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Abstract—Orthogonal time frequency space (OTFS) modula-
tion is a recently introduced multiplexing technique designed in
the 2-dimensional (2D) delay-Doppler domain suited for high-
Doppler fading channels. OTFS converts a doubly-dispersive
channel into an almost non-fading channel in the delay-Doppler
domain through a series of 2D transformations. In this paper,
we focus on MIMO-OTFS which brings in the high spectral
and energy efficiency benefits of MIMO and the robustness
of OTFS in high-Doppler fading channels. The OTFS channel-
symbol coupling and the sparse delay-Doppler channel impulse
response enable efficient MIMO channel estimation in high
Doppler environments. We present an iterative algorithm for sig-
nal detection based on message passing and a channel estimation
scheme in the delay-Doppler domain suited for MIMO-OTFS.
The proposed channel estimation scheme uses impulses in the
delay-Doppler domain as pilots for estimation. We also compare
the performance of MIMO-OTFS with that of MIMO-OFDM
under high Doppler scenarios.

keywords: OTFS modulation, MIMO-OTFS, 2D modulation, delay-

Doppler domain, MIMO-OTFS signal detection, channel estimation.

I. INTRODUCTION

Future wireless systems including 5G systems need to
operate in dynamic channel conditions, where operation in
high mobility scenarios (e.g., high-speed trains) and millimeter
wave (mm Wave) bands are envisioned. The wireless chan-
nels in such scenarios are doubly-dispersive, where multipath
propagation effects cause time dispersion and Doppler shifts
cause frequency dispersion [1]. OFDM systems are usually
employed to mitigate the effect of inter-symbol interference
(ISI) caused by time dispersion [2]. However, Doppler shifts
result in inter-carrier interference (ICI) in OFDM and degrades
performance [3]. An approach to jointly combat ISI and
ICI is to use pulse shaped OFDM systems [4]-[6]. Pulse
shaped OFDM systems use general time-frequency lattices
and optimized pulse shapes in the time-frequency domain.
However, systems that employ the pulse shaping approach do
not efficiently address the need to support high Doppler shifts.

Orthogonal time frequency space (OTFS) modulation is a
recently proposed multiplexing scheme [7]-[10] which meets
the high-Doppler signaling need through a different approach,
namely, multiplexing the modulation symbols in the delay-
Doppler domain (instead of multiplexing symbols in time-
frequency domain as in traditional modulation techniques such
as OFDM). OTFS waveform has been shown to be resilient
to delay-Doppler shifts in the wireless channel. For example,
OTFS has been shown to achieve significantly better error
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performance compared to OFDM for vehicle speeds ranging
from 30 km/h to 500 km/h in 4 GHz band, and that the
robustness to high-Doppler channels (e.g., 500 km/h vehicle
speeds) is especially notable, as OFDM performance breaks
down in such high-Doppler scenarios [9]. When OTFS wave-
form is viewed in the delay-Doppler domain, it corresponds
to a 2D localized pulse. Modulation symbols, such as QAM
symbols, are multiplexed using these pulses as basis functions.
The idea is to transform the time-varying multipath channel
into a 2D time-invariant channel in the delay-Doppler domain.
This results in a simple and symmetric coupling between the
channel and the modulation symbols, due to which significant
performance gains compared to other multiplexing techniques
are achieved [7]. OTFS modulation can be architected over any
multicarrier modulation by adding pre-processing and post-
processing blocks. This is very attractive from an implemen-
tation view-point.

Recognizing the promise of OTFS in future wireless sys-
tems, including mmWave communication systems [10], several
works on OTFS have started emerging in the recent literature
[11]-[17]. These works have addressed the formulation of
input-output relation in vectorized form, equalization and de-
tection, and channel estimation. Multiple-input multiple-output
(MIMO) techniques along with OTFS (MIMO-OTFS) can
achieve increased spectral/energy efficiencies and robustness
in rapidly varying MIMO channels. It is shown in [7] that
OTFS approaches channel capacity through linear scaling of
spectral efficiency with the MIMO order. We, in this paper,
consider the signal detection and channel estimation aspects
in MIMO-OTFS.

