e.,

Fs(js) =

√
1

s

∑
j∈js

ȳ2(j) ; (S2a)

and we obtain the oder-q moments

Pq =

 1

Ns

Ns∑
js=1

F qs (js)

1/q

. (S2b)

These moments follow multifractal power-law scalings with the segments length s, i.e., Pq(s) ∼ sh(q), as shown for
q = 3 and 4 in Fig. 1(e) (main text) at the 1d critical point.

To quantify the multifractality, we can obtain the singularity spectrum through a Legendre transform, f(α) =
q[α− h(q)] + 1, with α = ∂[qh(q)− 1]/∂q. For a more refined multifractal analysis, we use a wavelet transform of the
Thouless conductance data, namely, we convolve the data set with a fixed-order derivative of the Gaussian funtion,

Gn(x) = dn(e−x
2/2)/dxn. This removes any polynomial trend in the data upto order n− 1, leaving only the singular

dependence. Now this power can be extracted via a log-log fit and, thus, the singularity spectrum can be obtained.
To this end, we use the codes of ref.[8]. In our calculation we use the fourth order derivative of Gaussian function.
The resulting singularity spectra f(α) for the 1d Thouless conductances in the metallic phase and at the critical point
are shown in Fig. 1(f). The singularity spectra computed by using the moments in Eqs.S2 are qualitatively similar
to those obtained via the wavelet-transform method.

1. Wavefunction Multifractality

The conductance multifractality obtained in the preceding section from the L dependence of Thouless conductance
directly characterizes the violation of the assumption of monotonicity in the single-parameter-scaling theory. As
discussed in the main text, this kind of multifractality in quasiperiodic system is quite different from well-known the
wavefunction multifractality at the critical point between a metal and an insulator in a random system, e.g., at the
3d Anderson transition [9]. Conventionally, the multifractality of critical single-particle eigenstates ψr is analyzed
in terms of the moments of the wavefunction amplitude [9], i.e., Pψq =

∑
r |ψr|2q, which, upon disorder averaging,

follow a power-law scaling 〈Pq〉 ∼ L−τ(q), with an exponent τ(q) = d(q − 1) + ∆q that depends non-trivially on q, as
characterized by the anomalous dimension ∆(q). We show in Fig. S2 that, much like at the 3d Anderson criticality
[9], the critiacal wavefunctions of quasiperiodic system also possess the usual multifractality in 1d, as characterized
by the singularity spectrum obtained from the Legendre transform of τ(q) [10].

S3. LANDAUER CONDUCTANCE IN 1d

The Schrödinger equation for the 1d Hamiltonian, given in Eq. (1), can be written in the latttice basis, {ψr} in the
following way: (

ψr+1

ψr

)
=

(
εr −1
1 0

)(
ψr
ψr−1

)
= Mr

(
ψr
ψr−1

)
=

r∏
i=1

Mi

(
ψ1

ψ0

)
= M

(
ψ1

ψ0

)
; (S3)
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FIG. S2. (a) The scaling of different moments of the wave function of the 1D Hamiltonian, Pψq ∼ L−α, averaged over all energy,
is shown here. (b) Shows the anomalous dimension ∆q. (c) The singularity spectrum f(α) shows the multifractal nature of the
wave function.

here, εr = E − 2V cos(2πbr + φ) and E is the energy of interest. By iterating this equation, we can calculate the
amplitude at the end points, given the two starting amplitudes. This transfer matrix M is related to the transmission
matrix T via [11],

T = Q−1MQ , (S4)

where

Q =

(
1 1

e−ik eik

)
. (S5)

Here the disordered region is considered to exist for N > i > 0 and V = 0 at all other points, with the transmitted
wave amplitudes ψ−1 = eik and ψ0 = 1 for a wave propagating from the i > N region to the region i < 0. The
Landauer conductance is given by

gL =
|t|2

|r|2
, (S6)

where t and r are, respectively, the transmission and reflection amplitudes in the transmission matrix. The Landauer
conductance gL(L) is shown in Figs. S3(a)-(d) for the metallic and critical states. The strong non-monotonicity in
gL(L) is evident.

