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Abstract—For reliable operation of power system, the system
should be stable not only in the fundamental domain but also
in harmonic domain. Power electronic converters of renewable
generators inject harmonics into the power systems. So, at higher
renewable penetration levels, study of power system stability in
harmonic domain i.e. harmonic stability is required. The Phase
Locked Loop(PLL) is used for grid synchronization of renewable
generators. PLL affects the dynamic behavior of power electronic
converters in harmonic domain also. This paper analyzes the
impact of PLL on the harmonic stability of renewable dominated
power systems. A small signal state space model is developed for
PLL in harmonic domain to analyze the behavior of PLL. The
obtained state space model is a periodic Linear Time Varying
(PLTV) system, making the state space model of the whole power
systems also a PLTV system. As the obtained state matrix is
periodic in nature, the concept of time varying eigen-values
is employed to analyze the harmonic stability. The standard
IEEE-39 bus system is modified to enable high renewable
penetration level and the modified system is used to carryout
the harmonic stability analysis. Impact of PLL parameters on
harmonic stability is analyzed using the modified IEEE 39 Bus
system. The impact of renewable penetration level on harmonic
stability for given PLL parameters is also analyzed. It is observed
that the PLL parameters and renewable penetration level have
impact on the harmonic stability of power system.

Index Terms—Phase Locked Loop, Renewable Integration,
Harmonic Stability.

I. INTRODUCTION

Power systems are experiencing a major shift in power

generation paradigm in the interest of impact on the envi-

ronment due to fossil fuel-based generation. In future, power

system is expected to rely on Renewable Energy (RE) sources

such as wind and solar. Power electronic converters are often

used to interface these RE sources with the power grid for

better control. This type of RE generators are referred to as

Converter Control-Based Generators (CCBGs). Several studies

have focused on understanding the impact of RE on power

system [1]–[3].

For reliable operation of grid, stability of the power system

is one of the main concerns. Conventional power system

being dominated by Synchronous Generators (SGs), stability

of the system is analyzed only in the fundamental frequency

domain. With increasing penetration of RE, CCBGs are going

to play an important role in power system stability [4]–[6].

The harmonics injected by converters and their interaction with

other components of power system may affect the stability of

system in harmonic domain. In addition, the significant pres-

ence of power electronic interfaced loads in the system may

affect the stability. The oscillatory stability challenges faced by

power system due to the harmonic injections is referred to as

harmonic stability [7]–[9]. Analyzing the harmonic stability

and developing ways to mitigate the instability have drawn

significant attention of research community.

Phase Locked Loop (PLL) is an integral component of

CCBGs. PLL is known to have impact on the dynamics and

stability of power system [10]–[13]. Impact of PLL dynamics

on power system dynamics in fundamental frequency domain

has been explored in the literature [10]–[13]. Reference [10]

discusses the impact of PLL dynamics on power system small

signal behavior of voltage source converter (VSC) in a high

voltage DC transmission system. Reference [11] discusses

the impact of PLL on electromechanical response of wind

generator under transient conditions. The coupling between

positive and negative sequence impedances due to PLL and

its importance from the aspect of stability is discussed in

[12]. The low frequency behavior and stability of PLL under

different grid impedance scenarios is investigated in [13] using

a non-linear model. However, there is not much work on

the impact of PLL on the harmonic stability of renewable

dominated power systems. This paper tries to fill this gap. This

paper analyzes the impact of PLL on the harmonic stability of

renewable dominated power systems. The main contributions

of this paper are,

• Small signal state space model of Synchronous Refer-

ence Frame-PLL (SRF-PLL) is developed for harmonic-

domain dynamic studies. However, the state space models

for other type of PLLs can be developed by following the

same procedure.

• Harmonic stability analysis of a power system with high

RE penetration (VSC based).

• Impact of PLL parameters on harmonic stability.

• Impact of RE penetration level on harmonic stability for

given PLL parameters.