Our contributions can be summarized as follows. We first
present a vectorized input-output formulation for the MIMO-
OTFS system. This linear vector channel model enables
MIMO-OTFS signal detection using a variety of detection
algorithms. Initially, we assume perfect channel knowledge
at the receiver and employ an iterative algorithm based on
message passing for signal detection. The algorithm has low
complexity and it achieves very good performance. For ex-
ample, in a 2 × 2 MIMO-OTFS system, a bit error rate
(BER) of 10−5 is achieved at an SNR of about 14 dB for
a Doppler of 1880 Hz (500 km/hr speed at 4 GHz). For the
same system, MIMO-OFDM BER performance floors at a
BER of 0.02. Next, we relax the perfect channel estimation
assumption and present a channel estimation scheme in the
delay-Doppler domain. The proposed scheme uses impulses in
the delay-Doppler domain as pilots for MIMO-OTFS channel
estimation. The proposed scheme is simple and effective in
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Fig. 1. MIMO-OTFS modulation scheme.

high-Doppler MIMO channels. For example, compared to the
case of perfect channel knowledge, the proposed scheme loses
performance only by less than a fraction of a dB.

The rest of the paper is organized as follows. The MIMO-
OTFS system model and the vectorized input-output relation
are developed in Sec. II. MIMO-OTFS signal detection using
message passing and the resulting BER performance are pre-
sented in Sec. III. The channel estimation scheme in the delay-
Doppler domain and the achieved performance are presented
in Sec. IV. The conclusions are presented in Sec. V.

II. MIMO-OTFS MODULATION

Consider a MIMO-OTFS system as shown in Fig. 1 with
equal number of transmit (nt) and receive antennas (nr),
i.e., nt = nr = na. The treatment can be extended to
the case of nr ≥ nt. Please refer [12],[13] for the system
model of a SISO-OTFS system and the development of a
vectorized formulation of the input-output relation in SISO-
OTFS. Each antenna in the MIMO-OTFS system transmits
OTFS modulated information symbols independently. Let the
windows Wtx[n,m], Wrx[n,m] used for modulation be rect-
angular. Assume that the channel corresponding to pth transmit
antenna and qth receive antenna has P taps. So the channel
representation can be written as

hqp(τ, ν) =

P∑
i=1

hqpi
δ(τ − τi)δ(ν − νi), (1)

where τi, νi, and hqpi
denote the delay, Doppler, and fade

coefficient of the ith path, respectively, and p = 1, 2, · · · , na,
q = 1, 2, · · · , na. We can use the vectorized formulation in
[12],[13] for each transmit and receive antenna pair to describe
the input-output relation.

A. Vectorized formulation of the input-output relation for
MIMO-OTFS

Let Hqp denote the equivalent channel matrix corresponding
to pth transmit antenna and qth receive antenna. Let xp denote
the NM×1 transmit vector from the pth transmit antenna and
yq denote the NM × 1 received vector corresponding to qth
receive antenna in a given frame. Similar to the system model
in [12],[13] for a SISO-OTFS system, we can derive a linear

system model describing the input and output for the MIMO-
OTFS system as given below

y1 = H11x1 +H12x2 + · · ·+H1na
xna

+ v1,

y2 = H21x1 +H22x2 + · · ·+H2na
xna

+ v2,

...
yna = Hna1x1 +Hna2x2 + · · ·+Hnanaxna + vna . (2)

Define

HMIMO =


H11 H12 . . . H1na

H21 H22 . . . H2na

...
...

. . .
...

Hna1 Hna2 . . . Hnana

 ,

xMIMO = [x1
T ,x2

T , · · · ,xna

T ]
T
,yMIMO = [y1

T ,y2
T , · · · ,yna

T ]
T
,

vMIMO = [v1
T ,v2

T , · · · ,vna

T ]
T
.

Then, (2) can be written as

yMIMO = HMIMOxMIMO + vMIMO, (3)

where xMIMO,yMIMO,vMIMO ∈ CnaNM×1, HMIMO ∈
CnaNM×naNM . Thus, in this representation, each row
and column of HMIMO has only naP non-zero elements due to
modulo operations.

III. MIMO-OTFS SIGNAL DETECTION

In this section, we present a MIMO-OTFS signal detection
scheme using an iterative algorithm based on message passing
and present a performance comparison between MIMO-OTFS
and MIMO-OFDM in high-Doppler scenarios.