S4. KUBO CONDUCTANCE

The open-system (dimensionless) conductance at the energy E for the system described by the quasiperiodic
Hamiltonians [Eqs.(1) and (A1)], connected with non-interacting leads at the two ends along x direction, is given
by the Kubo formula [12, 13],

gK(E) = 2Tr[Îx(x)Ĝ′′(E)Îx(x′)Ĝ′′(E)] , (S7)

where G” = (1/2i)(G− − G+) is obtained in terms of the Green functions G±(E) = (E − H ± iη)−1, H being the
Hamiltonian of the whole system including the leads. The current operator is

Î(j) = it
∑
l

(|j − 1, l〉〈j, l| − |j, l〉〈j − 1, l|) , (S8)

here l is the index that represents sites on any slice j perpendicular to the direction x. The conductance then simplifies
to

gK = 2Tr[2G′′(j, j)G′′(j − 1, j − 1)−G′′(j − 1, j)2 −G′′(j, j − 1)2]. (S9)

The trace is over l, i.e, in the transverse direction. We evaluate the conductance by calculating the Green functions
in Eq. (S9) via the standard recursive Green’s function method described in Refs. [13–15]. The attached leads have
the same width as that of the system; and we use hard-wall or open boundary condition in the transverse directions.
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FIG. S3. (b)-(e) have the same axes labeling as (a). (a)-(d) gL(L) for 1d, both on the metallic side and at the critical point,
are shown. (e) In the presence of randomly chosen phase at each site, from a uniform random disorder [−∆φ/2,∆φ/2], the
system becomes insulator for any nonzero value of V and ∆φ, which indicates the perturbation to be relevant. For a weak phase
disorder the monotonicity of gL(L) is still present. The data points are averaged over 3000 disorder realization. (f) Ignoring
the L dependent fluctuation in weak disorder a continuous β function is obtained, hence the single-parameter scaling theory is
recovered for the large length scale behavior of the conductance.

S5. BETA FUNCTION CALCULATIONS

To extract the β functions in Fig. 3 (main text), we carry out linear fitting for the ln g vs. lnL curves in the
region V ≤ 1; and, for V > 1, we do the same for ln g vs. L curves. This gives a power-law dependence of the
conductance on L for metallic phase (V ≤ 1) and an exponential dependence in the insulating regime (V > 1). The
scaling-theory β function, β(g) = d ln g/d lnL, is calculated by taking the logarithmic derivative of the fitting curves.
In 3d, close to the critical point. we perform a scaling collapse of the data following Ref. [16]. To this end, we assume
a single-parameter finite-size scaling form for the conductance, namely,

ln g = F(ΨL1/ν) . (S10)

The relevant scaling variable Ψ, in terms of the dimensionless parameter v = (V − Vc)/Vc, is approximated as
Ψ = Ψ1v + Ψ2v

2; and we expand the scaling function F upto third-order in its argument. We minimize the quantity∑
i(ln gi−F(ΨiL

1/ν
i ))2 to obtain the fitting parameters Vc, ν, Ψ1, Ψ2 and the coefficients of the third-order polynomial,

where the index i represents each point of the data set {V,L}. Once the scaling function F(x) is known in terms of
these parameters, we calculate the smooth β function in 3d near the metal-insulator transition at Vc ' 2.2, as shown
in Fig. 3(d)

1. Effects of phase disorder

In Fig. S3(f), the results for β(g̃L) are shown, for a 1d model, where we modify the quasiperiodic potential in Eq.
(1) from cos(2πbr + φ) to cos(2πbr + φr), with φr an uncorrelated random phase at each site, chosen uniformly from
[−∆φ/2,∆φ/2]. The phase randomness, even if weak, leads to localization, as is evident from the exponential decay of
the conductance with L in Fig. S3(e), even for V < 1. As expected for a random system, one gets back a continuous
β function, by considering the conductance dependence on the long window of system sizes, i.e., by ignoring the non-
monotonicity with L at small lengths, for weak strength of the randomness, in contrast to that in Fig. 3 (b). As shown
in Fig. S3(e), the bare gL(L) has a non-monotonic behavior with L in the presence of weak phase randomness, but
the non monotonicity goes away as the randomness increases, completely restoring single-parameter-scaling theory,
even for moderate strengths of disorder.
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