It is observed that the PLL parameters and RE penetration

level have impact on the harmonic stability of power system.978-1-5386-9316-2/18/$31.00 ©2018 IEEE





small signal model of PLL is a Periodic Linear Time Varying

(PLTV) System with period T .

a(t+ T ) =a(t); b(t+ T ) = b(t) (7)

T =
1

(n− 1)w
(8)

B. Harmonic Stability Analysis

In this study, the harmonic stability of power system at

nth harmonic frequency is analyzed considering only the nth

harmonic frequency components of the voltages and currents

of the system. Similar to the conventional stability analysis,

all the elements of power system are modeled in the DQ-

frame [15] i.e., synchronously rotating reference frame of

the network. As the power system has voltages and currents

corresponding to nw frequency, the reference frame is also

considered to be rotating at nw frequency. The loads and

transmission lines present in the power system are modeled

in the similar way as done for fundamental frequency stability

analysis [15]. The SGs are modeled as constant impedance

loads. The impedance values for loads, transmission lines

and SGs are calculated as given in [16]. The CCBGs are

modeled considering the converter dynamics, filter dynamics

and control loops of converters as given in [17]. The PLL

dynamics are modeled as given in (6). It is to be noted that

the small signal models of all the elements except for PLL can

be obtained as Linear Time Invariant(LTI) systems. A small

signal model for the entire power system under investigation

can be obtained by cascading the models of all elements of

the power systems [15]. The small-signal model for the entire

power system can be written in a compact form as (9). The

harmonic stability of the system can be evaluated by analyzing

the system given in (9).

˙ΔX = A(t)ΔX (9)

where, A(t) is the state matrix of the entire power system

model.
As the PLL model is PLTV and rest of the elements in power

system are of LTI in nature, A(t) will be periodic with the

same period as that of PLL model i.e.,A(t+ T ) = A(t). The

stability of PLTV system can be analyzed using the Floquet

coefficients or the Hill’s determinant [18], [19] corresponding

to the system. But these conventional methods to determine

the stability of PLTV systems requires the computation of

state transition matrix of the system. The computation of state

transition matrix is a computationally demanding task and the

difficulty amplifies as the order of power system increases. So

in this paper, the dynamics of the power system in harmonic

frequency domain is analyzed using a time varying eigen-

value concept introduced in [20]. As the state matrix A(t) is

periodically varying with time, the eigen-values of the matrix

also varies periodically with time.

A(t+ T ) = A(t) =⇒ λi(t+ T ) = λi (10)

The possible cases that can occur due to the periodically

varying eigen-values are shown in Fig. 3 where λ denotes
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Fig. 3. Possible cases of eigen-values with periodically varying A(t)

.

eigen-values of A(t). The trajectories of eigen-values shown

in Fig. 3 are for illustrative purpose, the actual trajectories

depends on state matrix A(t). The dynamics of the power

system under these possible cases are detailed below, with

reference to the Fig. 3.

• Case (a): The eigen-values of A(t) remain in the Right

Half Plane(RHP) ∀ t ∈ [0, T ]. The power system will be

unstable.

• Case (b): The eigen-values of A(t) remain in the Left

Half Plane(LHP) ∀ t ∈ [0, T ]. The power system will be

stable.

• Case (c): The eigen-values of A(t) stay either in the RHP

or on imaginary axis. The power system will be unstable.

• Case (d): The eigen-values of A(t) stay either in the LHP

or on imaginary axis. Due to the eigen-values on the LHP

the power system will be stable.

• Case (e): The eigen-values alter between LHP and RHP

as A(T ) varies in the time period. When the eigen-values

are in LHP the states of the power system move towards

the steady state operating point of the power system.

When the eigen-values are in RHP the states of the power

system deviate from the steady state operating point. The

real part of eigen-values along with the duration for which

the eigen-values stay in the LHP and RHP decides the

stability of the power system.

So, the stability of power system in harmonic domain can be

evaluated by examining the variation of eigen-values in one

time period.

III. RESULTS

A. PLL Small Signal Model in Harmonic Domain

This subsection presents results to validate the formulations

presented in section II-A. The PLL block is investigated con-

sidering Vabc voltages with 1% harmonic content correspond-

ing to 6th harmonic frequency. The fundamental frequency of

Vabc is considered to be 60 Hz. The equations (2), which are
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Fig. 7. Eigen-values with minimum and maximum real parts as A(t) changes
over one time period
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Fig. 8. Variation of eigen-values in one time period
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(b) Kp = 100

Fig. 9. Impact of Kp on harmonic stability

values of power system are presented in Fig. 8. It can be

seen from the figure that the eigen-value λ1 stays entirely in

LHP where as the eigen-value λ2 alters between the LHP and

RHP. From the analysis of variation of all the eigen-values of

the power system, it is observed that the eigen-values stay in

LHP for longer duration compared to RHP. The variation of

complete set of eigen-values for the power system couldn’t

be presented here due to the space constraint. It is observed

that the other eigen-values of the power system also undergoes

similar variations within a time period as that of presented in

Fig. 8.