A. Algorithm for MIMO-OTFS signal detection

Let the sets of non-zero positions in the bth row and ath
column of HMIMO be denoted by ζb and ζa, respectively. Using
(3), the system can be modeled as a sparsely connected factor
graph with naNM variable nodes corresponding to the ele-
ments in xMIMO and naNM observation nodes corresponding to
the elements in yMIMO. Each observation node yb is connected to
the set of variable nodes {xc, c ∈ ζb}, and each variable node
xa is connected to the set of observation nodes {yc, c ∈ ζa}.
Also, |ζb| = |ζa| = naP . The maximum a posteriori (MAP)
decision rule for (3) is given by

x̂MIMO = argmax
xMIMO∈AnaNM

Pr(xMIMO|yMIMO,HMIMO), (4)



where A is the modulation alphabet (e.g., QAM) used. The
detection as per (4) has exponential complexity. Hence, we
use symbol by symbol MAP rule for 0 ≤ a ≤ naNM − 1 for
detection as follows:

x̂a = argmax
aj∈A

Pr(xa = aj |yMIMO,HMIMO)

= argmax
aj∈A

1

|A|
Pr(yMIMO|xa = aj ,HMIMO)

≈ argmax
aj∈A

∏
c∈ζa

Pr(yc|xa = aj ,HMIMO).

The transmitted symbols are assumed to be equally likely and
the components of yMIMO are nearly independent for a given
xa due to the sparsity in HMIMO. This can be solved using
the message passing based algorithm described below. The
message that is passed from the variable node xa, for each
a = {0, 1, · · · , naNM − 1}, to the observation node yb for
b ∈ ζa, is the pmf denoted by pab = {pab(aj)|aj ∈ A} of the
symbols in the constellation A. Let Hab denote the element
in the ath row and bth column of HMIMO. The message passing
algorithm is described as follows.

1: Inputs: yMIMO, HMIMO, Niter: max. number of iterations.
2: Initialization: Iteration index t = 0, pmf p

(0)
ab =

1/|A| ∀ a ∈ {0, 1, · · · , naNM − 1} and b ∈ ζa.
3: Messages from yb to xa: The mean (µ

(t)
ba ) and vari-

ance ((σ
(t)
ba )

2) of the interference term Iba are passed as
messages from yb to xa. Iba can be approximated as a
Gaussian random variable and is given by

Iba =
∑

c∈ζb,c ̸=a

xcHb,c + vb. (5)

The mean and variance of Iba are given by

µ
(t)
ba = E[Iba] =

∑
c∈ζb,c ̸=a

|A|∑
j=1

p
(t)
cb (aj)ajHb,c,

(σ
(t)
ba )

2 = Var[Iba]

=
∑
c∈ζb
c ̸=a

( |A|∑
j=1

p
(t)
cb (aj)|aj |2|Hb,c|2 −

∣∣∣∣ |A|∑
j=1

p
(t)
cb (aj)ajHb,c

∣∣∣∣2
)

+ σ2.

4: Messages from xa to yb: Messages passed from variable
nodes xa to observation nodes yb is the pmf vector p(t+1)

ab

with the elements given by

p
(t+1)
ab = ∆ p

(t)
ab (aj) + (1−∆) p

(t−1)
ab (aj), (6)

where ∆ ∈ (0, 1] is the damping factor for improving
convergence rate, and

p
(t)
ab ∝

∏
c∈ζa,c̸=b

Pr(yc|xa = aj ,HMIMO), (7)

where

Pr(yc|xa = aj ,HMIMO) ∝ exp

(
−|yc − µ

(t)
ca −Hc,aaj |2

σ
2(t)
c,a

)
.

5: Stopping criterion: Repeat steps 3 & 4 till
max
a,b,aj

|p(t+1)
ab (aj) − p

(t)
ab (aj)| < ϵ (where ϵ is a small

value) or the maximum number of iterations, Niter, is
reached.

6: Output: Output the detected symbol as

x̂a = argmax
aj∈A

pa(aj), a ∈ 0, 1, 2, · · · , naNM − 1, (8)

where

pa(aj) =
∏
c∈ζa

Pr(yc|xa = aj ,HMIMO). (9)

B. Vectorized formulation of the input-output relation for
MIMO-OFDM

In this subsection, in order to provide a performance com-
parison between MIMO-OTFS and MIMO-OFDM, we present
the vectorized formulation of the input-output relation for
MIMO-OFDM. OFDM uses the TF domain for signaling and
channel representation. We will first derive the vectorized
formulation for a SISO-OFDM and extend it to MIMO-
OFDM. For a fair comparison with the OTFS modulation, we
will consider N consecutive OFDM blocks (each of size M )
to be one frame, i.e., the transmit vector xOFDM ∈ CNM×1, and
message passing detection is done jointly over one NM × 1
frame. The time-delay representation h(τ, t) is related to the
delay-Doppler representation h(τ, ν) by a Fourier transform
along the time axis, and is given by

h(τ, t) =

P∑
i=1

hie
j2πνitδ(τ − τi). (10)

Sample the time axis at t = nTs = n
M∆f . The sampled time-

delay representation h(τ, n) is given by

h(τ, n) =

P∑
i=1

hie
j2πνin

M∆f δ(τ − τi). (11)

Let CP = P − 1 denote the cyclic prefix length used in each
OFDM block and let L = M + CP . The size of one frame
after cyclic prefix insertion to each block will then be NL.
Let TCP = [CT

CP IM ]
T denote the L×M matrix that inserts

cyclic prefix for one block, where CCP contains the last CP
rows of the identity matrix IM . Also, let RCP = [0M×CP IM ]
denote the M × L the matrix that removes the cyclic prefix
for one block [19]. Let WM×M and WH

M×M denote the DFT
and IDFT matrices of size M . We use the following notations.

• Bcpin = diag (TCP ,TCP , · · · ,TCP )︸ ︷︷ ︸
N times

: cyclic prefix

insertion matrix for N consecutive OFDM blocks.
• Bcpre = diag (RCP ,RCP , · · · ,RCP )︸ ︷︷ ︸

N times

: cyclic prefix

removal matrix for N consecutive OFDM blocks.
• D = diag (W,W, · · · ,W)︸ ︷︷ ︸

N times

: DFT matrix for N consec-

utive OFDM blocks.



• DH = diag (WH ,WH , · · · ,WH)︸ ︷︷ ︸
N times

: IDFT matrix for N

consecutive OFDM blocks.
• The channel in the time-delay domain for a given frame

can be written as a matrix Htd using (11) and has size
NL×NL .

Using the above, the end-to-end relationship in OFDM mod-
ulation can be described by the following linear model:

yOFDM = DBcpreHtdBcpinD
H︸ ︷︷ ︸

HOFDM

xOFDM + v

= HOFDMxOFDM + v, (12)

where xOFDM,yOFDM,v ∈ CNM×1, HOFDM ∈ CNM×NM .
1) MIMO-OFDM: The vectorized formulation of the input-

output relation for SISO-OFDM derived above can be ex-
tended to MIMO-OFDM in a similar fashion as was done for
the MIMO-OTFS system described in Sec. II-A . Let HOFDMqp

denote the equivalent channel matrix corresponding to pth
transmit antenna and qth receive antenna. Let xOFDMp

denote
the NM×1 transmit vector from the pth transmit antenna and
yOFDMq denote the NM × 1 received vector corresponding to
qth receive antenna in a given frame. Define

HMIMO-OFDM =


HOFDM11 HOFDM12 . . . HOFDM1na

HOFDM21 HOFDM22 . . . HOFDM2na

...
...

. . .
...

HOFDMna1
HOFDMna2

. . . HOFDMnana

 ,

xMIMO-OFDM = [xOFDM1

T ,xOFDM2

T , · · · ,xOFDMna

T ]
T
,

yMIMO-OFDM = [yOFDM1

T ,yOFDM2

T , · · · ,yOFDMna

T ]
T
.

The input-output relation for MIMO-OFDM can be written as

yMIMO-OFDM = HMIMO-OFDMxMIMO-OFDM + vMIMO-OFDM, (13)

where xMIMO-OFDM,yMIMO-OFDM,vMIMO-OFDM ∈ CnaNM×1,
HMIMO-OFDM ∈ CnaNM×naNM .