C. Impact of PLL Parameters

To analyze the impact of PLL on harmonic stability, PI

block of PLL is represented as (11).

Kgain ∗Kp ∗ (
s+ Ki

Kp

s
) (11)

where, Kgain is introduced to analyze the impact of variation

of gain of the PI block.
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(b) Ki = 1000

Fig. 10. Impact of Ki on harmonic stability
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(b) Kgain = 0.5
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(c) Kgain = 5
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(d) Kgain = 10

Fig. 11. Impact of PLL parameters on harmonic stability

1) Varying Kp: The proportional parameter of the PI block,

Kp, is varied and the impact on harmonic stability is analyzed.

The Kp parameter is varied from 10 to 100 with Ki = 900 and

Kgain = 1, the obtained results at 10 and 100 are presented in

Fig. 9. The Fig. 9(a) and Fig. 9(b) represents the variation of

two of the eigen-values of the power system, where the rest

of eigen-values also follow a similar trend as Kp is varied.

It is observed that as Kp is increased, the eigen-values stay

in LHP for longer duration improving the stability of power

system in harmonic domain.

2) Varying Ki: The integral parameter,Ki is varied from

100 to 1000 with Kp = 50 and Kgain = 1. The Fig. 10

shows the variation in two of the eigen-values of the system

at Ki = 100 and Ki = 1000. It is observed that the rest of

eigen-values also follow a similar trend to that of Fig. 10(a)

and Fig. 10(b) as Ki is varied. It is observed that as Ki is

increased, the eigen-values stay in RHP for longer duration,

affecting the stability of power system in harmonic domain.

From (11), it can be seen that as the Kp increases, the zero

of the PI block moves closer to the origin there by decreasing

the bandwidth of PI block. However, as the Ki increases, the

zero of the PI block moves away from the origin there by

increasing the bandwidth of PI block. From section III-C1

and section III-C2, it can be concluded that decreasing the

bandwidth of PI block of PLL may improve the stability of

power system in harmonic domain.

3) Varying Kgain: The factor Kgain is varied from 0.1 to

10 to analyze the impact on variation of eigen-values within

a time period. The obtained results are shown in the Fig. 11.

It can be seen that as the Kgain is increased the duration



TABLE II
RE PENETRATION LEVEL

Case No.
RE 

contribution
SG 

contribution
1 60% 40%
2 70% 30%
3 50% 50%
4 65% 35%
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Fig. 12. Impact of RE penetration level on harmonic stability

for which the eigen-values stay in RHP is decreasing, there

by improving the stability, and vice versa. From Fig. 11(a)

through Fig. 11(d), it can be concluded that the higher values

of PLL PI parameters may improve the stability of power

systems in harmonic domain.

D. Impact of RE penetration level

The impact of RE penetration level on harmonic stability

is analyzed by investigating the scenarios shown in TABLE

II. The variation of eigen-values within a time period of A(t)
for case-2 and case-3 with reference to TABLE II are shown

in Fig. 12(b) and Fig. 12(a). From the figures, it is observed

that for the considered power system, the eigen-values tend

to stay for longer duration in the RHP as the RE penetration

level increases.

IV. CONCLUSION

The impact of PLL on harmonic stability of power systems

is investigated in this paper. A new Linear Time Varying

(LTV) state space model is formulated for PLL to carry out

stability analysis in harmonic frequency domain. The state

space model obtained for PLL is periodic in time, making

the state space model of the whole power system a periodic

LTV system. Due to the periodic state space model, the

concept of periodic eigen-values is used to analyze the system

stability in harmonic domain. The harmonic stability analysis

is performed on a modified IEEE-39 bus system. For the

investigated power system, it is observed that increasing the

Kp and decreasing the Ki parameters improves the harmonic

stability. The impact of renewable penetration level is analyzed

for the modified IEEE-39 bus system. It is observed that

increase in RE penetration level has a detrimental impact

on harmonic stability of the considered power system. It is

observed that the PLL parameters and renewable penetration

level have impact on the harmonic stability of power system.

However, the nature of the impact may vary depending on the

system. It is suggested that additional controllers are to be

developed to mitigate the adverse impact of PLL on harmonic

stability of renewable dominated power systems.
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