C. Performance results and discussions

In this subsection, we present the BER performance of
MIMO-OTFS and compare it with that of MIMO-OFDM.
Perfect channel knowledge is assumed at the receiver. Message
passing algorithm is used for both MIMO-OTFS and MIMO-
OFDM. A damping factor of 0.5 is used. The maximum
number of iterations and the ϵ value used are 30 and 0.01,
respectively. We use the channel model in (1) and the number
of taps P is taken to be 5. The delay-Doppler profile consid-
ered in the simulation is shown in Table I. Other simulation
parameters used are given in Table II.

Path index (i) 1 2 3 4 5
Delay (τi), µs 2.08 4.164 6.246 8.328 10.41

Doppler (νi), Hz 0 470 940 1410 1880

TABLE I
DELAY-DOPPLER PROFILE FOR THE CHANNEL MODEL WITH P = 5.

Figure 2 shows the BER performance of MIMO-OTFS for
SISO as well as 2 × 2 and 3 × 3 MIMO configurations.

Parameter Value
Carrier frequency (GHz) 4
Subcarrier spacing (kHz) 15
Frame size (M,N) (32, 32)
Modulation scheme BPSK
MIMO configuration 1×1, 2×2, 3×3
Maximum speed (kmph) 507.6

TABLE II
SYSTEM PARAMETERS.
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Fig. 2. BER performance of MIMO-OTFS for SISO, and 2 × 2 and 3 × 3
MIMO systems.

The maximum considered speed of 507.6 kmph corresponds
to 1880 Hz Doppler frequency at a carrier frequency of 4
GHz. Even at this high-Doppler value, MIMO-OTFS is found
to achieve very good BER performance. We observe that,
a BER of 10−5 is achieved at an SNR of about 14 dB
for the 2×2 system, while the SNR required to achieve the
same BER reduces by about 2 dB for the 3×3 system. Thus,
with the proposed detection algorithm, MIMO-OTFS brings
in the advantages of linear increase in spectral efficiency with
number of transmit antennas and the robustness of OTFS
modulation in high-Doppler scenarios.
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Fig. 3. BER performance comparison between MIMO-OTFS and MIMO-
OFDM in a 2× 2 MIMO system.

Figure 3 shows the BER performance comparison between
MIMO-OTFS and MIMO-OFDM in a 2×2 MIMO system.
The maximum Doppler spread in the considered system is
high (1880 Hz) which causes severe ICI in the TF domain.
Because of the severe ICI, the performance of MIMO-OFDM
is found to break down and floor at a BER value of about



Fig. 4. Illustration of pilots and channel response in delay-Doppler domain in a 2×1 MIMO-OTFS system.

2 × 10−2. However, MIMO-OTFS is able to achieve a BER
of 10−5 at an SNR value of about 14 dB. This is because
OTFS uses the delay-Doppler domain for signaling instead of
TF domain. Thus, the BER plots clearly illustrate the robust
performance of MIMO-OTFS and its superiority over MIMO-
OFDM under rapidly varying channel conditions.

IV. CHANNEL ESTIMATION FOR MIMO-OTFS
In this section, we relax the assumption of perfect channel

knowledge and present a channel estimation scheme in the
delay-Doppler domain. The scheme uses impulses in the delay-
Doppler domain as pilots. Figure 4 gives an illustration of the
pilots, channel response, and received signal in a 2×1 MIMO
system with the delay-Doppler profile and system parameters
given in Tables I and II. Each transmit and receive antenna
pair sees a different channel having a finite support in the
delay-Doppler domain. The support is determined by the delay
and Doppler spread of the channel [8]. This fact can be used
to estimate the channel for all the transmit-receive antenna
pairs simultaneously using a single MIMO-OTFS frame as
described below.

The OTFS input-output relation for pth transmit antenna and
qth receive antenna pair can be written as

x̂q[k, l] =

M−1∑
m=0

N−1∑
n=0

xp[n,m]
1

MN
hwqp

(
k − n

NT
,
l −m

M∆f

)
+vq[k, l].

(14)

If we transmit

xp[n,m] = 1 if (n,m) = (np,mp)

= 0 ∀ (n,m) ̸= (np,mp), (15)

as pilot from the pth antenna, the received signal at the qth
antenna will be

x̂q[k, l] =
1

MN
hwqp

(
k − np

NT
,
l −mp

M∆f

)
+ vq[k, l]. (16)

We can estimate 1
MN hwqp

(
k

NT ,
l

M∆f

)
from (16), since,

being the pilots, np and mp are known at the receiver a priori.

From this, we can get the equivalent channel matrix Ĥqp using
the vectorized formulation. From (16) we also see that, due
to the 2D-convolution input-output relation, the impulse at
(n,m) = (np,mp) is spread by the channel only to the extent
of the support of the channel in the delay-Doppler domain.
Thus, if we send the pilot impulses from the transmit antennas
with sufficient spacing in the delay-Doppler domain, they will
be received without overlap. Hence, we can estimate the chan-
nel responses corresponding to all the transmit-receive antenna
pairs simultaneously and get the estimate of the equivalent
MIMO-OTFS channel matrix ĤMIMO using a single MIMO-
OTFS frame. This is illustrated in Fig. 4 for a 2 ×1 MIMO-
OTFS system with frame size (M,N) = (32, 32) at an SNR
value of 4 dB. The first antenna transmits the pilot impulse at
(n1,m1) = (0, 0) and the second antenna transmits the pilot
impulse at (n2,m2) = (16, 16) in the delay-Doppler domain.
We observe that the impulse response hw11

(
k−n1

NT , l−m1

M∆f

)
and hw12

(
k−n2

NT , l−m2

M∆f

)
are non-overlapping at the receiver.

Thus they can be estimated simultaneously using a single pilot
MIMO-OTFS frame.

A. Performance results and discussions

In this subsection, we present the BER performance of the
MIMO-OTFS system using the estimated channel. We use the
MIMO-OTFS channel estimation scheme described above, for
estimating the equivalent channel matrix ĤMIMO and use the
message passing algorithm for detection. The delay-Doppler
profile and the simulation parameters are as given in Table I
and Table II, respectively.

In Fig. 5, we plot the Frobenius norm of the difference
between the equivalent channel matrix (HMIMO) and the es-
timated equivalent channel matrix (ĤMIMO) (a measure of
estimation error) as a function of pilot SNR for a 2×2
MIMO-OTFS system with system parameters as in Tables
I and II. We observe that, as expected, the Frobenius norm
of the difference matrix decreases with pilot SNR. Figure 6
shows the corresponding BER performance using the proposed
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Fig. 5. Frobenius norm of the difference between the equivalent channel
matrix (HMIMO) and the estimated equivalent channel matrix (ĤMIMO) as a
function of pilot SNR in a 2×2 MIMO-OTFS system.
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Fig. 6. BER performance of MIMO-OTFS system using the estimated channel
in a 2×2 MIMO-OTFS system.

channel estimation scheme for the 2×2 MIMO-OTFS system.
It is observed that the BER performance achieved with the
estimated channel is quite close to the performance with
perfect channel knowledge. For example, a BER of 2× 10−5

is achieved at SNR values of about 12.5 dB and 13 dB with
perfect channel knowledge and estimated channel knowledge,
respectively. At the considered maximum Doppler frequency
of 1880 Hz, channel estimation in the time-frequency domain
leads to inaccurate estimation because of the rapid variations
of the channel in time. On the other hand, the sparse channel
representation in the delay-Doppler domain is time-invariant
over a larger observation time. This, along with the OTFS
channel-symbol coupling (2D periodic convolution) in the
delay-Doppler domain, enables the proposed channel estima-
tion for MIMO-OTFS to be simple and efficient.

V. CONCLUSIONS

We investigated signal detection and channel estimation as-
pects of MIMO-OTFS under high-Doppler channel conditions.
We developed a vectorized formulation of the input-output
relationship for MIMO-OTFS which enables MIMO-OTFS
signal detection using a variety of detection algorithms. We
presented a low complexity iterative algorithm for MIMO-
OTFS detection based on message passing. The algorithm was

shown to achieve very good BER performance even at high
Doppler frequencies (e.g., 1880 Hz) in a 2× 2 MIMO system
where MIMO-OFDM was shown to floor in its BER perfor-
mance. We also presented a channel estimation scheme in
the delay-Doppler domain, where delay-Doppler impulses are
used as pilots. The proposed channel estimation scheme was
shown to be efficient and the BER degradation was small as
compared to the performance with perfect channel knowledge.
The sparse nature of the channel in the delay-Doppler domain
which is time-invariant over a larger observation time enabled
the proposed estimation scheme to be simple and efficient.
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